
What You Will Learn in This Chapter
•	 What is database design and why is it important?
•	 Why are models important in designing systems?
•	 How do you begin a database project?
•	 How do you know what data to put in the database?
•	 What is a class diagram (or entity-relationship diagram)?
•	 Is there an easier way to get started with database design?
•	 How are some common business associations handled in class diagrams?
•	 Are more complex diagrams different?
•	 What are the different data types?
•	 What are events, and how are they described in a database design?
•	 How are teams organized on large projects?
•	 How does UML split a big project into packages?
•	 What is an application?
•	 What process is followed when starting a project?

Chapter Outline

Database Design
2Chapter

Introduction, 44
Two-Minute Chapter, 45
Models, 46
Getting Started, 47
Designing Databases, 48

Identifying User Requirements, 48
Business Objects, 48
Tables and Relationships, 50
Definitions, 50
Primary Key, 51

Class Diagrams: Introduction, 51
Classes and Entities, 52
Associations and Relationships, 53
Class Diagram Details, 53

Quick Start, 54
Creating a Class Diagram, 55
Primary Keys and Relationships, 57

Class Diagrams: Details, 59
Association Details: N-ary Associations,
60
Association Details: Aggregation, 61
Association Details: Composition, 62
Association Details: Generalization, 63
Association Details: Reflexive
Association, 66

Sally’s Pet Store Class Diagram, 66
Data Types (Domains), 69

Text, 69
Numbers, 69
Dates and Times, 72
Binary Objects, 72
Computed Values, 73
User-Defined Types (Domains/Objects),
73

Events, 73
Large Projects, 75
Rolling Thunder Bicycles, 77
Application Design, 81
Corner Med, 82
Summary, 87
Key Terms, 88
Review Questions, 88
Exercises, 89
Web Site References, 98
Additional Reading, 98
Appendix: DBDesign, 99

43

44Chapter 2: Database Design

A Developer’s View

Introduction
What is database design and why is it important? Database management sys-
tems are powerful tools but you cannot just push a button and start using them.
Designing the database—specifying exactly what data will be stored—is the most
important step in building the database. The table is the fundamental concept in
a relational database. A table represents entities or classes of objects in the busi-
ness world (Customer, Employee, Sale, Merchandise, and so on). Its columns de-
fine the properties. So the developer’s main goal is to identify all of the business
entities and their properties which can be turned into tables. As you will see, the
actual process of creating a table in a DBMS is relatively easy. The hard part is
identifying exactly what columns are needed in each table, determining the pri-
mary keys, and determining relationships among tables.

	Miranda:	Well, Ariel, you were right as usual.
A database seems like the right tool
for this job.

	 Ariel:	So you decided to take the job for
your uncle’s company?

	Miranda:	Yes, it’s good money, and the
company seems willing to let me
learn as I go. But, it’s only paying
me a small amount until I finish the
project.

	 Ariel:	Great. So when do you start?

	Miranda:	That’s the next problem. I’m not
really sure where to begin.

	 Ariel:	That could be a problem. Do you
know what the application is
supposed to do?

	Miranda:	Well, I talked to the manager and
some workers, but there are a lot
of points I’m not clear about. This
project is bigger than I thought.
I’m having trouble keeping track
of all the details. There are so
many reports and terms I don’t
know. And one salesperson started
talking about all these rules about
the data—things like customer
numbers are five digits for corporate
customers but four digits and two
letters for government accounts.

	 Ariel:	Maybe you need a system to take
notes and diagram everything they
tell you.

Getting Started
Begin by identifying the data that needs to be stored. Group the data
into entities or classes that are defined by their attributes. It is often easi-
est to start with common entities such as Customers, Employees, and
Sales, such as Customer(CustomerID, LastName, FirstName, Phone,
…). Identify or create primary key columns. Look for one-to-many or
many-to-many relationships and use key columns to specify the “many”
side. Use the online DBDesign to create a diagram of the entities and
relationships. Add a table and decide which attributes (columns) belong
in that table. A database design is a model of the business and the tables,
relationships and rules must reflect the way the business is operated.

45Chapter 2: Database Design

Even the process of defining business entities or classes is straightforward. If
you use the DBDesign tool (highly recommended), it is easy to define a business
class and add columns to it. The real challenge is that your database design has
to match the business rules and assumptions. Every business has slightly differ-
ent needs, goals, and assumptions. Your design should reflect these rules. Con-
sequently, you first have to learn the individual business rules. Then you have to
figure out how those rules affect the database design. In a real-world project, you
will need to talk with users and managers to learn the rules. A database represents
a model of the organization. The more closely your model matches the original,
the easier it will be to build and use the application. This chapter shows how to
build a visual model that diagrams the business entities and relationships. Chap-
ter 3 discusses these concepts in more detail and defines specific rules that tables
need to follow.

To be successful, any information system has to add value for the users. You
need to identify the users and then decide exactly how an information system can
help them. Along the way, you identify the data needed and the various business
rules. This process requires research, interviews, and cross-checking.

Initially, the main things to look for are: 1. Business entities (Customer, Mer-
chandise, Employee, and so on), 2. Primary keys that identify the entities (Cus-
tomerID, SKU, EmployeeID), and 3. Associations or relationships among the en-
tities. In particular, focus on the degree of the association: Can customers place
one order or many orders? Is an order assigned to one employee or can many em-
ployees be involved? The answers to these questions can depend on the specific
business and they will change the overall database design.

Two-Minute Chapter
Relational databases are powerful tools to build business applications. One of the
strengths is the way data is separated into tables. A table is a set of data that has
certain properties, but essentially, data in a table represents a single business ob-
ject (or entity). The columns of a table represent the attributes of the object, such
as Name, and Phone number for a Customer. Each row is a single instance of
the object. Defining the tables needed for a business application is the key goal
of this chapter (and the next). A project often begins with a collection of forms
and reports that the users need. You need to identify the primary objects on those
forms and reports. Business objects typically including things such as Custom-
ers, Employees, Items, and Vendors. Other objects arise because of events, such
as Sales and Purchases. More complex objects arise from repeating sections on
forms (subforms) and to link tables together.

A critical feature of a table is that it must have a primary key—which is a col-
umn or set of columns that uniquely identify each row. In base cases, an ID value
can be generated by the DBMS. For example, a CustomerID column often con-
tains generated values for Customers to ensure the ID is unique. But, avoid us-
ing generated keys for every table. Some tables need multiple columns as part
of the key. These columns represent many-to-many relationships. The common
business example is SaleItems—a table that lists items that were purchased on a
given sale. It contains two columns as part of the key: SaleID + ItemID, because
each Sale can contain many Items being sold, and each ItemID can be sold many
times. When trying to decide which columns should be part of the primary key,
write them down and ask: For each of the other columns (Sale), can there be one
or many of these items? If the answer is “many,” then set the new column as key.

46Chapter 2: Database Design

Then turn the question around and ask it again: Can each Item appear on one or
many Sales? If the answer is many, add that column as part of the key. Getting the
correct primary key is a critical step in designing a relational database.

This chapter focuses on a visual approach to design where each table is defined
to represent a single object. Primary keys are defined for each table and highlight
one-to-many and many-to-many relationships.

Models
Why are models important in designing systems? Small projects that involve a
few users and one or two developers are generally straightforward. However, you
still must carefully design the databases so they are flexible enough to handle fu-
ture needs. Likewise, you have to keep notes so that future developers can easily
understand the system, its goals, and your decisions. Large projects bring addi-
tional complications. With many users and several developers, you need to split
the project into smaller problems, communicate ideas between users and design-
ers, and track the team’s progress. Models and diagrams are often used to commu-
nicate information among user and developers.

