
40

What You Will Learn in This Chapter

•	 What	are	databases	and	why	are	formal	query	systems	necessary?
•	 How	is	data	stored	in	a	relational	database?
•	 What	is	the	basic	structure	of	a	query?
•	 How	do	you	create	a	basic	query?
•	 What	types	of	computations	can	be	performed	in	SQL?
•	 How	are	subtotals	computed?
•	 How	do	you	use	multiple	tables	in	a	query?
•	 How	are	reports	created	in	SQL	Server?
•	 How	do	you	create	a	new	database?

Chapter Outline

Database Management Systems
2Chapter

Introduction,	42
Relational	Databases,	43

Tables, 43
Data Types, 45

Four	Questions	to	Retrieve	Data,	47
What Output Do You Want to See?, 48
What Do You Already Know?, 48
What Tables Are Involved?, 48
How Are the Tables Joined?, 48

Query	Basics,	49
Single Tables, 50
Introduction to SQL, 52
Sorting the Output, 52
Criteria, 53
Useful WHERE Clauses, 56

Computations,	57
Basic Arithmetic Operators, 57
Aggregation, 58
Functions, 60

Subtotals	and	GROUP	BY,	61
Conditions on Totals (HAVING), 63
WHERE versus HAVING, 64
The Best and the Worst, 65

Multiple	Tables,	66

Joining Tables, 66
Identifying Columns in Different Tables,
67
Joining Many Tables, 68
Views: Saved Queries, 69
LEFT JOIN, 71
UNION, 71

Data	Manipulation,	72
UPDATE, 73
INSERT, 73
DELETE, 74

SQL	Server	Reports,	75
Administration Configuration, 75
Creating a Report, 76

Database	Design	Concepts,	82
Notation, 84
First Normal Form, 86
Second Normal Form, 86
Third Normal Form, 87

Summary,	88
Key	Words,	89
Review	Questions,	90
Exercises,	90
Additional	Reading,	93

41Chapter 2: Database Management Systems

FAA: Air Safety
For years, the Federal Aviation Administration (FAA) and major airlines have had
teams dedicated to analyzing air crashes and using the results to improve air safe-
ty. The teams have been successful and their results have undoubtedly made flying
safer. But, they have faced an interesting problem—with improved safety and fewer
crashes, there is little opportunity for investigation. So, they have turned to analyzing
data on all flights and pilot reports. As part of the process, the FAA and the airlines
have changed their reporting culture—encouraging pilots and controllers to report
all potential problems with no fear of blame. These “quality assurance programs”
are designed to collect massive amounts of data to be analyzed for “precursors” or
potential problems. Modern planes capture detailed flight data (not just the “black
boxes” but ongoing reporting from instruments). For example, Southwest Airlines,
which started collecting data in 2003, by 2008 had data on more than one million
flights. Don Carter, senior manager of Southwest’s flight safety program noted
that “We are always asking ourselves, ‘What should we be asking this data that we
haven’t thought of yet?’” [Wilber 2008] US Airways used similar data to identify an
unusually high number of “unstabilized” approaches where the planes come in too
fast or sink too quickly at the last stages of landing. The carrier changed its training
and landing checklists and reduced the rate of unstable approaches by more than 70
percent. They used similar data to rewrite charts to improve landings and visibility at
McCarren International airport in Las Vegas. Tom Lulkovich, US Airways director
of flight safety noted that “everything is about identifying risk here.”

Collecting and organizing huge amounts of data is an important first step. Analysts
must also know which questions to ask.

Del Quentin Wilber, “Avoiding Plane Crashes By Crunching Numbers,” The Wash-
ington Post, January 13, 2008. http://www.washingtonpost.com/wp-dyn/content/ar-
ticle/2008/01/12/AR2008011202407.html

42Chapter 2: Database Management Systems

Introduction
What are databases and why are formal query systems neces-
sary? Most companies use a relational database management system (DBMS)
to hold transaction data. These databases form the foundation for applications
such as accounting systems and Web servers. Many companies have integrated
applications or enterprise resource planning (ERP) systems that store all data
in a DBMS. These transaction databases are designed to be efficient at storing
data, and to ensure that the data remains safe even when multiple operations are
performed at the same time and even if power fails half way through a process.

A database is a collection of related data. The database is typically stored in
specific formats and controlled with a DBMS which provides access to the data
through standardized connection methods. Without databases, programmers store
data in proprietary structures so the data is available only to a specific program.
For example, word processing documents are commonly stored in proprietary for-
mats. It usually works for word documents because most people are willing to
use the same word processor to edit a document. However, it is critical for basic
business data to be accessible to other programs. Most databases have a relatively
standard method to provide data to people and to other software. This process
usually involves a query system, and most existing query systems are based on
the SQL standard. Following standards is important because it makes it easier to
change the underlying DBMS if necessary, and it is easier for programmers and
managers to learn a single query method that can be used in most situations.

Figure 2.1 shows the basic roles of the database and DBMS. The DBMS is soft-
ware that controls access to the database, supports programs, creates reports for
standardized data, and has a query language to process ad hoc queries.

Database

DBMS
Programs

Sales and transaction data

Reports and

ad hoc queries

Figure 2.1
Database management system. The DBMS stores the database and provides access to
programs, creates reports, and processes ad hoc queries.

43Chapter 2: Database Management Systems

Most major DBMS vendors have implemented a “natural language” query sys-
tem at some point. Most have abandoned the work in favor of the SQL standard.
The problem with natural languages, such as English, is that they are inherently
ambiguous. The risk is relatively high that the computer will not understand a
question the same way it was intended by the manager asking the question. The
DBMS does the best it can to produce results, and it is difficult for the manager to
verify that the computer had the correct understanding of the question. Versions
of this problem exist with any query language, but formal systems are defined to
work in a specific way. By learning the basic rules of the formal query system, it
is possible to ensure that the DBMS returns exactly the data needed to answer a
specific question. However, you must learn those basic rules.

The main goal of this chapter is to show how to create common queries in SQL
Server. Queries are useful for answering ad hoc questions. In some ways, data
mining tools covered in Chapter 3 are easier to use than traditional SQL queries.
However, queries are still used to look up basic facts and they are used to config-
ure data for some of the data mining tools. Queries and data warehouses are com-
plementary—a good analyst needs to be able to use both tools. Queries provide
direct access to data and support row-by-row computations. Data warehouse tools
make it easy to summarize data and compare subtotals and explore data.

Relational Databases
How is data stored in a relational database? To learn to write queries
to retrieve data, it is important to understand how data is stored in the database.
The most important thing to know is that all data in a relational database is stored
in tables. To answer business questions or configure data for analysis, it is neces-
sary to determine which tables hold the data needed. This section introduces the
basic concepts of tables, and assumes that the tables and data already exist. It does
not attempt to explain how to create tables. Relational databases have to be care-
fully designed or they do not work well. These design issues are briefly covered in
a later section of this chapter, but learning how to design a database is covered in
other textbooks (Post 2011).

Tables
A table describes a single concept or object. Its columns consist of attributes or
properties of the object. Data is stored as a row—where each row represents one
instance of data. Figure 2.2 shows part of a table for Customers. Customers are

Figure 2.2
Sample table: Customers. A table represents a single object or event. Columns are
properties or attributes that describe the object. Each row is one instance of data.

primary	key:	Identify	a	row		 	 Columns:	Properties/Attributes
CID	 LastName	 FirstName	 Phone	 Address	 City	 State	 ZIP	
101 Jones	 Jack	 222-3333	 123	Elm	 Boise	 ID	 83701
102 Smith	 Susan	 333-4444	 456	Oak	 Hartford	 CT	 6101
103 Mendes	 Maria	 555-6666	 789	Pine	 Phoenix	 AZ	 85041
104 Brown	 Bob	 747-3733	 910	Pear	 Sacramento	 CA	 94201

44Chapter 2: Database Management Systems

defined in terms of their name, phone, address, city, state, and ZIP or postal code.
Most companies collect additional properties about customers, such as e-mail ad-
dress. Each row represents a single customer, and all data for that customer is
stored in that row. The row is identified by the CustomerID (CID) value—it is
the primary key for the table. A primary key is a column or set of columns that
uniquely identifies a row. Every table must have a primary key. In cases of simple
objects, the key is usually created within the DBMS. For example, SQL Server
uses an identity to generate new key values that are guaranteed to be unique. In
the example of the Customers, if the ID value 104 is provided, the DBMS can
quickly find the data for customer Brown.

Primary keys are often used to link tables. Figure 2.3 illustrates the process
with a Sales table. The Sales table holds a value for CID to indicate which cus-
tomer made the purchase. Details about the customer are stored in a single row in
the Customers table with the matching CID value (102). The main benefit to this
approach is that data for each customer is stored in only one location—making it
easy to find and easy to change. The drawback is that the DBMS needs a method
to quickly match data from multiple tables.

Relational databases can have any number of tables—all related through the
key values. Corporate databases can easily include hundreds or even thousands of
tables. Creating queries to answer business questions ultimately requires that you
know which table to use—which requires knowing exactly what each table repre-
sents and knowing the meaning of each column. Figure 2.4 shows the relationship
diagram for Rolling Thunder Bicycles. Even this relatively basic set of tables is
difficult to fit on a single page. Most business queries focus on a few basic tables,
such as Bicycle, Customer, City, Employee, BikeParts, Components, Manufac-
turer, PurchaseOrder, and PurchaseItem. Some tables, such as CustomerTrans,
ManufacturerTrans, ModelSize, and BikeTubes are used for internal accounting

CID LastName FirstName Phone Address City State ZIP

101 Jones Jack 222-3333 123 Elm Boise ID 83701

102 Smith Susan 333-4444 456 Oak Hartford CT 06101

103 Mendes Maria 555-6666 789 Pine Phoenix AZ 85041

104 Brown Bob 747-3733 910 Pear Sacramento CA 94201

Customers

SaleID SaleDate CID

1001 7/13/…. 102

1002 7/14/…. 291

1003 7/14/…. 103

1004 7/15/…. 102

Sales

Figure 2.3
Data keys link tables. The Sales table holds only the CID value to indicate which
customer made the purchase. Details about the customer are stored in one location in
the Customers table.

45Chapter 2: Database Management Systems

and manufacturing purposes and are rarely queried directly. But, it takes knowl-
edge of the industry and the company to recognize the purpose of each table. One
of the first steps in analyzing data is to understand exactly what data is available.
Looking through the list of tables provides a first glimpse of that data.

Data Types
Computers deal only with binary data, so all data must be assigned a data type
that specifies how the data is stored and handled. The basic data types are: Numer-
ic, Text, Date, XML, and binary Object, such as pictures. The catch is that many
subtypes exist. Figure 2.5 lists the basic data types in SQL Server. First, note that
all text today should use the Unicode (“National”) data type—which supports
characters in multiple languages. Second, the appropriate data type should be cho-
sen for each data column. Integer values cannot contain decimal data and the size
chosen must be able to hold the largest possible value. Monetary values should
be stored using the money type, never integers and never float or real which can
round off some values. Dates must always be stored with the datetime data type
because it supports searches and subtraction of dates to find the number of days
between two dates.

Figure 2.4
Relationship diagram for Rolling Thunder Bicycles. Creating queries requires
understanding all of the tables and columns, although most business questions focus
on a few key areas.

46Chapter 2: Database Management Systems

In most cases, the database structure and data types will already exist for any
data that managers use. However, managers might be involved in the design and
construction of a new data warehouse that consolidates data from other sources.
Hence, it is helpful for managers to know the types of data available to hold the
consolidated data.

The binary data types are rarely used in data mining. Data mining has been suc-
cessfully applied to images and large-text files, but these investigations typically
use specialized tools and data storage. Relational databases are generally too slow
to use for large collections of huge text and image files.

Extensible markup language (XML) files are increasingly common in business,
but they present additional complications in data mining. XML data consists of
text that is tagged; similar to HTML tags, but any tag names can be used. The
drawback to XML is that multiple types and levels of data are stored within a
single XML list. Figure 2.6 provides an example of an XML segment used for an
order. To analyze this data, the individual elements must be extracted and stored
into new tables. Data mining tools, particularly those in SQL Server, are designed
to work with relational tables. It would be too slow to extract data from XML
segments on the fly. SQL Server supports XQuery and other XML tools used to
extract data from XML files, but these tools need to be run once during the setup
to unload the data from XML and transfer it into standard tables.

Figure 2.5
Data types in SQL Server. Use Unicode whenever possible. Be careful with number
types to ensure the correct type is chosen for each piece of data.

Data Type SQL Server Size
Text
		Fixed
		Variable
		Unicode
		Memo
		XML

char
varchar
nchar,	nvarchar
text
xml

8K
8K
4K
2G,	1G
2G

Number
		Byte
		Integer
		Long
		64-bits
		Fixed	precision
		Float
		Double
		Currency
		Yes/No

tinyint
smallint
int
bigint
decimal(p,s)
real
float
money
bit

255
+/-	32767
+/-2B
18	digits
p:	1	to	38
+/-	1E	38
+/-	1E	308
+/-	900.0000	trillion	(8	bytes)
0/1

Date/Time datetime
smalldatetime

1/1/1753	–	12/31/9999	(3	ms)
1/1/1900	–	6/6/2079	(1	min)

Interval interval	year,	…
Image image 2GB

47Chapter 2: Database Management Systems

Four Questions to Retrieve Data
What is the basic structure of a query? Every attempt to retrieve data
from a relational DBMS requires answering the four basic questions listed in Fig-
ure 2.7. The difference among query systems is how you fill in those answers. You
need to remember these four questions, but do not worry about the specific order.
When you first learn to create queries, you should write down these four questions
each time you construct a query. With easy problems, you can almost automati-
cally fill in answers to these questions. With more complex problems, you might
fill in partial answers and switch between questions until you completely under-
stand the query.

Notice that in some easy situations you will not have to answer all four ques-
tions. Many easy questions involve only one table, so you will not have to worry
about joining tables (question 4). As another example, you might want the total
sales for the entire company, as opposed to the total sales for a particular employ-
ee, so there may not be any constraints (question 2).

Figure 2.6
Sample XML data. To analyze this data the individual elements must be extracted
and stored into separate tables and rows.

<order>
	 <orderID>111</orderID>
	 <customer>
	 	 <cID>99</cID>
	 	 <lastName>Smith</lastName><firstName>Mary</firstName>
	 </customer>
	 <itemList>
	 	 <item>
	 	 	 <itemid>290</itemid><description>red	dress</description>
	 	 	 <salePrice>132.99</salePrice><quantity>1</quantity>
	 	 </item>
	 	 	 <itemid>171</itemid><description>shoes</description>
	 	 	 <salePrice>79.89</salePrice><quantity>1</quantity>
	 	 <item>
	 	 </item>
	 </itemList>
</order>

Figure 2.7
Four questions to create a query. Every query is built by asking these four questions.

What	output	do	you	want	to	see?
What	do	you	already	know	(or	what	constraints	are	given)?
What	tables	are	involved?
How	are	the	tables	joined?

48Chapter 2: Database Management Systems

What Output Do You Want to See?
In many ways, this question is the most important. Obviously, the database engine
needs to know what you want to see. More importantly, you first have to visualize
your output before you can write the rest of the query. In general, a query system
answers your query by displaying rows of data for various columns. You have to
tell the DBMS which columns to display. However, you can also ask the DBMS
to perform some basic computations, so you also need to identify any calculations
and totals you need.

You generally answer this question by selecting columns of data from the vari-
ous tables stored in the database. Of course, you need to know the names of all
of the columns to answer this question. Generally, the hardest part in answering
this question is to wade through the list of tables and identify the columns you re-
ally want to see. The problem is more difficult when the database has hundreds of
tables and thousands of columns. Queries are easier to build if you have a copy of
the class diagram that lists the tables, their columns, and the relationships that join
the tables.

What Do You Already Know?
In most situations you want to restrict your search based on various criteria. For
instance, you might be interested in sales on a particular date or sales from only
one department. The search conditions must be converted into a standard Boolean
notation (phrases connected with AND or OR). The most important part of this
step is to write down all the conditions to help you understand the purpose of the
query.

What Tables Are Involved?
With only a few tables, this question is easy. With hundreds of tables, it could
take a while to determine exactly which ones you need. A good data dictionary
with synonyms and comments will make it easier for you (and users) to determine
exactly which tables you need for the query. It is also critical that tables be given
names that accurately reflect their content and purpose.

One hint in choosing tables is to start with the tables containing the columns
listed in the first two questions (output and criteria). Next decide whether other
tables might be needed to serve as intermediaries to connect these tables.

How Are the Tables Joined?
In a relational database, tables are connected by data in similar columns. For in-
stance, as shown in Figure 2.3, a Sales table has a CustomerID column. Corre-
sponding data is stored in the Customer table, which also has a CustomerID col-
umn. In many cases matching columns in the tables will have the same name (e.g.,
CustomerID) and this question is easy to answer. The join performs a matching or
lookup for the rows. You can think of the result as one giant table and use any of
the columns from any of the joined tables. Note that columns are not required to
have the same name, so you sometimes have to think a little more carefully. For
example, an Order table might have a column for SalesPerson, which is designed
to match the EmployeeID key in an Employee table.

Joining tables is usually straightforward as long as the database design is
sound. In fact, the query system will automatically use the design to join any ta-
bles whenever possible. However, two problems can arise in practice: (1) You
should verify that all tables are joined, and (2) Double-check any tables with mul-
tiple join conditions.

49Chapter 2: Database Management Systems

Technically, it is legal to use tables without adding a join condition. However,
when no join condition is explicitly specified, the DBMS creates a cross join or
Cartesian product between the tables. A cross join matches every row in the first
table to every other row in the second table. For example, if both tables have 10
rows, the resulting cross join yields 10*10 = 100 rows of data. If the tables each
have 1,000 rows, the resulting join has one million rows! A cross join will seri-
ously degrade performance on any DBMS, so be sure to specify a join condition
for every table.

Sometimes table designs have multiple relationship connections between ta-
bles. For example, Figure 2.8 shows that the Rolling Thunder Bicycles database
joins Customer to City and City to Employee. If a query is built that includes
the tables: Customer, City, Bicycle, and Employee; the query builder will auto-
matically include a join relationship between Customer and City as well as a join
between Employee and City. Including both joins causes a problem—only data
that meets both conditions will be displayed. In the Customer/Employee example,
Customers will be returned only if they live in the same city as the employee who
sold the bicycle. This query is rarely going to be useful. The solution is to remove
the join between Employee and City.

Query Basics
How do you create a basic query? It is best to begin with relatively easy
queries. This section presents queries that involve a single table to show the basics
of creating a query. Then it covers details on constraints, followed by a discussion
on computations and aggregations. Groups and subtotals are then explained.

Figure 2.9 presents several business questions that might arise at the Rolling
Thunder Bicycles company. Most of the questions are relatively easy to answer.
With a small enough number of rows, it might be possible to hand-search the
Bicycle table to find answers. However, the point of this section is to start with
relatively easy queries to focus on the basics of creating queries and entering
conditions.

CustomerID
LastName
FirstName
Phone
Address
CityID

Customer

SerialNumber
ModelType
OrderDate
CustomerID
EmployeeID

Bicycle

CityID
Name
State
ZIPCode
Population

City
EmployeeID
LastName
FirstName
Phone
Address
CityID

Employee

Figure 2.8
Loops with joins usually cause problems. This sample query would return customers
ONLY if they live in the same city as the employee who placed the order. Delete the
connection from Employee and City to solve the problem.

50Chapter 2: Database Management Systems

The foundation of queries is that you want to see only some of the columns
from a table and that you want to restrict the output to a set of rows that match
some criteria. For example, in the first query (animals with yellow color), you
might want to see the AnimalID, Category, Breed, and their Color. Instead of list-
ing every animal in the table, you want to restrict the list to just those with a yel-
low color.

As with most tools today, SQL Server has a query editor to help build queries
visually. Ultimately, queries are written in SQL. SQL Server shows the SQL state-
ment in the editor and you can switch back and forth between the two. In many
cases, the SQL is easier to read, but the visual editor can be used to create queries
with less typing. The query editor can be run through the SQL Server Manage-
ment Studio. Chapter 3 also shows how the query editor can be used from within
the analysis services. Start the Management Studio and log in. Expand the list of
databases and right-click the RT database to select the New Query menu item. If
the “New Query” button is used on the main menu, you must always start a query
with the line: USE RT; to ensure the proper database is used. By default, the
query editor is set for SQL. Right click and choose the “Design query in Editor”
menu option to open the visual designer.

Single Tables
The first query to consider is: Which bicycles were ordered between 12/1/2008
and 12/15/2008? Figure 2.10 shows the design editor and the SQL. The two meth-
ods utilize the same underlying structure. The designer approach saves some typ-
ing, but eventually you need to be able to write the SQL statements. If you write
down the SQL keywords, you can fill in the blanks—similar to the way you fill in
the designer grid.

The designer will ask you to choose the tables involved. This question involves
only one table: Bicycles. You know that because all of the data you want to see
and the constraint are based on columns in the Bicycle table. With the table dis-
played, you can now choose which columns you want to see in the output. The

Figure 2.9
Sample questions for Rolling Thunder Bicycles. The essence of building a query is to
convert the business question into the structure required by the DBMS.

•	 Which	bicycles	were	ordered	between	12/1/2008	and	12/15/2008?
•	 Which	race	bicycles	in	2008	were	larger	than	61	cm?
•	 Which	race	bicycles	in	2007	had	a	list	price	over	7000?
•	 In	December	2008,	which	mountain	or	mountain	full	suspension	bicycles	sold	for	more	

than	5500?
•	 What	is	the	total	value	of	all	bikes	sold	in	December	2008?
•	 What	it	the	total	value	of	items	on	purchase	order	101?
•	 How	many	Race	bikes	were	sold	in	November	2008?
•	 What	is	the	number	of	bicycles	sold	of	each	model	type	in	November	2008?
•	 Who	is	the	best	sales	person?
•	 List	the	CustomerID	of	everyone	who	bought	a	bicycle	on	December	1,	2008.
•	 List	Names	and	Phone	numbers	for	everyone	who	purchased	a	bike	on	01-DEC-2008.
•	 List	customers	from	Miami,	FL	who	purchased	bicycles	in	December	2008.
•	 Which	model	types	were	not	sold	in	December	2008?

51Chapter 2: Database Management Systems

business question is a little vague, so select SerialNumber, ModelType, PaintId,
FrameSize, and OrderDate.

The next step is to enter the criteria that you already know. In this example,
you are looking for bicycles ordered between two specific dates. Date conditions
can be entered with standard comparison operators (<, >, >=, and so on). How-
ever, dates are usually given as a range and ranges are easiest to enter with a
BETWEEN condition. On the same row as the order date, scroll to the right, in
the filter column enter: BETWEEN ‘12/1/2008’ AND ‘12/15/2008’. Dates must
be enclosed in single parentheses and entered in the data format set for the local
computer. Dates can also be entered as ’01-DEC-2008’ to avoid confusion be-
tween month and day numbers. The SQL statement uses the CONVERT function
to explicitly define the date format. Click the OK button to close the designer.
Click the “! Execute” button to run the query and see the bicycles that match the
date condition.

The four basic questions are answered by filling out blanks on the query design
grid. (1) The output to be displayed is placed as a field on the grid. (2) The con-
straints are entered as criteria or conditions under the appropriate fields. (3) The
tables involved are displayed at the top (and often under each field name). (4) The

Figure 2.10
Sample query shown in QBE and SQL. Since there is only one table, only three
questions need to be answered: What tables? What conditions? What do you want to
see?

52Chapter 2: Database Management Systems

table joins are shown as connecting lines among the tables. The one drawback to
query design systems is that you have to answer the most difficult question first:
Identifying the tables involved. The query design system uses the table list to pro-
vide a list of the columns you can choose. Keep in mind that you can always add
more tables as you work on the problem.

Introduction to SQL
SQL is a powerful query language. However, unlike the design editor, you gener-
ally have to type in the entire statement. Perhaps the greatest strength of SQL is
that it is a standard that most vendors of DBMS software support. Hence, once
you learn the base language, you will be able to create queries on all of the major
systems in use today. Note that some people pronounce SQL as “sequel,” partly
treating it as a descendant of vendor’s early DBMS called quel. Also, “Sequel” is
easier to say than “ess-cue-el.”

The most commonly used command in SQL is the SELECT statement, which
is used to retrieve data from tables. A simple version of the command is shown
in Figure 2.11, which contains the four basic parts: SELECT, FROM, JOIN,
and WHERE. These parts match the basic questions needed by every query. In
the example in Figure 2.11, notice the similarity between the editor and SQL ap-
proaches. The four basic questions are answered by entering items after each of
the four main keywords. When you write SQL statements, it is best to write down
the keywords and then fill in the blanks. You can start by listing the columns you
want to see as output, then write the constraints in the WHERE clause. By looking
at the columns you used, it is straightforward to identify the tables involved. You
can use the class diagram to understand how the tables are joined.