An important step in all development methodologies is to build models of the
system. A model is a simplified abstraction of a real-world system. In many cases
the model consists of a drawing that provides a visual picture of the system. Just
as contractors need blueprints to construct a building, information system devel-
opers need designs to help them create useful systems. As shown in Figure 2.1,
conceptual models are based on user views of the system. Implementation models
are based on the conceptual models and describe how the data will be stored. The
implementation model is used by the DBMS to store the data.

Three common types of models are used to design systems: process models,
class or object models, and event models. Process models are displayed with a
collaboration diagram or a data flow diagram (DFD). They are typically ex-
plained in detail in systems analysis courses and are used to redesign the flow of

User	views
of	data.

Conceptual
data	model.

Implementation
(relational)
data	model.

Physical
data
storage.

Class	diagram	that	
shows	business	
entities,	relationships,	
and	rules.

List	of	nicely-behaved	
tables.	Use	data	
normalization	to	
derive	the	list.

Indexes	and	storage	
methods	to	improve	
performance.

Patient(PatientID,	LastName,	FirstName,	DateOfBirth,	...)
Visit(VisitID,	PatientID,	VisitDate,	InsuranceCompany,	...)
PatientDiagnoses(VisitID,	ICD9Diagnosis,	Comments)
VisitProcedures(VisitID,	ICD9Procedure,	EmployeeID,	AmountCharged)
ICD9DiagnosisCodes(ICD9Diagnosis,	ShortDescription)
ICD9ProcedureCodes(ICD9Procedure,	ShortDescription)
Employee(EmployeeID,	LastName,	FirstName,	EmployeeCategory,	...)
EmployeeCategory(EmployeeCategory)

Figure 2.1
Design models. The conceptual model records and describes the user views of the
system. The implementation model describes the way the data will be stored. The
final physical database may utilize storage techniques like indexing to improve
performance.

47Chapter 2: Database Design

information within an organization. Class diagrams or the older entity-relation-
ship diagrams are used to show the primary entities or objects in the system. Event
models such as a sequence or statechart diagram are newer and illustrate the tim-
ing of various events and show how messages are passed between various objects.
Each of these models is used to illustrate a different aspect of the system being de-
signed. A good designer should be able to create and use all three types of models.
However, the class diagrams are the most important tools used in designing and
building database applications.

The tools available and the models you choose will depend on the size of the
project and the preferences of the organization. This book concentrates on the
class diagrams needed for designing tables. You can find descriptions of the other
techniques in any good systems analysis book. You can also use the online DBDe-
sign system to help create and analyze the class diagrams used in this book.

Getting Started
How do you begin a database project? Today’s DBMS tools are flashy and al-
luring. It is always tempting to jump right in and start building the forms and
reports that users are anxious to see. However, before you can build forms and
reports, you must design the database correctly. If you make a mistake in the data-
base design it will be hard to create the forms and reports, and it will take consid-
erable time to change everything later.

Before you try to build anything, determine exactly what data will be needed
by talking with the users. Occasionally, the users know exactly what they want.
Most times, users have only a rough idea of what they want and a vague percep-
tion of what the computer is capable of producing. Communicating with users is a
critical step in any development project. The most important aspect is to identify
(1) exactly what data to collect, (2) how the various pieces of data are related, and
(3) how long each item needs to be stored in the database. Figure 2.2 outlines the
initial steps in the design process.

Once you have identified the data elements, you need to organize them prop-
erly. The goal is to define classes and their attributes. For example, a Customer is
defined in terms of a CustomerID, LastName, FirstName, Phone number and so
on. Classes are related to other classes. For example, a Customer participates in a
Sale. These relationships also define business rules. For instance, in most cases,
a Sale can have only one Customer but a Customer can be involved with many
Sales. These business rules ultimately affect the database design. In the example,

1.	 Identify the exact goals of the system.
2.	 Talk with the users to identify the basic forms and reports.
3.	 Identify the data items to be stored.
4.	 Design the classes (tables) and relationships.
5.	 Identify any business constraints.
6.	 Verify the design matches the business rules.

Figure 2.2
Initial steps in database design. A database design represents the business rules of
the organization. You must carefully interview the users to make sure you correctly
identify all of the business rules. The process is usually iterative, as you design
classes you have to return to the users to obtain more details.

48Chapter 2: Database Design

if more than one customer can participate in a sale, the database design will be dif-
ferent. Hence, the entire point of database design is to identify and formalize the
business rules.

To build business applications, you must understand the business details. The
task is difficult, but not impossible and almost always interesting. Although every
business is different, many common problems exist in the business world. Several
of these problems are presented throughout this book. The patterns you develop in
these exercises can be applied and extended to many common business problems.

Designing Databases
How do you know what data to put in the database? A database system has to
reflect the rules and practices of the organization. You need to talk with users and
examine the business practices to identify the rules. And, you need a way to record
these rules so you can verify them and share them with other developers. System
designs are models that are used to facilitate this communication and teamwork.
Designs are a simplification or picture of the underlying business operations.

Identifying User Requirements
One challenging aspect of designing a system is to determine the requirements.
You must thoroughly understand the business needs before you can create a use-
ful system. A key step is to interview users and observe the operations of the firm.
Although this step sounds easy, it can be difficult—especially when users disagree
with each other. Even in the best circumstances, communication can be difficult.
Excellent communication skills and experience are important to becoming a good
designer.

As long as you collect the data and organize it carefully, the DBMS makes it
easy to create and modify reports. As you talk with users, you will collect user
documents, such as reports and forms. These documents provide information
about the basic data and operations of the firm. You need to gather four basic
pieces of information for the initial design: (1) the data that needs to be collected,
(2) the data type (domain), (3) the amount of data involved, and (4) rules about the
object relationships.

Business Objects
Database design focuses on identifying the data that needs to be stored. Later,
queries can be created to search the data, input forms to enter new data, and re-
ports to retrieve and display the data to match the user needs. For now, the most
important step is to organize the data correctly so that the database system can
handle it efficiently.

All businesses deal with entities or objects, such as customers, products, em-
ployees, and sales. From a systems perspective, an entity is some item in the real
world that you wish to track. That entity is described by its attributes or proper-
ties. For example, a customer entity has a name, address, and phone number. In
modeling terms, an entity listed with its properties is called a class. In a program-
ming environment, a class can also have methods or functions that it can perform,
and these can be listed with the class. For example, the customer class might have
a method to add a new customer. Database designs seldom need to describe meth-
ods, so they are generally not listed.

49Chapter 2: Database Design

Database designers need some way to keep notes and show the list of classes
to users and other designers. Several graphical techniques have been developed,
but the more modern approach (and easiest to read) is the class diagram. A class
diagram displays each class as a box containing the list of properties for the class.
Class diagrams also show how the classes are related to each other by connecting
them with lines. Figure 2.3 shows how a single class is displayed.

When drawing a class diagram, you often begin by identifying the major class-
es or entities. As you create a class, you enter the attributes that define this object.
These attributes represent the data that the organization needs to store. In the Cus-
tomer example, you will always need the customer name, and probably an address
and phone number. Some organizations also might specify a type of customer
(government, business, individual, or something else).

Customer
CustomerID
LastName
FirstName
Phone
Address
City
State
ZIP	Code

Name

Properties

Add	Customer

Delete	Customer

Methods

(optional	for	database)

Figure 2.3
Class. A class has a name, properties, and methods. The properties describe the class
and represent data to be collected. The methods are actions the class can perform, and
are seldom used in a database design.