Sorting the Output
Database systems treat tables as collections of data. For efficiency the DBMS is
free to store the table data in any manner or any order that it chooses. Yet in most
cases you will want to display the results of a query in a particular order. The SQL
ORDER BY clause is an easy and fast means to display the output in any order
you choose. As shown in Figure 2.12, simply list the columns you want to sort.
The default is ascending (A to Z or low to high with numbers). Add the phrase
DESC (for descending) after a column to sort from high to low. In QBE you select
the sort order on the QBE grid.

In some cases you will want to sort columns that do not contain unique data.
For example, many customers will have the same last name (such as Smith). In

Figure 2.11
The basic SQL SELECT command matches the four questions you need to create
a query. The uppercase letters are used in this text to highlight the SQL keywords.
They can also be typed in lowercase.

SELECT	 columns	 What	do	you	want	to	see?
FROM	 tables	 What	tables	are	involved?
JOIN	 conditions	 How	are	the	tables	joined?
WHERE	 criteria	 What	are	the	constraints?	

53Chapter 2: Database Management Systems

these cases, a secondary sort column is usually added. Names are generally sorted
by LastName and then FirstName. So all customers with the last name Smith will
be subsorted by the first name. This additional column is only used if the rows in
the prior column contain identical data. In SQL, simply listed the columns left to
right in the order to be sorted, such as ORDER BY LastName, FirstName. In the
design editor, the priority is given by an index in the Sort Order column..

Criteria
In most questions, identifying the output columns and the tables is straightfor-
ward. If there are hundreds of tables, it might take a while to decide exactly which
tables and columns are needed, but it is just an issue of perseverance. On the other
hand, identifying constraints and specifying them correctly can be more challeng-
ing. More importantly if you make a mistake on a constraint, you will still get a
result. The problem is that it will not be the answer to the question you asked—
and it is often difficult to see that you made a mistake.

The primary concept of constraints is based on Boolean algebra, which you
learned in mathematics. In practice, the term simply means that various conditions

Figure 2.12
The ORDER BY clause sorts the output rows. The default is to sort in ascending
order, adding the keyword DESC after a column name results in a descending sort.
When columns like Category contain duplicate data, use a second column (e.g.,
Breed) to sort the rows within each category.

54Chapter 2: Database Management Systems

are connected with AND and OR clauses. Sometimes you will also use a NOT
statement, which negates or reverses the truth of the statement that follows it. For
example, NOT (ModelType = ‘Race’) means you are interested in all models ex-
cept Race.

Consider the example in Figure 2.13. The first step is to note that three condi-
tions define the business question: date, model type, and price. The second step is
to recognize that all of these conditions need to be true at the same time, so they
are connected by AND. As the database system examines each row, it evaluates all
three clauses. If any one clause is false, the row is skipped.

Notice that the SQL statement is straightforward—just write the three condi-
tions and connect them with an AND clause. The designer is a little trickier. Ev-
ery condition listed in the same filter column is connected with an AND clause.
Conditions in different filter columns are joined with an OR clause. You have to
be careful creating (and reading) designer statements, particularly when there are
many different criteria columns.

Consider an example with an “OR” connector. In December 2008, which
mountain or mountain full suspension bicycles sold for more than 5500? Figure
2.14 shows one way to build the query in the designer. The two ModelType con-
ditions can be written in separate filter columns which creates the OR condition.
However, with this approach, the date and price conditions have to be duplicated

Figure 2.13
Criteria with AND connectors. Which race bicycles sold for more than 7000 in 2007?

55Chapter 2: Database Management Systems

and listed in both filter columns. Each filter column is treated as a separate list
of conditions. All conditions within that column are connected with AND state-
ments. If you leave out the date and price conditions on the second filter column,
it will match all full suspension bicycles regardless of date or price. In all cases,
test the query! Run it and check the rows to ensure they meet all of the business
conditions.

Figure 2.15 shows a way to simplify the query using SQL. Enter the Mod-
elType condition with the OR connector in parentheses. Then add the date and
SalePrice conditions and insert the AND connectors. By using parentheses to iso-
late the OR conditions, the other statements can be listed one time. Switch to the
design editor to see how the editor handles this change. In the main query editor,
highlight the entire query and then switch to the design editor. The ModelType
statement with the OR connector is listed completely in a single filter cell. For

Figure 2.14
Criteria with OR connectors. In December 2008, which mountain or mountain full
suspension bicycles sold for more than 5500? Or conditions (Mountain or Mountain
full) can be written in different filter columns. But the other conditions have to be
copied along as well.

Figure 2.15
SQL criteria with OR connectors. Parentheses are used to isolate the OR condition
for Mountain or Mountain full model types. Then the AND conditions are listed only
once. Convert to design view to see how it is handled in the editor.

SELECT					SerialNumber,	ModelType,	OrderDate,	SalePrice	
FROM							Bicycle
WHERE					(OrderDate	BETWEEN	‘01-DEC-2008’	AND	‘31-DEC-2008’)
	 	 			AND	(SalePrice	>5500)
	 	 			AND	(ModelType=’Mountain’	OR	ModelType=’Mountain	full’)
ORDER	BY	SalePrice	DESC;	

56Chapter 2: Database Management Systems

complex statements, it is generally best to rely on SQL to create the conditions.
The conditions are easier to create and easier to read in SQL. However, in all
cases, build the query in steps and test it at each step.

Actually, the mountain bike model types in RT were specifically named to sup-
port another way to include both the Mountain or Mountain full models without
the hassle of using an OR clause. Notice that both begin with the word “Moun-
tain.” Consequently, whenever both types are desired, the condition can be writ-
ten: ModelType LIKE ‘Mountain%’.

Useful WHERE Clauses
Most database systems provide the comparison operators displayed in Figure
2.16. Standard numeric data can be compared with equality and inequality op-
erators. Text comparisons are usually made with the LIKE operator for pattern
matching. For all text criteria, you need to know if the system uses case-sensitive
comparisons. By default, Microsoft SQL Server is not case-sensitive, so you can
type the pattern or condition using any case. If case-sensitivity is desired, the de-
fault collation method can be changed to one that is case-sensitive. If you do not
know which case was used, you can use the UPPER function to convert to upper
case and then write the pattern using capital letters.

The BETWEEN clause is not required, but it saves some typing and makes
some conditions a little clearer. The clause (SaleDate BETWEEN ’01-DEC-2008’
AND ’15-DEC-2008’ is equivalent to (SaleDate >= ’01-DEC-2008’ AND Sale-
Date <= ’15-DEC-2008’). The date syntax shown here can be used on most da-
tabase systems. Some systems allow you to use shorter formats, but on others,
you will have to specify a conversion format. These conversion functions are not
standard.

Figure 2.16
SQL criteria with OR connectors. Parentheses are used to isolate the OR condition
for Mountain or Mountain full model types. Then the AND conditions are listed only
once. Convert to design view to see how it is handled in the editor.

Comparisons Examples
Operators <,	=,	>,	<>,	>=,	BETWEEN,	LIKE,	IN
Numbers SalePrice	>	6000
Test
		Simple
		Match	one	character
		Match	many

LastName	>	‘Jones’
License	LIKE	‘A_	_82_’
LastName	LIKE	‘S%’

Dates SaleDate	BETWEEN	’01-DEC-2008’	AND	
’15-DEC-2008’

Missing	Data LastName	Is	NULL
Negation FirstName	IS	NOT	NULL

NT	(ModelType=’Race’
Sets ModelType	IN	(‘Race’,	‘Road’,	‘Tour’)

57Chapter 2: Database Management Systems

Another useful condition is to test for missing data with the NULL comparison.
Two common forms are IS NULL and IS NOT NULL. Be careful—the statement
(City = NULL) will not work with most systems, because NULL is not a value.
You must use (City IS NULL) instead. Unfortunately, conditions with the equal-
ity sign are not flagged as errors. The query will run—it just will never match
anything.

Computations
What types of computations can be performed in SQL? The sta-
tistical computations used for data mining are handled later by the business intel-
ligence tools which use a programming language. However, some simple compu-
tations can be performed directly within SQL. Queries are used for two types of
computations: aggregations and simple arithmetic on a row-by-row basis. Some-
times the two types of calculations are combined. Consider the row-by-row com-
putations first.

Basic Arithmetic Operators
SQL and the designer can both be used to perform basic computations on each
row of data. This technique can be used to automate basic tasks and to reduce the
amount of data storage. Consider a common order or sales form. As Figure 2.17
shows, the basic tables would include a list of items purchased: SaleItem(SaleID,
ItemID, SalePrice, Quantity). In most situations you would need to multiply Sa-
lePrice by Quantity to get the total value for each item ordered. Because this com-
putation is well defined (without any unusual conditions), there is no point in stor-
ing the result—it can be recomputed whenever it is needed. Simply build a query
and add one more column. The new column uses elementary algebra and lists
a name: SalePrice*Quantity AS Extended. Remember that the computations are
performed for each row in the query.

Most systems provide additional mathematical functions. For example, basic
mathematical functions such as absolute value, logarithms, and trigonometric
functions are usually available. Although these functions provide extended capa-
bilities, always remember that they can operate only on data stored in one row of
a table or query at a time.

Figure 2.17
Computations. Basic computations (+ - * /) can be performed on numeric data in a
query. The new display column should be given a meaningful name.

SaleItem(SaleID,	ItemID,	SalePrice,	Quantity)
SELECT	SaleID,	ItemID,	SalePrice,	Quantity,	
			SalePrice*Quantity	As	Extended
FROM	SaleItem;

SaleID ItemID Price Quantity Extended
24 25 2.70 3 8.10
24 26 5.40 2 10.80
24 27 31.50 1 31.50

58Chapter 2: Database Management Systems

Aggregation
Databases for business often require the computation of totals and subtotals. Note
that the data mining approach in Chapter 3 is a better way to examine many sub-
totals, but sometimes SQL subtotals are useful to configure data for other analy-
ses. Hence, query systems provide functions for aggregation of data. The com-
mon functions listed in Figure 2.18 can operate across several rows of data and
return one value. The most commonly used functions are Sum, Avg, and Count
which are similar to those available in spreadsheets. SQL Server also supports
the DISTINCT clause to examine only the unique values; such as using Count(
DISTINCT ModelType) to count each model type only one time. Be careful when
using Sum and Count. Count simply counts the number of rows regardless of the
data value. Sum adds the values selected. Sum is useful for monetary or quantity
columns, Count is often used for key or ID columns.

With SQL, the functions are simply added as part of the SELECT statement.
Figure 2.19 shows the SQL command to compute the total value of bicycles sold
in December 2008. These basic queries are often easier to write in SQL than in the
designer.

The designer can be used to build queries with totals. As shown in Figure 2.20,
the first trick is to right-click the table area and choose the option to “Add Group
By” to add the column with the Group By options. Use the drop-down list to select
Sum for the SalePrice data. The second big trick is to select the WHERE option
for the OrderDate. By default, the option is GROUP BY, which means that the to-
tals will be computed for each item in the column (day). To compute just a single
total across all days, the WHERE option switches the condition to the WHERE
clause of the SQL statement. This difference is explained in the next section.

The row-by-row calculations can also be combined with an aggregate func-
tion. The example in Figure 2.21 asks for the total value of a particular purchase

Figure 2.18
SQL Server Aggregation functions. Sum, Avg, and Count are most common. The
standard format is Sum(column) but it is also possible to use Count (DISTINCT
column) to examine only the unique values.

Sum Avg Min Max Count
StDev StDevP Var VarP

Figure 2.19
Aggregation functions. SQL statement to obtain total sales of bicycles in December
2008.

SELECT	SUM(SalePrice)	As	TotalSales	
FROM	Bicycle
WHERE	OrderDate	BETWEEN	‘01-DEC-2008’	AND	‘31-DEC-2008’;	

59Chapter 2: Database Management Systems

Figure 2.20
Aggregation functions in the designer. Right-click the table area and choose “Add
Group By” to see the Group By column. Select the Sum option for SalePrice and the
WHERE option for the date.

Figure 2.21
Multiply values and then compute totals. What is the total value of items on purchase
order 101?

SELECT	PurchaseID,	
PricePaid,	Quantity,	
SUM(PricePaid	*	Quantity)	
AS	Value
FROM	PurchaseItem	
WHERE	(PurchaseID	=	101)
GROUP	BY	PurchaseID,	
PricePaid,	Quantity	

60Chapter 2: Database Management Systems

order. To get total value, the database must first calculate Quantity * PricePaid for
each row and then get the total of that column. This example computes the total
for just one specific order (101).

There is one important restriction to remember with aggregation. The query
can display either the details or the totals—not both at the same time. This con-
straint can sometimes be avoided by using complex queries, but it is best to decide
in advance if the SQL should display details or totals, then use other tools to ma-
nipulate the results.

Note that several aggregate functions can be computed at the same time. For
example, the Sum, Average, and Count can be displayed at the same time: SE-
LECT Sum(Quantity), Avg(Quantity), Count(Quantity) From PurchaseItem. In
fact, if you need all three values, you should compute them at one time. Consider
what happens if you have a table with a million rows of data. If you write three
separate queries, the DBMS has to make three passes through the data. By com-
bining the computations in one query, you cut the total query time to one-third.
With huge tables or complex systems, these minor changes in a query can make
the difference between a successful application and one that takes days to run.

Functions
The SELECT command also supports functions that perform calculations on the
data. These calculations include numeric forms such as the trigonometric func-

Figure 2.22
SQL functions. Hundreds of internal functions exist in SQL Server, but these are the
most common.

Task SQL Server
Strings
Concatenation
Length
Upper	case
Lower	case
Partial	string

FName	+	‘	‘	+	LName
Length(LName)
Upper(LName)
Lower(LName)
Substring(LName,2,3)

Dates
Today
Month
Day
Year
Date	arithmetic

GetDate()
DateName(month,	
myDate),	Month(myDate)
DatePart(day,	myDate)
DatePart(year,	myDate),	
Year(myDate)
DateAdd
DateDiff

Formatting Str(item,	length,	decimal)
Cast,	Convert

Numbers
Math	functions
Exponentiation
Aggregation
Statistics

Cos,	Sin,	Tan,	Sqrt
Power(2,	3)
Min,	Max,	Sum,	Count,	
Avg,	StDev,	Var,	
LinRegSlope,	Correlation

61Chapter 2: Database Management Systems

tions, string function such as concatenating two strings, date arithmetic func-
tions, and formatting functions to control the display of the data. Unfortunately,
these functions are not standardized, so each DBMS vendor has different function
names and different capabilities. Figure 2.22 lists some of the common functions
used in SQL Server.

String operations are relatively useful. Concatenation is one of the more power-
ful functions, because it combines data from multiple columns into a single dis-
play field. It is particularly useful to combine a person’s last and first names. Other
common string functions convert the data to all lowercase or all uppercase charac-
ters. The length function counts the number of characters in the string column. A
substring function is used to return a selected portion of a string. For example, you
might choose to display only the first 20 characters of a long title.

The powerful date functions are often used in business applications. Date col-
umns can be subtracted to obtain the number of days between two dates. Addi-
tional functions exist to get the current date and time or to extract the month, day,
or year parts of a date column. Date arithmetic functions can be used to add (or
subtract) months, weeks, or years to a date. The Convert function can be used to
specify the format of a date. It is also used for other types of data, such as setting a
fixed number of decimal points or displaying a currency sign.

It is also possible to define custom functions. SQL Server uses T-SQL to en-
able you to create programming code in SQL that can define relatively complex
operations on data and return a new function value. For even more complex cal-
culations, it is possible to create new functions using a .NET procedural language
such as C#. These tasks are covered in database textbooks and typically handled
by database programmers instead of managers.

Subtotals and GROUP BY
How are subtotals computed? The previous section hinted at the use of
totals but one of the most powerful features of SQL was left for this section: sub-
totals. Many business questions involve the use of subtotals: Who are the best
customers? Which employee sold the most bicycles in November? Which model
type was the most popular in 2008? All of these questions require totals or counts
for each value: The total sales for each customer, total sales for each employee,
and count of bicycles for each model type.

To illustrate, consider the question: How many Race bikes were sold in No-
vember 2008? As shown in Figure 2.23, the SQL is straightforward—simply use
the Count function and a WHERE clause for ModelType and OrderDate. To test
the function, stick with the SQL and avoid the designer.

Figure 2.23
SQL subtotal introduction. How many Race bikes were sold in November 2008? Use
SQL and not the designer.

SELECT	Count(SerialNumber)	As	Nbikes	
FROM	Bicycle
WHERE	ModelType=‘Race’
	 AND	OrderDate	BETWEEN	’01-NOV-2008’	AND	’30-NOV-2008’	

62Chapter 2: Database Management Systems

Before building the query in the designer, it is useful to generalize the question
to require the use of subtotals: What is the number of bicycles sold of each model
type in November 2008? The only difference is that this query does not require the
ModelType to be constrained. Instead, it requires the DBMS to find each Model-
Type, restrict the date to the desired range, and count the number of each type of
model. Although it sounds complex, SQL handles the setup easily.

Build a new query using the designer. Use the Bicycle table and add only the
columns: ModelType, OrderDate, and SerialNumber. Figure 2.24 shows the setup.
Add the Group By column and leave Group By as the mode for the ModelType
because the business question calls for a value “for each” model type. Enter the
date filter and set the Group mode to Where. If this mode is left on Group By, the

Figure 2.24
Subtotal with designer. How many bikes of each model type were sold in November
2008?

Figure 2.25
Subtotal in SQL with results.

SELECT					ModelType,	COUNT(SerialNumber)	AS	NBikes
FROM							Bicycle
WHERE					(OrderDate	
	 BETWEEN	CONVERT(DATETIME,	‘2008-11-01	00:00:00’,	102)
	 AND	CONVERT(DATETIME,	‘2008-11-30	00:00:00’,	102))
GROUP	BY	ModelType;

Mountain	 13
Mountain	full	 57
Race	 52
Road	 47
Tour	 13

63Chapter 2: Database Management Systems

query will return values for each date—which is not called for in the business
question. Finally, set Count for the SerialNumber. Almost any column could be
counted since the DBMS simply counts the number of rows returned, but Serial-
Number is best because it indicates that bicycles are being counted and because it
is the primary key it avoids potential problems with duplicate or missing values.

Figure 2.25 shows the SQL statement for the subtotal computation along with
the results. Your results might differ slightly because the data in the database
could have been altered. The alias (NBikes) has been added to provide a more
descriptive title for the result column instead of Expr1. To obtain subtotals, the
only new step is to add the GROUP BY clause. The GROUP BY statement can be
used only with one of the aggregate functions (Sum, Avg, Count, and so on). With
the GROUP BY statement, the DBMS looks at all the data, finds the unique items
in the group, and then performs the aggregate function for each item in the group.

By default, the output will generally be sorted by the group items. However,
for business questions, it is common to sort (ORDER BY) based on the computa-
tion. Be careful about adding multiple columns to the GROUP BY clause. The
subtotals will be computed for each distinct item in the entire GROUP BY clause.
Including additional columns (particularly date) might lead to a more detailed
breakdown than desired.

Conditions on Totals (HAVING)
The GROUP BY clause is powerful and provides useful information for making
decisions. In cases involving many groups, you might want to restrict the out-
put list, particularly when some of the groups are relatively minor. For example,
the simple Mountain and Tour types are not ordered much. In analyzing sales the
managers might prefer to focus on the top-selling categories.

One way to reduce the amount of data displayed is to add the HAVING clause.
The HAVING clause is a condition that applies to the GROUP BY output. In the
example presented in Figure 2.26, the managers want to skip any model type cat-
egory that has fewer than 15 animals. Notice that the SQL statement simply adds
one line. The same condition can be added to the criteria grid in the designer que-
ry. The HAVING clause is powerful and works much like a WHERE statement.
Just be sure that the conditions you impose apply to the computations indicated by
the GROUP BY clause.

Figure 2.26
Limiting the output with a HAVING clause. The GROUP BY clause with the Count
function provides a count of the number of animals in each category. The HAVING
clause restricts the output to only those categories having a count greater than 15.

SELECT					ModelType,	COUNT(SerialNumber)	AS	NBikes	
FROM							Bicycle	
WHERE					(OrderDate	
	 BETWEEN	CONVERT(DATETIME,	‘2008-11-01	00:00:00’,	102)
	 AND	CONVERT(DATETIME,	‘2008-11-30	00:00:00’,	102))
GROUP	BY	ModelType	
HAVING	Count(SerialNumber)	>	15;

64Chapter 2: Database Management Systems

WHERE versus HAVING
At first glance, WHERE and HAVING look very similar, and choosing the proper
clause can be confusing. Yet it is crucial that you understand the difference. If
you make a mistake, the DBMS will give you an answer, but it will not be the
answer to the question you want. The key is that the WHERE statement applies to
every single row in the original table. The HAVING statement applies only to the
subtotal output from a GROUP BY query. To add to the confusion, you can even
combine WHERE and HAVING clauses in a single query—because you might
want to look at only some rows of data and then limit the display on the subtotals.

Figure 2.27 shows the query in the designer that includes both the WHERE and
HAVING conditions. Looking at the layout, it is difficult to determine the differ-
ence between the two conditions. The WHERE entry in the GROUP BY column
is required to shift a condition to the WHERE statement instead of the HAVING
statement; and this change can be hard to remember. In most cases, you should
check the SQL to ensure that the conditions are structured correctly. The WHERE
clause is used to filter rows before any calculations take place. The HAVING con-
dition simply limits the output of the GROUP BY results. In general, it is best to
use WHERE clauses whenever possible because they immediately cut the number
of rows to be investigated. The SQL Server query processor has a decent optimiz-
er so making a mistake will not seriously hurt performance, but to understand the
difference, it is best to think of the WHERE clause as the initial filter.

Figure 2.27
WHERE versus HAVING. Count the bicycles sold in November 2008 by model
type and show only those where the result is greater than 15. It is hard to see the
difference between these conditions in the designer. SQL is often easier to see that
WHERE conditions are applied before the GROUP BY and HAVING is applied to
the results.

65Chapter 2: Database Management Systems

The Best and the Worst
Think about the business question, Who is the best salesperson? How would
you build a SQL statement to answer that question? To begin, you have to de-
cide if “best” is measured in quantity, revenue, or profit. For now, simply use
revenue. A common temptation is to write a query similar to SELECT Employ-
eeID, Max(SalePrice) FROM Bicycle GROUP BY EmployeeID. This query will
run. It will return a list of employees and the most expensive bicycle sold by each
employee; but it will not sum the prices. A step closer might be SELECT Employ-
eeID, Max(Sum(SalePrice)) FROM Bicycle GROUP BY EmployeeID. But this
query will not run because the database cannot compute the maximum until after
it has computed the sum. So, the best answer is to use: SELECT EmployeeID,
Sum(SalePrice) AS Revenue FROM Bicycle GROUP BY EmployeeID ORDER
BY Sum(SalePrice) DESC. This query will compute the total sale prices for each
employee and display the result in descending order—the best salespeople will be
at the top of the list.

The advantage to this approach is that it shows other rows that might be close
to the “best” entry, which is information that might be valuable to the decision
maker. The one drawback to this approach is that it returns the complete list of
items sold. Generally, most businesspeople will want to see more than just the top
or bottom item, so it is not a serious drawback—unless the list is too long. In that
case, you can use the HAVING command to reduce the length of the list. SQL
Server also supports the TOP command to restrict a list without knowing anything
about the data. Simply add TOP 5 to the SELECT statement: SELECT TOP 5
EmployeeID, Sum(SalePrice As Revenue…. Of course, the number 5 is arbitrary
and any value can be used. In practice, the Min and Max functions are rarely used.

Figure 2.28
Find the best salesperson. Several tempting methods do not work. The solution is to
compute the total sales for each employee using the GROUP BY statement and use
ORDER BY to sort the results. To display less than the entire list, use a HAVING
clause or enter TOP 5 just after the SELECT clause.

Try:
SELECT	EmployeeID,	Max(SalePrice)	
FROM	Bicycle	
GROUP	BY	EmployeeID;
Which	returns	a	list	of	employees	and	the	most	expensive	bicycle	sold	by	each	employee.	
It	does	not	return	the	totals.

Try:
SELECT	EmployeeID,	Max(Sum(SalePrice))
	FROM	Bicycle	
GROUP	BY	EmployeeID;
Which	does	not	even	run.

Answer:
SELECT	EmployeeID,	Sum(SalePrice)	AS	Revenue	
FROM	Bicycle	
GROUP	BY	EmployeeID	
ORDER	BY	Sum(SalePrice)	DESC	

66Chapter 2: Database Management Systems

Multiple Tables
How do you use multiple tables in a query? All the examples so far
have used a single table—to keep the discussion centered on the specific topics. In
practice, however, you often need to combine data from several tables. In fact, the
strength of a DBMS is its ability to combine data from multiple tables.

The essence of a relational database is to split data into separate pieces that
are linked through the primary keys. This approach is efficient at storing data but
it requires a query system to join the tables back together. From a query design
perspective, SQL has a straightforward method of connecting tables. For example,
the Bicycle table contains just the CustomerID to identify the specific customer.
Most people would prefer to see the customer name and other attributes. This ad-
ditional data is stored in the Customer table—along with the CustomerID. The
objective is to take the CustomerID from the Sale table and look up the matching
data in the Customer table.