Customer
CustomerID
LastName
FirstName
Phone
Address
City
State
ZIP	Code

Sales
SaleID
SaleDate
CustomerID

1

*

Figure 2.4
Relationships. The Sales tables needs CustomerID to reveal which customer
participated in the sale. Putting the rest of the customer data into the Sales table
would waste space and cause other problems. The relationship link to the Customer
table enables the database system to find all of the related data based on just the
CustomerID value.

50Chapter 2: Database Design

Tables and Relationships
Classes will eventually be stored as tables in the database system. You have to be
careful what columns you include in each table. Chapter 3 describes specific rules
in detail, but they also apply when you create the class diagram. One of the most
important aspects is to avoid unnecessary duplication of data. Figure 2.4 shows a
simple example. The Sales table needs to identify which customer participated in
a sale. It accomplishes this task by storing just the primary key CustomerID in the
Sales table. An alternative would be to store all of the Customer attributes in the
Sales table. However, it would be a waste of space to repeat all of the customer
data every time you sell something to a customer. Instead, you create a Customer-
ID primary key in the Customer table and place only this key value into the Sales
table. The database system can then retrieve all of the related customer data from
the Customer table based on the value of the CustomerID.

Notice the 1 and the * annotations in the diagram. These represent the business
rules. Most companies have a policy that only one (1) customer can be listed on a
sale, but a customer can participate in many (*) different sales.

Definitions
To learn how to create databases that are useful and efficient, you need to under-
stand some basic definitions. The main ones are shown in Figure 2.5. Codd cre-
ated formal mathematical definitions of these terms when he defined relational
databases and these formal definitions are presented in the Appendix to Chapter
3. However, for designing and building business applications, the definitions pre-
sented here are easier to understand.

A relational database is a collection of carefully defined tables organized for a
common purpose. A table is a collection of columns (attributes or properties) that
describe an entity. Individual objects are stored as rows (tuples in Codd’s terms)
within the table. For example, EmployeeID 12512 represents one instance of an
employee and is stored as one row in the Employee table. An attribute (property)
is a characteristic or descriptor of an entity. Two important aspects to a relational
database are that (1) all data must be stored in tables and (2) all tables must be
carefully defined to provide flexibility and minimize problems. Data normaliza-
tion is the process of defining tables properly to provide flexibility, minimize re-
dundancy, and ensure data integrity. The goal of database design and data normal-

Figure 2.5
Basic database definitions. Codd has more formal terms and mathematical
definitions, but these are easier to understand. One row in the data table represents a
single object, a specific employee in this situation. Each column (attribute) contains
one piece of data about that employee.

EmployeeID TaxpayerID LastName FirstName HomePhone Address
12512 888-22-5552 Cartom Abdul (603) 323-9893 252 South Street
15293 222-55-3737 Venetiaan Roland (804) 888-6667 937 Paramaribo Lane
22343 293-87-4343 Johnson John (703) 222-9384 234 Main Street
29387 837-36-2933 Stenheim Susan (410) 330-9837 8934 W. Maple

Employee

Properties

Rows/Objects
Class: EmployeePrimary key

51Chapter 2: Database Design

ization is to produce a list of nicely behaved tables. Each table describes a single
type of object in the organization.

Primary Key
Every table must have a primary key. The primary key is a column or set of
columns that identifies a particular row. For example, in the customer table you
might use customer name to find a particular entry. But that column does not make
a good key. What if eight customers are named John Smith? In many cases you
will create new key columns to ensure they are unique. For example, a customer
identification number is often created to ensure that all customers are correctly
separated. The relationship between the primary key and the rest of the data is
one-to-one. That is, each entry for a key points to exactly one customer row. To
highlight the primary key, the names of the columns that make up the key will
be underlined. The DBDesign system uses a star in front of primary key column
names because it is easier to see. You can use either approach (or both) if you
draw class diagrams by hand.

In some cases there will be several choices to use as a primary key. In the cus-
tomer example you could choose name or phone number, or create a unique Cus-
tomerID. If you have a choice, the primary key should be the smallest set of col-
umns needed to form a unique identifier.

Some U.S. organizations might be tempted to use Social Security numbers
(SSN) as the primary key. Even if you have a need to collect the SSN, you will
be better off using a separate number as a key. One reason is that a primary key
must always be unique, and with the SSN you run a risk that someone might pres-
ent a forged document. More important, primary keys are used and displayed in
many places within a database. If you use the SSN, too many employees will have
access to your customers’ private information. Because SSNs are used for many
financial, governmental, and health records, you should protect customer privacy
by limiting employee access to these numbers. In fact, you should encrypt them to
prevent unauthorized or accidental release of the data.

The most important issue with a primary key is that it can never point to more
than one row or object in the database. For example, assume you are building a
database for the human resource management department. The manager tells you
that the company uses names of employees to identify them. You ask whether
or not two employees have the same name, so the manager examines the list of
employees and reports that no duplicates exist among the 30 employees. The man-
ager also suggests that if you include the employee’s middle initial, you should
never have a problem identifying the employees. So far, it sounds like name might
be a potential key. But wait! You really need to ask what the possible key values
might be in the future. If you build a database with employee name as a prima-
ry key, you are explicitly stating that no two employees will ever have the same
name. That assumption is almost guaranteed to cause problems in the future. It is
far safer to use the database to generate a key number—your application can al-
ways provide the ability to search by name, but internally, the DBMS will not mix
up two people with the same name.

Class Diagrams: Introduction
What is a class diagram (or entity-relationship diagram)? The DBMS ap-
proach focuses on the data. In many organizations data remains relatively stable.
For example, companies collect the same basic data on customers today that they

52Chapter 2: Database Design

collected 20 or 30 years ago. Basic items such as name, address, and phone num-
ber are always needed. Although you might choose to collect additional data today
(cell phone number and e-mail address for example), you still utilize the same
base data. On the other hand, the way companies accept and process sales orders
has changed over time, so forms and reports are constantly being modified. The
database approach takes advantage of this difference by focusing on defining the
data correctly. Then the DBMS makes it easy to change reports and forms. The
first step in any design is to identify the things or entities that you wish to observe
and track.

Classes and Entities
Figure 2.6 shows some examples of the entities and relationships that will exist in
the Pet Store database. Note that these definitions are informal. Each entry has a
more formal definition in terms of Codd’s relational model and precise semantic
definitions in the Unified Modeling Language (UML). However, you can de-
velop a database without learning the mathematical foundations.

A tricky problem with database design is that your specific solution depends
on the underlying assumptions and business rules. The design process becomes
easier as you learn the common business rules. But, any business can have dif-
ferent rules, so you always have to verify the assumptions. For example, consider
an employee. The employee is clearly a separate entity because you always need
to keep detailed data about the employee (date hired, name, address, and so on).
But what about the employee’s spouse? Is the spouse an attribute of the Employee
entity, or should he or she be treated as a separate entity? If the organization only
cares about the spouse’s name, it can be stored as an attribute of the Employee

Term Definition Pet Store Examples
Entity Something in the real world that you

wish to describe or track.
Customer, Merchandise,
Sales

Class Description of an entity that includes
its attributes (properties) and
behavior (methods).

Customer, Merchandise,
Sale

Object One instance of a class with specific
data.

Joe Jones, Premium Cat
Food, Sale #32

Property A characteristic or descriptor of a
class or entity.

LastName, Description,
SaleDate

Method A function that is performed by the
class.

AddCustomer,
UpdateInventory,
ComputeTotal

Association A relationship between two or more
classes.