Joining Tables
With modern query languages, combining data from multiple tables is straight-
forward. You simply specify which tables are involved and how the tables are
connected. The query designer is particularly easy to use for this process. To un-
derstand the process, first consider the business question posed in Figure 2.29: list
the CustomerID of everyone who bought something on 01-DEC-2008..

Most managers would prefer to see the customer name instead of CustomerID.
However, the name is stored in the Customer table because it would be a waste of
space to copy all of the attributes to every table that referred to the customer. If
you had these tables only as printed reports, you would have to take the Custom-
erID from the sale reports and find the matching row in the Customer table to get
the customer name. Of course, it would be time-consuming to do the matching by
hand. The query system can do it easily.

As illustrated in Figure 2.30, the designer approach is somewhat easier than
the SQL syntax. However, the concept is the same. First, identify the two tables
involved (Bicycle and Customer). In the designer, select the tables from a list
and they are displayed at the top of the form with the JOIN drawn as a line. In
SQL, enter the table names on the FROM line. Second, specify which columns are
matched in each table. In this case match CustomerID in the Bicycle table to the
CustomerID in the Customer table. Most of the time the column names will be the
same, but they could be different.

Figure 2.29
List the CustomerID of everyone who bought a bicycle on December 1, 2008. Most
people would prefer to see the names and phone numbers of the customers—those
attributes are in the Customer table.

SELECT	CustomerID
FROM	Bicycle
WHERE	OrderDate	=	‘01-DEC-2008’;

19114
31202
31335
31651
32631
32687

67Chapter 2: Database Management Systems

In SQL, tables are connected with the JOIN statement. The syntax for a JOIN
is: FROM Bicycle INNER JOIN Customer ON Bicycle.CustomerID = Customer.
CustomerID. The order of the tables does not matter. Notice that the concepts for
SQL and the designer are the same: List both tables and which columns in the
two tables are matched. SQL requires more typing. When multiple tables are in-
volved, it is often easier to handle the joins in the designer. To add more tables in
SQL, simply add another INNER JOIN statement with its associated ON clause to
specify the columns.

Identifying Columns in Different Tables
Examine how the columns are specified in the SQL JOIN statement. Because the
column CustomerID is used in both tables, it would not make sense to write Cus-
tomerID = CustomerID. The DBMS would not know what you meant. To keep
track of which column you want, you must also specify the name of the table:
Sale.CustomerID. Actually, you can use this syntax anytime you refer to a col-
umn. You are required to use the full table.column name only when the same col-
umn name is used in more than one table.

SQL Server supports two more levels: the database and schema. The schema is
typically a name assigned to a role, and in many cases it is dbo (short for database
owner). So, a fully-named table would be: database.schema.table. For example:
SELECT * FROM RT.dbo.ModelType.

SELECT Bicycle.CustomerID, Customer.FirstName,
Customer.LastName, Customer.Phone

FROM Bicycle
INNER JOIN Customer

ON Bicycle.CustomerID = Customer.CustomerID
WHERE (Bicycle.OrderDate = '01-DEC-2008')

CID FirstName LastName Phone
19114 James Dugan (405) 015-0612
31202 Michael Macdonald (803) 408-1618
31335 Theresa Raux (540) 689-8730
31651 Kwok Lawrence (850) 136-9460
32631 Joseph Despirito (814) 732-0324
32687 B Wagman (863) 989-8229

Figure 2.30
Joining tables causes the rows to be matched based on the columns in the JOIN
statement. You can then use data from either table. The business question is, List the
names and phone numbers of customers who bought a bicycle on December 1, 2008.

68Chapter 2: Database Management Systems

Joining Many Tables
A query can use data from several different tables. The process is similar regard-
less of the number of tables. Each table you want to add must be joined to one
other table through a data column. If you cannot find a common column, either the
table design is wrong or you need to find a third table that contains links to both
tables.

Consider the example in Figure 2.31: List customers from Miami, FL who
purchased bicycles in December 2008. An important step is to identify the tables
needed. For large problems involving several tables, it is best to first list the col-
umns you want to see as output and the ones involved in the constraints. In the
example, the name and phone number you want to see are in the Customer table.
The city name and state are in the City table, and the OrderDate is in the Bicycle
table. Fortunately, all three of these tables are connected to each other and you do
not need to search for an intermediate connection table.

 When the database contains a large number of tables, complex queries can be
challenging to build. You need to be familiar with the tables to determine which
tables contain the columns you want to see. For large databases, an entity-relation-
ship diagram (ERD) or a class diagram can show how the tables are connected.

When you first see it, the SQL 92 syntax for joining more than two tables can
look confusing. In practice, it is best not to memorize the syntax. When you are

Figure 2.31
Joining multiple tables. The designer makes it easy to connect multiple tables—
simply add them to the list and verify the column connections.

69Chapter 2: Database Management Systems

first learning SQL, understanding the concept of the JOIN is far more important
than worrying about syntax. Figure 2.32 shows the syntax needed to join three
tables. To handle multiple joins use the FROM statement to list the first table and
add an INNER JOIN new_table ON table.column = new_table.column statement
for each table that needs to be added. SQL Server does not require parentheses to
specify the order of the joins, but be careful when adding new tables. The column
to be connected must already exist in the joined tables. In the Bicycle-Customer-
City example, the joins have to be built either as Bicycle-Customer-City or City-
Customer-Bicycle. A set of joins from City-Bicycle-Customer will not work be-
cause the Bicycle table does not include the CityID.

When in doubt, use the designer. Occasionally, it is necessary to change the
joins created automatically in the designer. For example, the designer might in-
clude an extra join, such as connecting the Employee table to the City table. De-
leting joins is straightforward—select the join and press the Delete key or right-
click the join and choose the Remove option. Creating a new join is only a little
harder. Select the column in one table (such as CustomerID), drag the column and
drop it on top of the matching column in the second table. The direction of the
drag is unimportant, but it often helps to expand or adjust the tables in advance so
both tables clearly display the columns to be connected.

Views: Saved Queries
Complex queries are often easier to solve by breaking them into smaller pieces.
An initial query can be saved as a view, which is simply a saved query. New
queries can use views as if they were another table, and the joins are the same.
Views are also useful for controlling access to data. Instead of giving a user ac-
cess to an entire table, a view can be created that retrieves a restricted set of rows
and columns. Other workers can use this view without knowing anything about
the underlying table. This approach is useful for combining multiple tables into
a single view so that the joins are hidden within the view. To create a view that
retrieves data, first build the query and test it. Then add one line to the top of the
query: CREATE VIEW view_name AS. Enter a unique and memorable name as

Figure 2.32
Joining multiple tables. The designer makes it easy to connect multiple tables—
simply add them to the list and verify the column connections.

SELECT	 Bicycle.ModelType,	Bicycle.OrderDate,	Customer.Phone,
	 Customer.LastName,	City.City,	City.State
FROM	 Bicycle	
INNER	JOIN	 Customer	
	 	 ON	Bicycle.CustomerID	=	Customer.CustomerID	
INNER	JOIN	 City	
	 	 ON	Customer.CityID	=	City.CityID
WHERE	(City.City	=	‘Miami’)	
	 AND	(City.State	=	‘FL’)	
	 AND	(Bicycle.OrderDate	BETWEEN	
	 	 CONVERT(DATETIME,	‘2008-12-01	00:00:00’,	102)	
	 	 AND	CONVERT(DATETIME,	‘2008-12-31	00:00:00’,	102))

70Chapter 2: Database Management Systems

the view_name and run this new command. Instead of displaying the data, the sys-
tem will create the query with the given name. Figure 2.33 shows how to create a
view that lists bicycle sales only for December 2008. This view is needed for the
next section.

Saved queries are useful when a problem has multiple parts. Consider the ques-
tion: Which customers purchased bicycles in both 2007 and 2008? At first glance
the question seems easy. You might try a single query:

SELECT *
FROM Customer
INNER JOIN Bicycle
 ON Customer.CustomerID=Bicycle.CustomerID
WHERE Year(OrderDate)=2007 AND Year(OrderDate)=2008;

This query will run but it will never return any matches because a date can
never be both 2007 and 2008 at the same time. Instead, the question has to be
split into two queries. SQL supports subqueries that enable the second part to be
embedded into a single query, but subqueries are beyond the scope of this book.
It is easier to simply create two views—one for each year. Save them as Custom-
ers2007 and Customers2008 and set the single appropriate year condition in each
query. The list of customers can then be obtained by creating a new query that
joins the two views. The JOIN condition establishes the “AND” condition that a
customer fall into both lists:

SELECT *
FROM Customers2007
INNER JOIN Customers2008
 ON Customers2007.CustomerID=Customers2008.
CustomerID;

The key is to recognize when two separate queries are needed. No secret for-
mula exists—you simply have to logically evaluate the business question and de-
cide which conditions can be handled at one time and which ones require separate
lists. Just remember that when you save a query as a view to give it a name that
explains the data in the view so that it can be recognized later.

Figure 2.33
Creating a View. Build and test the query—bicycle sales in December 2008. Then
add the first line to create the view with a unique name.

CREATE	VIEW	December2008Sales	AS
SELECT	 SerialNumber,	CustomerID,	ModelType,	PaintID,	FrameSize,
	 OrderDate,	StartDate,	ShipDate,	LetterStyleID,	StoreID,
	 EmployeeID,	SalePrice,	ListPrice,	SalesTax,	SaleState,	ShipPrice
FROM	 Bicycle
WHERE	 (OrderDate	BETWEEN	
	 	 CONVERT(DATETIME,	‘2008-12-01	00:00:00’,	102)	
	 	 AND	CONVERT(DATETIME,	‘2008-12-31	00:00:00’,	102))

71Chapter 2: Database Management Systems

LEFT JOIN
You might be wondering why the syntax for the join is INNER JOIN instead of
just the word “Join.” The difference is important because another form of the Join
command exists. An inner join connects two tables by matching only the items in
the first table that are equal to the items in the second table. Items in either table
that do not match are ignored or dropped from the display. For most queries, this
action is appropriate as a simple matching system. However, a special type of
business question arises that is difficult to answer with the inner join approach. (It
can be handled with subqueries, but these are not covered in this book.) The basic
question is: Because the database records things that did happen, how can you find
things that did not happen? This question seems strange at first, but consider the
simple business question for Rolling Thunder Bicycles: Which model types were
not sold in December 2008?

The December2008Sales view created in the previous section lists all bicycles
ordered in December 2008, which are things that did happen. Where does the da-
tabase store things that did not happen? Nowhere. The solution is to take the list
of all model types (ModelType table), subtract out the model types that were sold,
and the model types that remain are the ones that were not sold. Figure 2.34 shows
the query needed to find the result. The ModelType table is connected to the De-
cember2008Sales view using a Left Join. The Left Join specifies that all rows
from the left table are to be included in the results—even if no matching data ex-
ists in the right table. When an entry in the left, ModelType, table has no matching
value in the sales table, the join enters a Null value for all columns in the sales
table. Hence, the Is Null condition returns only those rows in the left table that
have no matching values in the right (sales) table. In this case, the result is: Hybrid
and Track model types. Figure 2.35 shows some random sample data from the
query using the Left Join. The Null values for the Hybrid and Track model types
are highlighted in red. All other model types have matching data, so only the two
types meet the Is Null condition to indicate that they were not sold.

UNION
Joins are used to select columns from multiple tables or views. On the other hand,,
sometimes it is useful to combine rows of data from multiple tables or views. This
trick is useful when similar data is stored in separate tables. For example, consider
a company that has two divisions (East and West) and keeps a separate employee
table for each division: EmployeesEast and EmployeesWest. Most queries are

Figure 2.34
Left Join example. Which model types were not sold in December 2008? Left Join is
needed because Inner Join would display only model types that were sold.

SELECT	ModelType.ModelType	
FROM	ModelType
LEFT	JOIN	December2008Sales
			ON	ModelType.ModelType=December2008Sales.ModelType
WHERE	December2008Sales.SerialNumber	Is	Null;

72Chapter 2: Database Management Systems

based on a single table, but sometimes the company wants to retrieve data from
both tables. The UNION command is the solution:

SELECT EID, LastName, FirstName, Gender, Phone, ‘East’
As Division
FROM EmployeesEast
UNION
SELECT EID, LastName, FirstName, Gender, Phone, ‘West’
As Division
FROM EmployeesWest

Figure 2.36 shows the result of the query. Notice that the columns must match
exactly. Also, note the use of the created column Division to track the division for
each employee after the data has been merged. In most cases, Union queries are
saved as views and used as the basis for other searches. Union queries are useful
for merging data from multiple sources—hence they appear in data warehouse
situations when data comes from many places.

Data Manipulation
All of the queries covered so far have been SELECT statements—queries to re-
trieve data. From a data mining perspective, these are the most useful queries be-
cause they are used to set up data for analyses. They are also used to find answers
to ad hoc questions. However, it is worth knowing that SQL is capable of other
types of commands. Specifically, SQL has data manipulation and data defini-
tion commands. The data definitions commands are used to create tables, indexes,
and other structures. For example, they are used to load the databases for this
book, but the details are not covered in this book. On the other hand, the data
manipulation commands are often used when configuring and loading data for a
data warehouse. Even if you do not need to create the commands as a manager, it
is worthwhile to get a glimpse of the power of the commands so you know what
tasks can be handled by SQL. The three main commands are: UPDATE to change

ModelType	 Serial CID ModelType
Mountain	full	 37774 10433 Mountain	full
Mountain	full	 37486 31386 Mountain	full
Mountain	 37232 31132 Mountain
Race	 38080 31980 Race
Race	 38123 32023 Race
Road	 38359	 32259	 Road	
Hybrid	 Null	 Null	 Null	
Tour	 38787	 32687	 Tour	
Track	 Null	 Null	 Null	

Figure 2.35
Left Join example. Sample random rows from the left join. The Null values for the
Model Types that do not exist in the Sales table are highlighted in red.

73Chapter 2: Database Management Systems

data values, INSERT to copy data, and DELETE to delete rows of data. All three
rely heavily on the WHERE concepts covered in the SQL command.

UPDATE
The SQL UPDATE command alters data in existing rows. Typically, it is applied
to a single table at a time. The command operates on a single row at a time, but
the WHERE clause can be used to apply the operation to multiple rows of data.
Figure 2.37 shows a example of the UPDATE command that increases the list
price of components by ten percent. The WHERE clause restricts the updates to
components introduced in 2006 or later.

The UPDATE command can change multiple columns at the same time—all on
the same row of data. The basic syntax is to separate the columns with commas:
SET Col1=x, Col2=y, Col3=6.

To be safe, all updates should be tested first as SELECT statements. This ap-
proach is useful for ensuring the WHERE clause and computations are correct.
For example, the example would be tested as:

SELECT 1.10*ListPrice AS NewPrice
FROM Component
WHERE Year >= 2006

INSERT
The INSERT command has two forms—one to insert single rows of data at a time
and the other to copy rows of data from one table and insert them into a second
table. The first method is useful for transactions, but the second approach is more
useful for data warehouses where insert commands are useful for transferring
data. Figure 2.38 shows an example of using INSERT to copy data. It assumes
that a new table exists to hold bicycle sales data.

Always test the SELECT statement first! Then add the INSERT line at the top
to send the results into the new table. For loading data warehouses, the SELECT
statement is often used to make minor changes to the data as it is being trans-
ferred. For example, using an exchange rate table, monetary data could be con-
verted to a standard currency.

Figure 2.36
UNOIN example. Combining rows from two employee tables (East and West). Note
that the columns in the two SELECT statements must match exactly.

EID LastName FirstName Gender Phone Division
113 Jones Jack Male 2222 East
114 Smith Sarah Female 4444 East
225 Hart Hank Male 6624 West
256 Eccles Ephraim Male 4432 West

74Chapter 2: Database Management Systems

DELETE
The SQL DELETE command is powerful—probably too powerful to trust. Avoid
using it—besides how often do you really want to delete data? The basic format
is:

DELETE
FROM Manufacturer
WHERE ManufacturerID =1000;

Do not run the command—the ID was specifically chosen because it does not
match any manufacturers in the Rolling Thunder database, so it will not actually
delete any rows. Any DELETE command should first be tested by writing it as a
SELECT * statement. When you are completely satisfied that the WHERE clause
is correct and that the data absolutely must be deleted, the SELECT statement can
be replaced with the DELETE line.

However, DELETE commands are dangerous. Tables are interrelated, and de-
leting a row from one table causes cascade deletes in the other tables. For in-
stance, deleting a manufacturer deletes all purchase orders and components as-
sociated with that vendor. Deleting components removes them from the BikeParts
table, so it could remove information on which parts were installed on a bicycle.
Deleting customers or employees is even more dangerous because those objects
affect many tables.

If data is accidentally deleted, it might be possible to recover by entering a
ROLLBACK command, if it is entered early enough. SQL Server keeps a transac-
tion log of changes and has the ability to reset the database to an earlier point in
the log—but only if the changes have not been fully committed. In other cases, it
might be necessary to find and restore a backup copy of the database. To be safe,
avoid deleting data. Still, it is useful in data warehouses where some tables may
be emptied before loading new data.

Figure 2.37
UPDATE command. Increase the List Price of components that were introduced in
2006 or later.

UPDATE	Component
SET	ListPrice	=	1.10*ListPrice
WHERE	Year>=2006

Figure 2.38
INSERT command to transfer data. Test the SELECT query first and then add the
INSERT command to send the results to a new table.

INSERT	INTO	newTable	(SerialNumber,	CustomerID,	OrderDate,	ModelType)
SELECT	SerialNumber,	CustomerID,	OrderDate,	ModelType
FROM	Bicycle
WHERE	OrderDate	BETWEEN	’01-JAN-2008’	AND	’31-DEC-2008’;

75Chapter 2: Database Management Systems

SQL Server Reports
How are reports created in SQL Server? Queries are useful but they
do not have much in the way of formatting options. Reports combine queries with
layout and format options to produce more useful information. In the “old days”
reports were designed to be printed on paper. Now, SQL Server Reporting Ser-
vices can run as a Web server and generate fixed reports as well as interactive
reports that provide some initial exploration of the data to present both details and
subtotals.

SQL Server reports require a computer running the Reporting Services and the
SQL Server Business Intelligence (BI) (or Visual Studio) client tools. As shown
in Figure 2.39, reports are created on a developer computer using the BI studio.
The finished reports are compiled and deployed to a server running the SQL Serv-
er Reporting Services. This tool creates a Web interface, so managers can browse
to the server and retrieve the reports using a standard Web browser. For develop-
ment purposes, all of the components (SQL Server database, SQL Server Report-
ing Services, and the Business Intelligence Studio) can be installed on a single
computer. However, if you are using a laptop, the Reporting Services are gener-
ally turned off by default to reduce the processing demands during typical use. To
test reports, you will need to use the Computer Manager and Windows Services to
start the Reporting Services running.

Administration Configuration
Reporting Services has a couple of administrative twists. Particularly when Re-
porting Services is installed on a Windows 7 operating system, you will probably

SQL Server Database SQL Server
Reporting Services

Business
Intelligence
Studio

Managers/Users

Developer/Designer

Figure 2.39
SQL Server Reports. Reports are designed and created with the Business Intelligence
Studio. They are compiled and deployed to the Reporting Services server which
connects to the database server. Users can work with the reports using a Web
browser.

76Chapter 2: Database Management Systems

need to add the developer account (yours) as an administrator to the Reporting
Services. The first twist is that this process is handled through a Web browser, not
through the standard Database console. Figure 2.40 shows the basic steps. Report-
ing Services typically has given high-level permissions only to the Windows Ad-
ministrator account, so the browser must be started with “Run as Administrator.”
Use the localhost name if the Reporting Services are running on the development
computer—otherwise, replace localhost with the name of the server running the
services. Setting these security permissions is required to enable you to create and
save reports on the server.

Creating a Report
The Business Intelligence Studio has a report wizard that makes it relatively pain-
less to create a basic report. The wizard is useful for establishing the database
connections and defining the structure of the report. Once the report has been cre-
ated, you can edit the design, improve the design and layout, and add more fea-
tures if needed. Begin by starting the BI Studio and creating a new Report project.
Choose a location to store the project files on your computer and enter a name that
describes the project.

Visual Studio has several windows that display menus, code, properties, and re-
port designs. All of these windows can be moved, resized, or closed. If a window
is closed, search the menu options to open it when needed. To create a new report,
in the Solution Explorer window, right-click the Reports entry and choose the op-
tion to add a new report. Follow the basic Wizard steps. As shown in Figure 2.41,
the first step in creating a report is to establish a connection to the database. A
connection requires the name of the server running the SQL Server DBMS, which
could be a separate server. For most teaching purposes, the database is installed
on the developer’s computer, so localhost usually works well as the server name.
The login credentials must be entered for connecting to the database. Using the
Windows account works for databases on the local computer. Choose the name of

Figure 2.40
SQL Server Reporting Services configuration. With Vista and Windows 7 it is usually
necessary to add the developer account as an administrator to Reporting Services.

•	 Start	browser/Internet	Explorer	with:	Run	as	Administrator
•	 Open	report	folder:		http://<server>/Reports								http://localhost/Reports
•	 Use	Tools/Options	to	add	site	as	trusted	site:		http://localhost
•	 At	reports	site:		Click	the	Properties	tab
•	 Click	button:	New	Role	Assignment
•	 Enter	your	Windows	user	account:		<domain>\<user>
•	 Click	the	option	for:	Content	Manager
•	 Click	the	OK	button

•	 	Click	the	Site	Settings	link	(top	right)
•	 	Select	Security	tab/option	(left	side)
•	 	Click:	New	Role	Assignment
•	 	Enter	your	Windows	user	account:	<domain>\<user>
•	 	Check	option:	System	Administrator
•	 	Click	OK

77Chapter 2: Database Management Systems

Figure 2.41
The first step to create a report. Establish a connection to the database. The server
name, login credentials, and database name are needed.

Figure 2.42
Query to retrieve the detail for the report. The two date calculations return the Year
and the YearMonth (such as 200901). The lowest detail shown on the report will be
sales by model type by month.

78Chapter 2: Database Management Systems

the database and always click the button to test the connection. The data source
can be saved as a shared data source (check box) so that it is available for multiple
reports.

The most important aspect of a report is to build a query that retrieves the data
needed for the report. The key to configuring the query is to retrieve the detail data
needed for the report. Reports can have many levels with headings and subtotals;
but ultimately, each report has a certain level of detail. The query needs to return
the detail-level of data. The report itself will handle subtotals and formats. As an
example, the goal is to create a report that displays total monthly sales of bicycles
by model type. The total refers to value (of SalePrice) as opposed to the count of
the number of bicycles. The goal is to create a report that lists one year on a page
then the totals for each month with the detail level of sales by model type for that
month. Consequently, the detail level needed in the query is the sum of SalePrice
by month. As shown in Figure 2.42, the query also needs to return the Year value
of the OrderDate to use as a page variable. The SQL statement is:

SELECT YEAR(OrderDate) AS SaleYear,
YEAR(OrderDate) * 100 + MONTH(OrderDate) AS

SaleMonth, ModelType,
SUM(SalePrice) AS SaleTotal

FROM Bicycle
GROUP BY YEAR(OrderDate), YEAR(OrderDate) * 100 +
MONTH(OrderDate), ModelType
ORDER BY SaleMonth, ModelType

Figure 2.43
Report structure or levels. Before this step, choose the Tabular report layout instead
of Matrix. Move columns from the Available fields panel into the appropriate level.
SaleYear is the page break, SaleMonth and ModelType are the main Group breaks,
and SaleTotal is the detail level.

79Chapter 2: Database Management Systems

With the data selected, the next step is to define the report structure. Reports
can have multiple levels or breaks. Each level can have a header and footer sec-
tion. Headers are typically used to display titles or labels, and footers are used
for subtotals. In the sales by month by model type example, the report will have
groups for SaleMonth and ModelType. The page level break will be based on the
Year.

Figure 2.43 shows the structure for the sample report using the Tabular layout.
Place the SaleYear in the page level break. Place SaleMonth and Model Type—in
that order—in the Group section. Move SaleTotal into the detail section.

For more complex cases, it is often best to place only the key or break items
into the respective Group boxes. Avoid including additional data. For instance,
if a grouping by Customer is desired, place CustomerID into the Group box, but
do not include the customer name, address, phone number and so on. The report
builder does not associate the additional columns with the key value—it will try
to create new groupings based on each column in the group list. Leave related
columns in the “available fields” box for now. They can be added to the report by
hand after the main structure is defined.

Figure 2.44 shows the next step in the wizard—selecting the report layout. The
stepped and block layouts are simply graphics design choices. Sometimes a report
has to be tested both ways to see which version displays the data the best—par-
ticularly when a large number of columns are involved. The two checkboxes are
more important—be sure to select both options to include subtotals and enable
drilldown.

Figure 2.44
Report layout. Either Stepped or Block will work, but be sure to check both boxes to
include subtotals and enable drilldown.

80Chapter 2: Database Management Systems

After this choice, the wizard provides options to set the overall color and style
of the report. In a large project, all reports should follow a similar style. Some
companies establish design guidelines that are used for all reports. It is also possi-
ble to add custom designs to the list, but those details are not covered in this book.
Simply choose one of the existing designs. Follow the steps to finish the wizard
and be sure to give the report a meaningful name that describes the report to users.
However, the name should not include spaces. If necessary, use the underscore
character (_) as a separator.