Each sale can have only
one customer

Figure 2.6
Basic definitions. These terms describe the main concepts needed to create a class
diagram. The first step is to identify the business entities and their properties.
Methods are less important than properties in a database context, but you should
identify important functions or calculations.

53Chapter 2: Database Design

entity. On the other hand, if the organization wants to keep additional information
about the spouse (e.g., birthday, occupation, or health records), it might be better
to create a separate Spouse entity with its own attributes. Your first step in design-
ing a database is to identify the entities and their defining attributes. The second
step is to specify the relationships among these entities.

Associations and Relationships
An important step in designing databases is identifying associations or relation-
ships among entities. Details about these relationships represent the business rules.
Associations or relationships represent business rules. For example, it is clear
that a customer can place many orders. But the relationship is not as clear from the
other direction. How many customers can be involved with one particular order?
Many businesses would say that each order could come from only one customer.
Hence there would be a one-to-many relationship between customers and orders.
On the other hand, some organizations (such as home sales) might have multiple
customers on one order, which creates a many-to-many relationship.

Associations can be named: UML refers to the association role. Each end of a
binary association may be labeled. It is often useful to include a direction arrow to
indicate how the label should be read. Figure 2.7 shows how to indicate that one
customer places many sales orders.

UML uses numbers and asterisks to indicate the multiplicity in an association.
As shown in Figure 2.7, the asterisk (*) represents many. So each supplier can
receive many purchase orders, but each purchase order goes to only one supplier.
Some older entity-relationship design methods used multiple arrowheads or the
letters M and N to represent the “many” sides of a relationship. Correctly identify-
ing relationships is important in properly designing a database application.

Class Diagram Details
A class diagram is a visual model of the classes and associations in an organiza-
tion. These diagrams have many options, but the basic features that must be in-
cluded are the class names (entities) in boxes and the associations (relationships)
connecting them. Typically, you will want to include more information about the
classes and associations. For example, you will eventually include the properties
of the classes within the box.

Employee Employment
Contract

1 1
Employee Employment

Contract
1 1

 sent	to
Supplier Purchase

Order
1 *

 sent	to
Supplier Purchase

Order
1 *

places	
Customer Sale

places	
Customer Sale

1 *

performs	
Employee Tasks

* *

performs	
Employee Tasks

* *

Figure 2.7
Associations. Three types of relationships (one-to-one, one-to-many, and many-
to-many) occur among entities. They can be drawn in different ways, but they
represent business or organizational rules. Avoid vague definitions where almost any
relationship could be classified as many-to-many. They make the database design
more complex.

54Chapter 2: Database Design

Associations also have several options. One of the most important database de-
sign issues is the multiplicity of the relationship, which has two aspects: (1) the
maximum number of objects that can be related, and (2) the minimum number of
objects, if any, that must be included. As indicated in Figure 2.8, multiplicity is
shown as a number for the minimum value, ellipses (…), and the maximum value.
An asterisk (*) represents an unknown quantity of “many.” In the example in Fig-
ure 2.8, exactly one customer (1…1) can be involved with any sale.

Most of the time, a relationship requires that the referenced entity must be
guaranteed to exist. For example, what happens if you have a sale form that lists a
customer (CustomerID = 1123), but there is no data in the Customer table for that
customer? There is a referential relationship between the sales order and the cus-
tomer entity. Business rules require that customer data must already exist before
that customer can make a purchase. This relationship can be denoted by specify-
ing the minimum value of the relationship (0 if it is optional, 1 if it is required).
In the Customer-Sales example, the annotation on the Customer would be 1…1 to
indicate that a CustomerID value in the Sales table points to exactly one customer
(no less than one and no more than one).

Be sure to read relationships in both directions. For example, in Figure 2.8, the
second part of the customer/sales association states that a customer can place from
zero to many sales orders. That is, a customer is not required to place an order.
Some might argue that if a person has not yet placed a sale, that person should not
be considered a customer. But that interpretation is getting too picky, and it would
cause chicken-and-the-egg problems if you tried to enforce such a rule. Consider
the Customer table to include potential customers who have signed up but not
purchased anything yet.

Moving down the diagram, note the many-to-many relationship between Sale
and Item (asterisks on the right side for both classes). A sale must contain at least
one item (empty sales orders are not useful in business), but the firm might have
an item that has not been sold yet.

Quick Start
Is there an easier way to get started with database design? In the end, details
are important in designs. But often it helps to focus on the bigger picture first and
fill in the details later. The sections after this one examine some common patterns

Customer Order

Item

1	… 1

0	… * 0	… *

1	… *

Figure 2.8
Class diagram or entity-relationship diagram. Each customer can place zero or many
orders. Each sale must come from at least one and no more than one customer. The
zero (0) represents an optional item, so a customer might not have placed any orders
yet.

55Chapter 2: Database Design

that arise in designing business databases, but it is easy to get lost in the details.
Eventually, you need to understand those details, but first you need to start think-
ing in terms of a few basic concepts. The purpose of this section is to show you
some ways to begin learning database design.

Creating a Class Diagram
This section summarizes how you begin a class diagram and highlights the issue
of primary keys. Figure 2.9 outlines the major steps. The real trick is to start with
the easy classes. Look for the base entities that do not depend on other classes. For
instance, most business applications have relatively simple classes for Customers,
Employees, and Items. These tables often use a generated key as the primary key
column, and the data elements are usually obvious. A generated key is one that is
created by the DBMS and guaranteed to be unique within that table.

1. Identify the primary classes and data elements.
2. Create the easy classes.
3. Create generated keys if necessary.
4. Add tables to split many-to-many relationships.
5. Check primary keys.
6. Verify relationships.
7. Verify data types.

Figure 2.10
Basic Sales form. Look through the form and see if you can identify the basic
business objects. You should be able to easily find three objects.

Figure 2.9
Steps to create a class diagram. Primary keys often cause problems. Look for many-
to-many relationships and split them into new tables.

Sale ID Date

Customer
First Name
Last Name
Address
City, State ZIPCode
ItemID Description List Price Quantity QOH Value

Total

56Chapter 2: Database Design

Consider the basic Sales form. Figure 2.10 shows a simplified version. Look
over the form and see if you can identify the main objects it contains. Think about
standard business sales for a second and you should be able to identify at least
three common objects contained on the form: Customers, Items, and Sales. Data
for the Customer object seems to be displayed in its own section of the form so
that is a useful indicator, but people are often represented as a separate object so
you should become comfortable with creating that table. The Items are a little
trickier to see, but think about the business transaction and you can see the im-
portance of treating merchandise items as a separate object. The Sales object is
slightly trickier because it records an event. But in most cases, the overall form
itself will become a table—because it ties together all of the other objects. In this
case, Sales represent the integration of Customers and Items.

Each of these three tables (Customers, Items, and Sales) can stand alone as a
base table. Customers are clearly defined in terms of standard properties such as
name and address. Items have properties such as a description and list price. Sales
take place on a specified date. Every table needs a primary key, but each of these
three tables can benefit from using a generated key. Some companies might rely
on the marketing department to create unique CustomerID and ItemID values, but
database systems are good at creating unique numbers, so it is far easier to let the
DBMS generate ID values as new customers, items, and sales are entered. Figure
2.11 shows these three tables in DBDesign, but you could also draw them by hand
or write them with the main columns.

Notice that these three tables are not yet connected to each other. Eventually,
to be able to recreate the Sales form, all of the tables must be related or connected
somehow. But it is worth examining exactly how these tables might be connected.
Begin by focusing on the Customers and Sales tables. Three possibilities exist:
1. Put the SaleID into the Customers table, 2. Put the CustomerID into the Sales
table, or 3. Put both ID values into a third table. Before trying to find the answer,
understand that each of those three possibilities could be correct—the answer de-
pends on the specific business rules. That is, each possibility represents a different
set of business rules.