Figure 2.45 shows the initial report design and the Visual Studio editor. Be-
cause the model type names and sales totals might be wider than the allotted col-
umns, it is useful to expand the column widths by dragging the dividing lines.
Also, spaces can be added to the title. The report name itself should not contain
spaces, but the display on the report can contain any desired characters. It is also
possible to add logos and graphics.

The report can be previewed by clicking the Run button on the main toolbar
(small green arrowhead). A useful improvement is to format the display of the
totals. In the design mode, select the totals individually. Scroll the properties win-
dow near the bottom to find the Format line in the Number section. Enter #,##0.00
as the format to specify that the values should display with two decimal places
and a separator for thousands. The report can be previewed with the Run button.
When it is acceptable, right-click the main project name and choose the option to
Deploy the project and reports to the reporting server.

Figure 2.45
Initial Report design.

81Chapter 2: Database Management Systems

Figure 2.46 shows the report generated from within a browser. The default lo-
cation for the reporting services on the local computer is http://localhost/reports.
After the browser connects to that site, navigate the links to the RT project and
open the new report. Notice the scroll buttons at the top of the form to move to a
new page, and remember that each page contains data for one year. Initially, the
report displays the subtotals for each month. However, because the drilldown op-
tion was selected earlier, managers can click the + button in front of a given year
and the month will be expanded to show the totals for each model type. This ap-
proach is useful for displaying multiple levels of data. Each item added as a Group
entry creates a new level that can be expanded or contracted. Still, the approach is
limited to the report layout specified in the design. More flexible options are avail-
able with the cube browser described in Chapter 3.

 It is also possible to add selection boxes to the top of the page to set parameters
that can be used in the query to control which data is displayed on the report. Ad-
ditional calculations can be added to display percentages and other totals. All of
these changes are made on the design of the report by adding labels, text boxes,
and drop-down lists. Some of these tasks have little tricks (such as using Param-
ters.pname.Label to display a parameter’s value) and the details are not covered
in this book. Even managers with minimal background in development can learn
to build relatively complex reports, but this book focuses more on the exploration
of data.

Figure 2.46
Report displayed in browser. On a local machine, use http://localhost/reports to
connect to the report server. Then navigate to the specific report.

82Chapter 2: Database Management Systems

Database Design Concepts
How do you create a new database? This section is optional. It intro-
duces the techniques used to design database tables. Most managers will not be re-
quired to create databases, and if they do, a database expert should be consulted to
evaluate the design. In a data mining context, most tables already exist; however,
it is sometimes useful to understand the foundations of designs to see why some
columns are included in specific tables and others are not. Database management
systems are powerful tools with the ability to present data in many ways. They
are used by managers to answer many different types of questions. However, this
flexibility is not automatic. Databases need to be carefully designed; otherwise,
managers will not be able to get the information they need. Poor design also leads
to unnecessary duplication of data. Duplication wastes space and requires workers
to enter the same data several times. Normalization is an important technique to
design databases.

To understand the process of normalization, consider the example of retail
sales. You begin by thinking about who will be using the database and identi-
fying what data they will need. Consider the situation of the salespeople. They
first identify the customer then record each item being purchased. The computer
should then calculate the amount of money due along with any taxes. Figure 2.47
shows a sample input screen that might be used.

The key design point is that you will need multiple tables to store the data. If
you try to cram all of it into a single table, you will end up with unnecessary du-
plication of data and plenty of problems when you try to delete or insert new data.
Each entity or object on the form will be represented by a separate table. For this

Figure 2.47
The order form is used in almost any firm. We need to determine the best way to
store the data that is collected by this form.

83Chapter 2: Database Management Systems

example, there are five objects on the form: Customers, Salespeople, Items, Sale,
and ItemsSold..

Before explaining how to derive the five tables from the form, you need to
understand some basic concepts. First, remember that every table must have a
primary key. A primary key is one or more columns that uniquely identify each
row. For example, you anticipate problems with identifying customers, so each
customer will be assigned a unique ID number. Similarly, each item is given a
unique ID number. There is one drawback to assigning numbers to customers: you
cannot expect customers to remember their number, so you will need a method to
look it up. One possibility is to give everyone an ID card imprinted with the num-
ber—perhaps printed with a bar code that can be scanned. However, you still need
a method to deal with customers who forget their cards. It is usually better to build
a method to lookup customers by name.

The second aspect to understand when designing databases is the relationships
between various entities. First, observe that there are two sections to the form: (1)
the main sale that identifies the transaction, the customer, the salesperson, and the
date, and (2) a repeating section that lists the items being purchased. Each cus-
tomer can buy several different items at one time. There is a one-to-many rela-
tionship between the Sale and the ItemsSold sections. As you will see, identifying
one-to-many relationships is crucial to proper database design.

In some respects, designing databases is straightforward: There are only three
basic rules. However, database design is often interrelated with systems analysis.
In most cases, you are attempting to understand the business at the same time the
database is being designed. One common problem that arises is that it is not al-
ways easy to see which relationships are one-to-many and which are one-to-one
or many-to-many.

CID Last Name Phone Street City Balance
12345 Jones (312) 555-1234 125 Elm Street Chicago $197.54
28764 Adamz (602) 999-2539 938 Main Street Phoenix $526.76
29587 Smitz (206) 676-7763 523 Oak Street Seattle $353.76
33352 Sanchez (303) 444-1352 999 Pine Street Denver $153.00
44453 Kolke (303) 888-8876 909 West Avenue Denver $863.39
87535 James (305) 777-2235 374 Main Street Miami $255.93

Table name Table columns

 Customer(CustomerID, LastName, Phone, Street, City, AccountBalance)

Figure 2.48
Notation for tables. Table definitions can often be written in one or two lines. Each
table has a name and a list of columns. The column (or columns) that makes up the
primary key is underlined.

84Chapter 2: Database Management Systems

Notation
It would be cumbersome to draw pictures of every table that you use, so you
usually write table definitions in a standard notation. The base customer table is
shown in Figure 2.48, both in notational form and with sample data.

Figure 2.48 illustrates another feature of the notation. You denote one-to-many
or repeating relationships by placing parentheses around them. Figure 2.49 repre-
sents all the data shown in the input screen from Figure 2.47. The description is
created by starting at the top of the form and writing down each element that you
encounter. If a section contains repeating data, place parentheses around it. Pre-
liminary keys are identified at this step by underlining them. However, you might
have to add or change them at later steps. You can already see some problems with
trying to store data in this format. Notice that the same customer name, phone, and
address would have to be entered several times.

Remember that some repeating sections are difficult to spot and might con-
sist of only one column. For example, how many phone numbers can a customer
have? Should the Phone column be repeating? In the case of the retail store, prob-
ably not, because you most likely want to keep only one number per customer. In
other businesses, you might want to keep several phone numbers for each client.
Data normalization is directly related to the business processes. The tables you
design depend on the way the business is organized.

SaleID SaleDate CID Name Phone Street ItemID Qty Description Price

117 3/3/2009 12345 Jones (312) 555-1234 125 Elm Street 1154 2 Red Boots $100.00

117 3/3/2009 12345 Jones (312) 555-1234 125 Elm Street 3342 1 LCD-40 inch $1,000.00

117 3/3/2009 12345 Jones (312) 555-1234 125 Elm Street 7653 4 Blue Suede $50.00

125 4/4/2009 87535 James (305) 777-2235 374 Main Street 1154 4 Red Boots $100.00

125 4/4/2009 87535 James (305) 777-2235 374 Main Street 8763 3 Men's Work Boots $45.00

157 4/9/2009 12345 Jones (312) 555-1234 125 Elm Street 7653 2 Blue Suede $50.00

169 5/6/2009 29587 Smitz (206) 676-7763 523 Oak Street 3342 1 LCD-40 inch $1,000.00

169 5/6/2009 29587 Smitz (206) 676-7763 523 Oak Street 9987 2 Blu-Ray Player $400.00

178 5/1/2009 44453 Kolke (303) 888-8876 909 West Avenue 2254 1 Blue Jeans $12.00

188 5/8/2009 29587 Smitz (206) 676-7763 523 Oak Street 3342 1 LCD-40 inch $1,000.00

188 5/8/2009 29587 Smitz (206) 676-7763 523 Oak Street 8763 4 Men's Work Boots $45.00

201 5/23/2009 12345 Jones (312) 555-1234 125 Elm Street 1154 1 Red Boots $100.00

SaleForm(SaleID, SaleDate, CustomerID, Phone, Name, Street, (ItemID, Quantity, Description, Price))

 Repeating Section
 Causes duplication

Figure 2.49
Converting to notation. The basic rental form can be written in notational form.
Notice that repeating sections are indicated by the inner parentheses. If you actually
try to store the data this way, notice the problem created by the repeating section:
Each time a customer checks out a video we have to reenter the phone and address.

85Chapter 2: Database Management Systems

SaleForm(SaleID, SaleDate, CID, Phone, Name, Street, (ItemID, Quantity, Description, Price))

SaleForm2(SaleID, SaleDate, CustomerID, Phone, Name, Street) Note replication

SaleID SaleDate CID Name Phone Street
117 3/3/2009 12345 Jones (312) 555-1234 125 Elm Street
117 3/3/2009 12345 Jones (312) 555-1234 125 Elm Street
117 3/3/2009 12345 Jones (312) 555-1234 125 Elm Street
125 4/4/2009 87535 James (305) 777-2235 374 Main Street
125 4/4/2009 87535 James (305) 777-2235 374 Main Street

SaleLine(SaleID, ItemID, Quantity, Description, Price) Note replication

SaleID ItemID Quantity Description Price
117 1154 2 Red Boots $100.00
117 3342 1 LCD-40 inch $1,000.00
117 7653 4 Blue Suede $50.00
125 1154 4 Red Boots $100.00
125 8763 3 Men's Work Boots $45.00
157 7653 2 Blue Suede $50.00
169 3342 1 LCD-40 inch $1,000.00
169 9987 2 Blu-Ray Player $400.00
178 2254 1 Blue Jeans $12.00
188 3342 1 LCD-40 inch $1,000.00
188 8763 4 Men's Work Boots $45.00
201 1154 1 Red Boots $100.00

Figure 2.51
Splitting a table to solve problems. Problems with repeating sections are resolved by
moving the repeating section into a new table. Be sure to include the old key in the
new table so that you can connect the tables back together.

SaleID SaleDate CID Name Phone Street ItemID, Quantity, Description, Price
117 3/3/2009 12345 Jones 312-555-1234 125 Elm Street 1154, 2, Red Boots, $100.00

3342, 1, LCD-40 inch, $1,000.00
7653, 4, Blue Suede, $50.00

125 4/4/2009 87535 James 305-777-2235 374 Main Street 1154, 4, Red Boots, $100.00
8763, 3, Men's Work Boots, $45.00

157 4/9/2009 12345 Jones 312-555-1235 125 Elm Street 7653, 2, Blue Suede, $50.00
169 5/6/2009 29587 Smitz 206-676-7763 523 Oak Street 3342, 1, LCD-40 inch, $1,000.00

9987, 2, Blu-Ray Player, $400.00
178 5/1/2009 44453 Kolke 303-888-8876 909 West Ave. 2254, 1, Blue Jeans, $12.00
188 5/8/2009 29587 Smitz 206-676-7763 523 Oak Street 3342, 1, LCD-40 inch, $1,000.00

8763, 1, Men's Work Boots, $45.00
201 5/23/2009 12345 Jones 312-555-1234 125 Elm Street 1154, 1, Red Boots, $100.00

Figure 2.50
A table that contains repeating sections is not in first normal form. Each table cell
can contain only basic data. Storing it in repeating form makes it difficult to search,
insert, and delete data. This version is not in first normal form.

86Chapter 2: Database Management Systems

First Normal Form
Now that you have a way of writing down the assumptions, it is relatively straight-
forward to separate the data into tables. The first step is to split out all repeating
sections. Think about the problems that might arise if you try to store the repeat-
ing data within individual cells. You will have to decide how many rows to set
aside for storage, and you will have to write a separate search routine to evaluate
data within each cell, and complications will arise when inserting and deleting
data. Figure 2.50 illustrates the problem.

The answer to this problem is to pull out the repeating section and form a new
table. Then, each item purchased by a customer will fill a new row. Figure 2.51
uses the notation to show how the table will split. Notice that whenever you split
a table this way, you have to bring along the key from the prior section. Hence,
the new table will include the SaleID key as well as the ItemID key. When a table
contains no repeating sections, you say that it is in first normal form.