Figure 2.11
Initial objects for the Sales form: Customers, Items, and Orders. Each has a single
generated column as the primary key because rows are created independently. Notice
that they are not yet related to each other.

57Chapter 2: Database Design

Primary Keys and Relationships
Primary keys and many-to-many relationships are often difficult for students. The
trick is to remember that any column that is part of the primary key represents a
“many” relationship. Consider the classic Customers-Sales relationship.

When you are not certain how to identify the keys in a table, Figure 2.12 shows
a process for identifying the class relationship. Write down the columns you want
to study with no key indicators. Ask yourself if each customer (first column) can
place one or many Sales (second column). If the answer is many Sales, add a key
indicator (underline) to the SaleID. Reverse the process and ask if a specific Sale
can come from one Customer or many. The standard business rule says only one

CustomerID	 SaleID

Each customer can place many Sales (key SaleID).
Each order comes from one customer (do not key CustomerID).

*SaleID
CustomerID

Figure 2.12
Identifying primary keys. Write down the potential key columns. Ask if each of
the first entity (Customer) can have one or many of the second entity (Sale). If the
answer is many, key the second item. Reverse the process to see if one of the second
items can be associated with one or many of the first items.

Each Sale has one Customer

Each Customer can place
many Sales

Figure 2.13
Relationship between Customers and Sales. CustomerID belongs in the Sales table
but CustomerID is not part of the key. Each Sale has one Customer—so CustomerID
is not keyed in the Sales table. Each Customer can have multiple Sales. Read keyed
columns as “many” and non-keyed columns as “one.”

58Chapter 2: Database Design

customer is responsible for a sale, so do not key CustomerID. The result says that
SaleID is keyed but CustomerID is not. So you need to put CustomerID into a
table with only SaleID as the key column. That would be the Sales table.

If you had put the SaleID into the Customers table the relationships would be
reversed. With CustomerID keyed but not SaleID the design would be saying that
each customer can never participate in more than one sale, and every sale could
involve many customers. Read the keyed column as “many” and non-keyed col-
umns as “one.” Figure 2.13 shows the resulting design by placing CustomerID
into the Sales table where it is not part of the key. From a more mechanical per-
spective, CustomerID could never be keyed in the Sales table. The SaleID is al-
ready a generated key so it is guaranteed to be unique. No other column would
ever need to be keyed in that table. Generated key columns always stand alone.

The design is closer, but notice that the Items table is still not connected to any
of the others. Thinking about the business associations, it seems that Items and
Sales should be related somehow—because the Items are shown on the original
Sales Form. So try the same key process. Figure 2.14 shows the process. Write
down SaleID and ItemID and ask yourself if a Sale can contain one or many
Items. If you are uncertain, look back at the original sales form and notice the
repeating section that can list many items, so the answer is Many. Mark ItemID
as a key. Working the other direction: Can an Item be sold more than once? If the
items are standardized, such as cans of dog food, the answer is also “many” times.
Yes, a given, specific can is sold only once, but that particular ItemID representing
a brand and flavor of dog food can be sold many times. So also key SaleID.

Hence, you need a table that contains both SaleID and ItemID as a key. Look
at your work so far and you will see that no such table exists. So create a new
table that contains those two keys. Figure 2.15 shows the resulting table and how
it ties the Sales and Items tables together. Many-to-many relationships are always
handled with this third table. In DBDesign, note that a blue star is used to repre-
sent the keys in the SaleItems table. Remember that a filled red star is only used
for generated keys—in the table where the values are created. So a new SaleID
value will be created when a Sale is added to the Sale table, and that value will
be inserted into the SaleItems table. Similarly, an existing ItemID from the Items
table will be inserted into the SaleItems table to indicate which item is being sold.

SaleID	 	 ItemID

Each Sale can have many Items (key ItemID).
Each Item can be sold many times (key SaleID).

Need a table with both SaleID and ItemID as keys

*SaleID
*ItemID

Figure 2.14
Identifying primary keys. Write down SaleID and ItemID and identify the
associations. The repeating section in the original sales form shows that a Sale can
list many Items. When Items are represented as SKUs (such as cans of dog food), the
item can be sold many times. So a table is needed with both SaleID and ItemID as
keys. Because this table does not yet exist, it must be created: SaleItems.

59Chapter 2: Database Design

Think of it as a bar code scanner that reads the existing ItemID and inserts it into a
new row of the SaleItems table.

DBDesign uses a special symbol to show where keys are generated to remind
you that: (1) In a generating table, the generated key can be the only key column,
(2) A generated key can be generated only once, and (3) You can never have a
relationship that ties two generated keys together (because it would never make
sense to link two randomly generated numbers).

Getting the primary keys right is critical at this stage of the design. In many
ways, the keys identify the objects and tables. In the example, the generated keys
CustomerID, ItemID, and SaleID uniquely identify each related object. The com-
posite key: SaleID+ItemID identifies the many-to-many relationship between
Sales and Items. From this point, you then assign the other columns as proper-
ties of the correct objects. For instance, Last Name, First Name, and Address are
attributes of Customers. ListPrice is an attribute of Items because each item has
one list price, if we do not worry about changes over longer periods of time. And
QuantitySold is an attribute of the SaleItems because it represents the amount of a
specific Item on a given Sale.

Class Diagrams: Details
How are some common business associations handled in class diagrams?
Class diagrams are useful to visualize the business entities and the underlying re-
lationships. Many business entities can be
represented by simple classes (Custom-
ers, Employees, Merchandise, Sales, and
so on). However, some common business
problems can lead to relatively complex
relationships. Many of these situations
are tied to events, such as sales or as-

Figure 2.15
Two columns as part of the primary key. Sales and Items have a many-to-many
relationship which is handled as a new table (SaleItems) with both of the columns
keyed.

Note: It is possible to temporarily
skip this section and return to it once
the student is more familiar with the
basic design issues.

60Chapter 2: Database Design

sembly. A couple of tricky concepts evolved from object-oriented design require
special handling in class diagrams, and are trickier to handle within relational da-
tabases. Two classic situations are composition (objects built from other objects),
and inheritance (objects defined as extensions of parent objects). This section ex-
amines how to diagram these relatively complex topics.

Association Details: N-ary Associations
Many-to-many associations between classes cause problems in the database de-
sign. They are acceptable in an initial diagram such as Figure 2.16, but they will
eventually have to be split into one-to-many relationships. This process is ex-
plained in detailed in Chapter 3.

In a related situation, as shown in Figure 2.16, entities are not always obvious.
Consider a basic manufacturing situation in which employees assemble compo-
nents into final products. At first glance, it is tempting to say that there are three
entities: employees, components, and products. This design specifies that the da-
tabase should keep track of which employees worked on each product and which
components go into each product. Notice that two many-to-many relationships
exist.

To understand the problem caused by the many-to-many relationships, consider
what happens if the company wants to know which employees assembled each
component into a product. To handle this situation, Figure 2.17 shows that the
three main entities (Employee, Product, and Component) are actually related to
each other through an Assembly association. When more than two classes are re-
lated, the relationship is called an n-ary association and is drawn as a diamond.
This association (actually any association) can be described by its own class data.
In this example an entry in the assembly list would contain an EmployeeID, a
ComponentID, and a ProductID. In total, many employees can work on many
products, and many components can be installed in many products. Each indi-
vidual event is captured by the Assembly association class. The Assembly asso-
ciation solves the many-to-many problem, because a given row in the Assembly
class holds data for one employee, one component, and one product. Ultimately,
you would also include a Date/Time column to record when each event occurred.

According to the UML standard, multiplicity has little meaning in the n-ary
context. The multiplicity number placed on a class represents the potential num-
ber of objects in the association when the other n-1 values are fixed. For example,
if ComponentID and EmployeeID are fixed, how many products could there be?
In other words, can an employee install the same component in more than one

Employee

Component Product

*
*

* *

Figure 2.16
Many-to-many relationships cause problems for databases. In this example, many
employees can install many components on many products, but we do not know
which components the employee actually installed.

61Chapter 2: Database Design

product? In most situations the answer will be yes, so the multiplicity will gener-
ally be a “many” asterisk.

Eventually to create a database, all many-to-many relationships must be con-
verted to a set of one-to-many relationships by adding a new entity. Like the As-
sembly entity, this new entity usually represents an activity and often includes a
date/time stamp.

As a designer you will use class diagrams for different purposes. Sometimes
you need to see the detail; other times you only care about the big picture. For
large projects, it sometimes helps to create an overview diagram that displays the
primary relationships between the main classes. On this diagram it is acceptable to
use many-to-many relationships to hide some detail entities.

Association Details: Aggregation
Some special types of associations arise often enough that UML has defined spe-
cial techniques for handling them. One category is known as an aggregation or a
collection. For example, a Sale consists of a collection of Items being purchased.
As shown in Figure 2.18, aggregation is indicated by a small diamond on the asso-
ciation line next to the class that is the aggregate. In the example, the diamond is
next to the Sale class. Associations with a many side can be ordered or unordered.
In this example, the sequence in which the Items are stored does not matter. If
order did matter, you would simply put the notation {ordered} underneath the as-
sociation. Be sure to include the braces around the word. Aggregations are rarely
marked separately in a database design.

Employee
*EmployeeID
Name
...

Component
*CompID
Type
Name

Product
*ProductID
Type
Name

*
* *

Assembly

Assembly
*EmployeeID
*CompID
*ProductID

1

1

1

…Maria	Rio12

…Joe	Jones11

…NameEmployeeID

…Maria	Rio12

…Joe	Jones11

…NameEmployeeID

CamaroB17A5411

CorvetteX32A3222

NameTypeProductID

CamaroB17A5411

CorvetteX32A3222

NameTypeProductID

Trunk	handleT54888

Trunk	hingeH33883

Door	hingeH32882

MirrorM15872

WheelW32563

NameTypeCompID

Trunk	handleT54888

Trunk	hingeH33883

Door	hingeH32882

MirrorM15872

WheelW32563

NameTypeCompID

A541188312

A322288212

A322256312

A541156311

A322287211

A322256311

ProductIDCompIDEmployeeID

A541188312

A322288212

A322256312

A541156311

A322287211

A322256311

ProductIDCompIDEmployeeID

Figure 2.17
Many-to-many associations are converted to a set of one-to-many relationships
with an n-ary association, which includes a new class. In this example each row in
the Assembly class holds data for one employee, one component, and one product.
Notice that the Assembly class (box) is connected to the Assembly association
(diamond) by a dashed line.

62Chapter 2: Database Design

Association Details: Composition
The simple aggregation indicator is not used much in business settings. Howev-
er, composition is a stronger aggregate association that does arise more often.
In a composition, the individual items become the new object. Consider a bicy-
cle, which is built from a set of components (wheels, crank, stem, and so on).
UML provides two methods to display composition. In Figure 2.19 the individual
classes are separated and marked with a filled diamond. An alternative technique
shown in Figure 2.20 is to indicate the composition by drawing the component
classes inside the main Bicycle class. It is easier to recognize the relationship in
the embedded diagram, but it could get messy trying to show 20 different objects
required to define a bicycle. Figure 2.20 also highlights the fact that the compo-
nent items could be described as properties of the main Bicycle class.

The differences between aggregation and composition are subtle. The UML
standard states that a composition can exist only for a one-to-many relationship.
Any many-to-many association would have to use the simple aggregation indica-
tor. Composition relationships are generally easier to recognize than aggregation
relationships, and they are particularly common in manufacturing environments.

Bicycle

Size
Model	Type
…

Wheels

Rims
Spokes
…

1 2built	from

Crank

ItemID
Weight		

Stem

ItemID
Weight
Size		

1

1

1

1

Figure 2.19
Association composition. A bicycle is built from several individual components.
These components no longer exist separately; they become the bicycle.

Sale

SaleDate
Employee

Item

Description
Cost

* *contains

Figure 2.18
Association aggregation. A Sale contains a list of items being purchased. A small
diamond is placed on the association to remind us of this special relationship.

63Chapter 2: Database Design

Just remember that a composition exists only when the individual items become
the new class. After the bicycle is built, you no longer refer to the individual
components.

Association Details: Generalization
Another common association that arises in business settings is generalization.
This situation generates a class hierarchy. The most general description is given
at the top, and more specific classes are derived from it. Figure 2.21 presents a
sample from Sally’s Pet Store. Each animal has certain generic properties (e.g.,
DateBorn, Name, Gender, ListPrice), contained in the generic Animal class. But
specific types of animals require slightly different information. For example, for a
mammal (perhaps a cat), buyers want to know the size of the litter and whether or
not the animal has claws. On the other hand, fish do not have claws, and custom-
ers want different information, such as whether they are fresh- or saltwater fish
and the condition of their scales. Similar animal-specific data can be collected for
each species. There can be multiple levels of generalization. In the pet store ex-
ample, the Mammal category could be further split into Cat, Dog, and Other.

A small, unfilled triangle is used to indicate a generalization relationship. You
can connect all of the subclasses into one triangle as in Figure 2.21, or you can
draw each line separately. For the situation in this example, the collected approach
is the best choice because the association represents a disjoint (mutually exclu-
sive) set. An animal can fall into only one of the subclasses.

An important characteristic of generalization is that lower-level classes inherit
the properties and methods of the classes above them. Classes often begin with
fairly general descriptions. More detailed classes are derived from these base
classes. Each lower-level class inherits the properties and functions from the high-
er classes. Inheritance means that objects in the derived classes include all of
the properties from the higher classes, as well as those defined in their own class.
Similarly, functions defined in the related classes are available to the new class.

Bicycle

Size
Model	Type
…

Wheels

Crank

Stem

Figure 2.20
Association composition. It is easier to see the composition by embedding the
component items within the main class.

64Chapter 2: Database Design

Consider the example of a bank accounting system displayed in Figure 2.22. A
designer would start with the basic description of a customer account. The bank
is always going to need basic information about its accounts, such as AccountID,
CustomerID, DateOpened, and CurrentBalance. Similarly, there will be common
functions including opening and closing the account. All of these basic properties
and actions will be defined in the base class for Accounts.

New accounts can be derived from these accounts, and designers would only
have to add the new features—saving time and reducing errors. For example,
Checking Accounts have a MinimumBalance to avoid fees, and the bank must
track the number of Overdrafts each month. The Checking Accounts class is de-
rived from the base Accounts class, and the developer adds the new properties and
functions. This new class automatically inherits all of the properties and functions
from the Accounts class, so you do not have to redefine them. Similarly, the bank
pays interest on savings accounts, so a Savings Accounts class is created that re-
cords the current InterestRate and includes a function to compute and credit the
interest due each month.