Second Normal Form
Even if a table is in first normal form, there can be additional problems. Consider
the SaleLine table in Figure 2.51. Notice there are two components to the key:
SaleID and ItemID. The nonkey items consist of the Quantity, Description, and
Price of the item. If you leave the table in this form, consider the situation of
selling a new item. Every time an item is sold it will be necessary to reenter the
Description and list Price. It means that you will be storing the description every
time an item is sold. Popular items might be sold thousands of times. Do you re-
ally want to store the description (and other data) each time?

The reason you have this problem is that when the SaleID changes, the item de-
scription stays the same. The description depends only on the ItemID. If the Price

ItemsSold(SaleID, ItemID, Quantity
SaleID ItemID Quantity

117 1154 2
117 3342 1
117 7653 4
125 1154 4
125 8763 3
157 7653 2
169 3342 1
169 9987 2
178 2254 1
188 3342 1

Items(ItemID, Description, Price)
ItemID Description Price

1154 Red Boots $100.00
2254 Blue Jeans $12.00
3342 LCD-40 inch $1,000.00
7653 Blue Suede $50.00
8763 Men's Work Boots $45.00
9987 Blu-Ray Player $400.00

 SaleLine(SaleID, ItemID, Quantity, Description, Price)

Figure 2.52
Second normal form. Even though the repeating sections are gone, we have another
problem. Every time the ItemID is entered, the description has to be reentered, which
wastes a lot of space. There is a more serious problem: if no one has purchased a
specific item yet, there is no way to find its description or price since it is not yet
stored in the database. Again, the solution is to split the table. In second normal form,
all nonkey columns depend on the whole key (not just part of it).

87Chapter 2: Database Management Systems

represents the list price of the item, the same dependency holds. However, what
if the store offers discounts on certain days or to specific customers? If the price
can vary with each transaction, the price would have to be stored with the SaleID.
The final choice depends on the business rules and assumptions. Most companies
resolve the problem by creating a list price that is stored with the item and a sale
price that is stored with the transaction. However, to simplify the problem, stick
with just the list price for now.

When the nonkey items depend on only part of the key, you need to split them
into their own table. Figure 2.52 shows the new tables. When each nonkey column
in a table depends on the entire key, the table is in second normal form.

Third Normal Form
Examine the SaleForm2 table in Figure 2.51. Notice that because the primary key
consists of only one column (SaleID), the table must already be in second normal
form. However, a different problem arises here. Again, consider what happens
when you begin to collect data. Each time a customer comes to the store and buys
something there will be a new transaction. In each case, you would have to record
the customer name, address, phone, city, and so on. Each entry in the transaction
table for a customer would duplicate this data. In addition to the wasted space,
imagine the problems that arise when a customer changes a phone number. You
might have to update it in hundreds of rows.

Figure 2.53
Third normal form. There is another problem with this definition. The customer name
does not depend on the key (SalesID) at all. Instead, it depends on the CustomerID.
Because the name and address do not change for each different SalesID, the customer
data must be in a separate table. The Sales table now contains only the CustomerID,
which is used to link to the Customers table and collect the rest of the data. The same
rule applies to Salespeople.

Sales(SaleID, SaleDate, CustomerID, SalespersonID)
SaleID SaleDate CID SPID

117 3/3/2009 12345 887
125 4/4/2009 87535 663
157 4/9/2009 12345 554
169 5/6/2009 29587 255
178 5/1/2009 44453 663
188 5/8/2009 29587 554

Customers(CustomerID, Phone, Name, Address, City, State, ZIPCode, AccountBalance)
CID Name Phone Street City Balance

12345 Jones (312) 555-1234 125 Elm Street Chicago $197.54
28764 Adamz (602) 999-2539 938 Main Street Phoenix $526.76
29587 Smitz (206) 676-7763 523 Oak Street Seattle $353.76
33352 Sanchez (303) 444-1352 999 Pine Street Denver $153.00
44453 Kolke (303) 888-8876 909 West Avenue Denver $863.39
87535 James (305) 777-2235 374 Main Street Miami $255.93

SaleForm2(SaleID, SaleDate, CustomerID, Phone, Name, Address)

88Chapter 2: Database Management Systems

The problem in this case is that the customer data does not depend on the pri-
mary key (SalesID) at all. Instead, it depends only on the CustomerID column.
Again, the solution is to place this data into its own table. Figure 2.53 shows the
split. Splitting the table solves the problem. Customer data is now stored only one
time for each customer. It is referenced back to the Rentals table through the Cus-
tomerID. The same rule applies to Salespeople, resulting in the fifth table.

The five tables you created are listed in Figure 2.54. Each table is now in third
normal form. It is easy to remember the conditions required for third normal form.
First: There are no repeating groups in the tables. Second and third: Each nonkey
column depends on the whole key and nothing but the key.

Note in that if the Customers table contains complete address data, including
ZIP Code, you could technically split the Customers table one more time. Because
ZIP codes are uniquely assigned by the post office, the city and state could be de-
termined directly from the ZIP code (they do not depend on the CustomerID). In
fact, most mail order companies today keep a separate ZipCode table for that very
reason. For our small retail firm, it might be more of a nuisance to split the table.
Although you can purchase a complete ZIP code directory in computer form, it is
a large database table and must be updated annually. For small cases, it is often
easier to leave the three items in the Customer table.

Summary
Databases, particularly relational database systems, hold much of the data used in
business. Most business applications, including enterprise systems and Web sites,
store data in relational databases. SQL Server Analysis Services is closely tied to
the SQL Server database system. For these reasons, you need to know how to cre-

Figure 2.54
Third normal form tables. There are no repeating sections and each nonkey column
depends on the whole key and nothing but the key. This figure also shows the
relationships between the tables that will be enforced by the DBMS. When referential
integrity is properly defined, the DBMS will ensure that rentals can be made only to
customers who are defined in the Customers table.

89Chapter 2: Database Management Systems

ate queries to retrieve data. Queries can be built with the design editor but they are
actually built in SQL. The four main steps in building a query are: (1) Identify the
output needed, (2) Specify the constraints, (3) Select the tables holding the data,
and (4) Indicate how the tables are joined.

SQL can perform some basic computations. Arithmetic is handled on a row-by-
row basis and new columns can be defined using data on a single row at a time.
SQL Server support several functions to perform additional computations, such
as standard mathematical functions, string manipulation, and date calculations
and formatting. Aggregations (Sum, Count, Avg, and so on) are performed across
rows of data. Subtotals are computed using the GROUP BY statement. Common
business questions involve subtotals for each customer, employee, state or region,
and item category. Questions involving complex nested subtotals are better han-
dled with hyper cube browsers covered in the next chapter.

SQL has many powerful features useful for formatting and cleaning data sets.
The UPDATE, INSERT, and DELETE commands are useful for transferring data.
This chapter touched on the basic capabilities of SQL. People who need to focus
on building data warehouse systems should study the advanced SQL options in
more detail—in a database textbook.

Key Words
aggregation
BETWEEN
Boolean algebra
columns
cross join
data definition
data manipulation
data type
database
database management system (DBMS)
DESC
enterprise resource planning (ERP)
FROM
GROUP BY
HAVING

identity
JOIN
normalization
NOT
one-to-many
ORDER BY
primary key
query system
row-by-row calculations
SELECT
SQL
SQL Server Business Intelligence (BI)
table
view
WHERE

90Chapter 2: Database Management Systems

Review Questions
1. What is a table and why is it important in a relational database?

2. What four questions must be answered to create a query and what are
the corresponding parts of the SQL statement?

3. What is the command word for matching portions of a string in SQL?

4. Why is it critical to store dates using a datetime format?

5. How are aggregation functions such as Sum different from arithmetic
calculations (+/-)?

6. What is the purpose of the GROUP BY function?

7. In common problems involving subtotals created in the design edi-
tor, such as sales by customer, why is it often necessary to specify a
WHERE option when a date condition is included?

8. What is the syntax for joining two tables in SQL (for example Bicycle
and Customer)?

9. What is the typical role of database reports?

Exercises
For the SQL exercises, just submit the SQL statements, not the query results.

 Book
1. List the tables in the Rolling Thunder Bicycles database.

2. SQL. Which race bicycles were ordered in 2012 with a framesize great-
er than 60 cm?

3. SQL. Which mountain bicycles in 2011 had a list price over 7000?

4. SQL. What is the total value of all bikes sold in November 2012?

5. SQL. What is the total number of bicycles sold of each model type in
March 2012?

6. SQL. Who was the best sales person by value in 2011?

7. SQL. Which customer from California spent the most on bikes from
2010 through 2012?

8. SQL. Which model types were not sold in December 2012? (Hard: See
database book)

91Chapter 2: Database Management Systems

 Rolling Thunder Database

9. SQL. Who are the top customers who bought the most bikes?

10. SQL. In which state were the most bicycles sold in 2010?

11. SQL. List the manufacturers and the total value of cranks purchased
from them in 2012.

12. SQL. What was the most popular paint color for mountain bicycles (in-
cluding full suspension) in 2011?

13. SQL. Create a query to list all Customers, Bicycles, and Components
installed on bicycles in 2010

14. SQL. Create a query to list bicycle sales by month and model type by
count and value, where month is displayed in the form YYYYMM such
as 199401.

 Diner

15. What are the columns in the Diners table?

16. SQL. How does the average bill compare for Lunch, Dinner, and Eve-
ning?

17. SQL. What are the average sales by day of week?

18. SQL. What are the average sales by gender of the group?

19. SQL. How many times did a Mixed group order dessert? How many
times did they not order dessert? Hint: Both can be answered with one
query.

Corner
Med

Corner
Med

 Corner Med

20. List the tables in the Corner Med database.

21. SQL. Create a view to compute the number of patients and total
amount billed by day.

22. SQL. What is the average number of patients seen per day and the
standard deviation? Hint: Use the view from #21.

92Chapter 2: Database Management Systems

23. SQL. What is the average amount of money billed per day and the
standard deviation? Hint: Use the view from #21.

24. SQL. Which physician has treated the most patients (based on visits)?

25. SQL. What is the most common diagnosis based on a first three letters
of the diagnosis code? Hint: Use the Substring function.

 Basketball

26. List the tables in the basketball database.

27. SQL. Which player scored the most points in the regular season 2010-
2011 (not playoff)?

28. SQL. Which player had the most total steals plus blocks plus defensive
rebounds in the regular season 2010-2011?

29. SQL. Which player with at least 20 free throw attempts had the worst
free throw percentage in 2009-2010? Hint: Cast(FT as real).

30. SQL. List the total number of wins by each team in the regular season
2010-2011 (not playoff), ordered by the number of wins.

 Bakery

31. List the tables in the Bakery database.

32. SQL. What is the total value of sales by year?

33. SQL. What is the total value of sales by category in 2009?

34. SQL. In 2010, what was the best-selling item in the Muffin category
(by count)?

35. SQL. What is the average number of items and average value of a Sale
(basket) in 2012? Hint: First create a view that computes values by
sale.

93Chapter 2: Database Management Systems

 Cars

36. What are the columns in the Cars database?

37. SQL. What is the average MPG and average price by category?

38. SQL. What is the average weight and average price by Make (com-
pany)?

39. SQL. List the vehicles in descending order of Power/Weight ratio.
Hint: Use Cast(HP as real).

 Teamwork

40. Each person in the group should choose one of the databases and write
a business question (not in the existing exercises). Share each ques-
tion with the other team members and write the query to answer all of
the questions. Compare the answers by each team member.

Additional Reading
Post, Gerald, 2011, Database Management Systems: http://www.JerryPost.
com/Books/DBBook. [Textbook on standard database management systems,
covering design, queries, applications, and management.]

	Chapter 2: Database Management Systems
	Introduction
	Relational Databases
	Tables
	Data Types

	Four Questions to Retrieve Data
	What Output Do You Want to See?
	What Do You Already Know?
	What Tables Are Involved?
	How Are the Tables Joined?

	Query Basics
	Single Tables
	Introduction to SQL
	Sorting the Output
	Criteria
	Useful WHERE Clauses

	Computations
	Basic Arithmetic Operators
	Aggregation
	Functions

	Subtotals and GROUP BY
	Conditions on Totals (HAVING)
	WHERE versus HAVING
	The Best and the Worst

	Multiple Tables
	Joining Tables
	Identifying Columns in Different Tables
	Joining Many Tables
	Views: Saved Queries
	LEFT JOIN
	UNION

	Data Manipulation
	UPDATE
	INSERT
	DELETE

	SQL Server Reports
	Administration Configuration
	Creating a Report

	Database Design Concepts
	Notation
	First Normal Form
	Second Normal Form
	Third Normal Form

	Summary
	Key Words
	Review Questions
	Exercises
	Additional Reading