Additional classes can be derived from the Savings Accounts and Checking
Accounts classes. For instance, the bank probably has special checking accounts
for seniors and for students. These new accounts might offer lower fees, differ-
ent minimum balance requirements, or different interest rates. To accommodate
these changes, the design diagram is simply expanded by adding new classes be-
low these initial definitions. These diagrams display the class hierarchy which
shows how classes are derived from each other, and highlights which properties
and functions are inherited. The UML uses open diamond arrowheads to indicate
that the higher-level class is the more general class. In the example, the Savings
Accounts and Checking Accounts classes are derived from the generic Accounts
class, so the association lines point to it.

Each class in Figure 2.22 can also perform individual functions. Defining prop-
erties and methods within a class is known as encapsulation. It has the advantage
of placing all relevant definitions in one location. Encapsulation also provides
some security and control features because properties and functions can be pro-
tected from other areas of the application.

Animal

Mammal Fish Spider

{disjoint}

DateBorn
Name
Gender
Color
ListPrice

LitterSize
TailLength
Claws

FreshWater
ScaleCondition

Venomous
Habitat

Figure 2.21
Association generalization. The generic Animal class holds data that applies to all
animals. The derived subclasses contain data that is specific to each species.

65Chapter 2: Database Design

Another interesting feature of encapsulation can be found by noting that the
Accounts class has a function to close accounts. Look carefully, and you will see
that the Checking Accounts class also has a function to close accounts (CloseAc-
count). When a derived class defines the same function as a parent class, it is
known as polymorphism. When the system activates the function, it automatical-
ly identifies the object’s class and executes the matching function. Designers can
also specify that the derived function (CloseAccount in the Checking Accounts
class) can call the related function in the base class. In the banking example, the
Checking Account’s CloseAccount function would cancel outstanding checks,
compute current charges, and update the main balance. Then it would call the Ac-
counts CloseAccount function, which would automatically archive the data and
remove the object from the current records.

Polymorphism is a useful tool for application builders. It means that you can
call one function regardless of the type of data. In the bank example you would
simply call the CloseAccount function. Each different account could perform dif-
ferent actions in response to that call, but the application does not care. The com-
plexity of the application has been moved to the design stage (where all of the
classes are defined). The application builder does not have to worry about the
details.

Note that in complex situations, a subclass can inherit properties and methods
from more than one parent class. In Figure 2.23, a car is motorized, and it is de-
signed for on-road use, so it inherits properties from both classes (and from the
generic Vehicle class). The bicycle situation is slightly more complex because it
could inherit features from the On-Road class or from the Off-Road class, depend-
ing on the type of bicycle. If you need to record data about hybrid bicycles, the
Bicycle class might have to inherit data from both the On-Road and Off-Road
classes.

*AccountID
CustomerID
DateOpened
CurrentBalance
OpenAccount
CloseAccount

Class	name

Properties

Methods

Savings	Accounts
InterestRate

PayInterest

Checking	Accounts
MinimumBalance
Overdrafts

BillOverdraftFees
CloseAccount

Inheritance

Polymorphism

Accounts

Figure 2.22
Class inheritance. Object classes begin with a base class (e.g., Accounts). Other
classes are derived from the base class. They inherit the properties and methods, and
add new features. In a bank, all accounts need to track basic customer data. Only
checking accounts need to track overdraft fees.

66Chapter 2: Database Design

Association Details: Reflexive Association
A reflexive relationship is another situation that arises in business that requires
special handling. A reflexive association is a relationship from one class back
to itself. The most common business situation is shown in Figure 2.24. most em-
ployees (worker) have a manager. Hence there is an association from Employee
(the worker) back to Employee (the manager). Notice how UML enables you to
label both ends of the relationship (manager and worker). Also, the “◄managed
by” label indicates how the association should be read. The labels and the text
clarify the purpose of the association. Associations may not need to be labeled,
but reflexive relationships should generally be explained so other developers un-
derstand the purpose.

Sally’s Pet Store Class Diagram
Are more complex diagrams different? It takes time to learn how to design da-
tabases. It is helpful to study other examples. Remember that Sally, the owner of
the pet store, wants to create the application in sections. The first section will track
the basic transaction data of the store. Hence you need to identify the primary en-
tities involved in operating a pet store.

Employee worker
1…*

manager 0…1

managed	by

Figure 2.24
Reflexive relationship. A manager is an employee who manages other workers.
Notice how the labels explain the purpose of the relationship.

Vehicle

Human	
PoweredMotorized On-Road Off-Road

Car Bicycle

or

Figure 2.23
Multiple parent classes. Classes can inherit properties from several parent classes.
The key is to draw the structure so that users can understand it and make sure that it
matches the business rules.

67Chapter 2: Database Design

The first step in designing the pet store database application is to talk with the
owner (Sally), examine other stores, and identify the primary components that
will be needed. After talking with Sally, it becomes clear that the Pet Store has
some features that make it different from other retail stores. The most important
difference is that the store must track two separate types of sales: animals are
handled differently from products. For example, the store tracks more detailed
information on each animal. Also, products can be sold in multiple units (e.g., six
cans of dog food), but animals must be tracked individually. Figure 2.25 shows an
initial class diagram for Sally’s Pet Store that is based on these primary entities.
The diagram highlights the two separate tracks for animals and merchandise. Note
that animals are also adopted instead of sold. Because each animal is unique and
is adopted only once, the transfer of the animal is handled differently than the sale
of merchandise.

While talking with Sally, a good designer will write down some of the basic
items that will be involved in the database. This list consists of entities for which
you need to collect data. For example, for the Pet Store database you will clearly
need to collect data on customers, suppliers, animals, and products. Likewise, you
will need to record each purchase and each sale. Right from the beginning, you
will want to identify various attributes or characteristics of these entities. For in-
stance, customers have names, addresses, and phone numbers. For each animal,
you will want to know the type of animal (cat, dog, etc.), the breed, the date of
birth, and so on.

The detailed class diagram will include the attributes for each of the entities.
Notice that the initial diagram in Figure 2.25 includes several many-to-many rela-
tionships. All of these require the addition of an intermediate class. Consider the
MerchandiseOrder class. Several items can be ordered at one time, so you will
create a new entity (OrderItem) that contains a list of items placed on each Mer-
chandiseOrder. The AnimalOrder and Sale entities will gain similar classes.

Figure 2.25
Initial class diagram for the PetStore. Animal purchases and sales are tracked
separately from merchandise because the store needs to monitor different data for the
two entities.

Animal

CustomerSupplier

Merchandise

Adoption
Group

Merchandise
Purchase

SaleEmployee

*

1

*
1

1

**

1

*
*

*

*

* 1*1

68Chapter 2: Database Design

Figure 2.26 shows the more detailed class diagram for the Pet Store with these
new intermediate classes. It also contains new classes for City, Breed, and Catego-
ry. Postal codes and cities raise issues in almost every business database. There is
a relationship between cities and postal codes, but it is not one-to-one. One simple
solution is to store the city, state, and postal code for every single customer and
supplier. However, for local customers, it is highly repetitive to enter the name
of the city and state for every sale. Clerks end up abbreviating the city entry and
every abbreviation is different, making it impossible to analyze sales by city. A
solution is to store city and postal code data in a separate class as a lookup table.
Commonly used values can be entered initially. An employee can select the de-
sired city from the existing list without having to reenter the data.

The Breed and Category classes are used to ensure consistency in the data.
One of the annoying problems of text data is that people rarely enter data con-
sistently. For example, some clerks might abbreviate the Dalmatian dog breed as
Dal, others might use Dalma, and a few might enter the entire name. To solve
this problem, you want to store all category and breed names one time in separate

Figure 2.26
Detailed class diagram for the pet store. Notice the tables added to solve many-to-
many problems: OrderItem, AnimalOrderItem, SaleItem, and SaleAnimal. The City
table was added to reduce data entry. The Breed and Category tables were added
to ensure data consistency. Users select the category and breed from these tables,
instead of entering text or abbreviations that might be different every time.

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed

69Chapter 2: Database Design

classes. Then employees simply choose the category and breed from the list in
these classes. Hence data is pulled from these lookup-tables and entered exactly
the same way every time.

Both the overview and the detail class diagrams for the Pet Store can be used to
communicate with users. Through the entities and relationships, the diagram dis-
plays the business rules of the firm. For instance, the separate treatment of animals
and merchandise is important to the owner. Similarly, capturing only one custom-
er per each sale is an important business rule. This rule should be confirmed by
Sally. If a family adopts an animal, does she want to keep track of each member of
the family? If so, you would need to add a Family class that lists the family mem-
bers for each customer. The main point is that you can use the diagrams to display
the new system, verify assumptions, and get new ideas.

Data Types (Domains)
What are the different data types? As you list the properties within each class,
you should think about the type of data they will hold. Each attribute holds a
specific data type or data domain. For example, what is an EmployeeID? Is it nu-
meric? At what value does it start? How should it be incremented? Does it contain
letters or other alphanumeric characters? You must identify the domain of each
attribute or column. Figure 2.27 identifies several common domains. The most
common is text, which holds any characters.
Note that any of the domains can also hold missing data. Users do not always
know the value of some item, so it may not be entered. Missing data is defined as
a null value.

Text
Text columns generally have a limited number of characters. SQL Server and Or-
acle both cut the limit in half for Unicode (2-byte) characters. Microsoft Access is
the most limited at 255 characters. Some database management systems ask you
to distinguish between fixed-length and variable-length text. Fixed-length strings
always take up the amount of space you allocate and are most useful to improve
speed in handling short strings like identification numbers or two-letter state ab-
breviations. Variable-length strings are stored so they take only as much space as
needed for each row of data.

Memo or long-text columns are also used to hold large variable-length text
data. The difference from variable-length text is that the database can allocate
more space for as it is needed. The exact limit depends on the DBMS and the
computer used, but long text can often include tens of thousands or millions of
characters in one database column. Long text columns are often used for long
comments or even short reports. However, some systems limit the operations that
you can perform with these columns, such as not allowing you to sort the column
data or apply pattern-matching searches.

Numbers
Numeric data is also common, and computers recognize several variations of nu-
meric data. The most important decision you have to make about numeric data
columns is choosing between integer and floating-point numbers. Integers cannot
hold fractions (values to the right of a decimal point). Integers are often used for
counting and include values such as 1; 2; 100; and 5,000. Floating-point numbers
can include fractional values and include numbers like 3.14159 and 2.718.

70Chapter 2: Database Design

The first question raised with integers and floating-point numbers is, Why should
you care? Why not store all numbers as floating-point values? The answer lies in
the way that computers store the two types of numbers. In particular, most ma-
chines store integers in 2 (or 4) bytes of storage for every value; but they store
each floating point number in 4 (or 8) bytes. Although a difference of 2 bytes
might seem trivial, it can make a huge difference when multiplied by several bil-
lion rows of data. Additionally, arithmetic performed on integers is substantially
faster than computations with floating-point data. Something as simple as add-
ing two numbers together can be 10 to 100 times faster with integers than with
floating-point numbers. Although machines have become faster and storage costs
keep declining, performance is still an important issue when you deal with huge
databases and a large customer base. If you can store a number as an integer, do
it—you will get a measurable gain in performance.

Most systems also support long integers and double-precision floating-point
values. In both cases the storage space is doubled compared to single-precision
data. The main issue for designers involves the size of the numbers and precision
that users need. For example, if you expect to have 100,000 customers, you cannot
use an integer to identify and track customers (a key value). Note that only 65,536
values can be stored as 16-bit integers. To count or measure larger values, you
need to use a long integer, which can range between +/- 2,000,000,000. Similarly,

Generic Access SQL Server Oracle
Text
 fixed
 variable
 Unicode
 Long text
 XML

NA
Short Text
Short Text
Long Text
NA

char
varchar
nchar, nvarchar
nvarchar(max)
XML

CHAR
VARCHAR2
NVARCHAR2
LONG
XMLType

Number
 Byte (8 bits)
 Integer (16 bits)
 Long (32 bits)
 (64 bits)
 Fixed precision
 Float
 Double
 Currency
 Yes/No

Byte
Integer
Long
NA
Decimal
Float
Double
Currency
Yes/No

tinyint
smallint
int
bigint
decimal(p,s)
real
float
money
bit

INTEGER
INTEGER
INTEGER
NUMBER(127,0)
NUMBER(p,s)
NUMBER, FLOAT
NUMBER
NUMBER(38,4)
INTEGER

Date/Time

Interval

Date/Time

NA

datetime
smalldatetime
interval year...

DATE

INTERVAL YEAR...
Image OLE Object varbinary(max) LONG RAW, BLOB
AutoNumber AutoNumber Identity

rowguidcol
SEQUENCES
ROWID

Figure 2.27
Data types (domains). Common data types and their variations in three database
systems. The text types in SQL Server and Oracle beginning with an “N” hold
Unicode character sets, particularly useful for non-Latin based languages.

71Chapter 2: Database Design

floating point numbers can support about six significant digits. Although the mag-
nitude (exponent) can be larger, no more than six or seven digits are maintained.
If users need greater precision, use double-precision values, which maintain 14 or
more significant digits. Figure 2.28 lists the maximum sizes of the common data
types.

Many business databases encounter a different problem. Monetary values often
require a large number of digits, and users cannot tolerate round-off errors. Even
if you use long integers, you would be restricted to values under 2,000,000,000
(20,000,000 if you need two decimal point values). Double-precision floating-
point numbers would enable you to store numbers in the billions even with two
decimal values. However, floating-point numbers are often stored with round-off
errors, which might upset the accountants whose computations must be accurate
to the penny. To compensate for these problems, database systems offer a cur-
rency data type, which is stored and computed as integer values (with an imputed
decimal point). The arithmetic is fast, large values in the trillions can be stored,
and round-off error is minimized. Most systems also offer a generic fixed-pre-
cision data type. For example, you could specify that you need 4 decimal digits
of precision, and the database will store the data and perform computations with
exactly 4 decimal digits.

Data Types
Size

Access SQL Server Oracle
Text (characters)
 fixed
 variable
 long text
 XML

255
64 KB

8K, 4K
8K, 4K
2 G, 1G
2 G

2 K
4 K
2 G

Numeric
 Byte (8 bits)
 Integer (16 bits)
 Long (32 bits)
 (64 bits)
 Fixed precision
 Float
 Double
 Currency
 Yes/No

255
+/- 32767
+/- 2 B
NA
p: 1-28
+/- 1 E 38
+/- 1 E 308
+/- 900.0000 tril.
0/1

255
+/- 32767
+/- 2 B
18 digits
p: 1-38
+/- 1 E 38
+/- 1 E 308
+/- 900.0000 tril.
0/1

38 digits
38 digits
38 digits
p: 38 digits
s: -84-127, p: 1-38
38 digits
38 digits
38 digits

Date/Time 1/1/100 - 12/31/9999
(1 sec)

1/1/1753 - 12/31/9999
(3 ms)
1/1/1900 - 6/6/2079
(1 min)

1/1/-4712 -
1/31/9999 (sec)

Image 1 GB 2 GB 2 GB, 4 GB

AutoNumber Long (4 B) 4 B or 18 digits with
bigint

38 digits max.

Figure 2.28
Data sizes. Make sure that you choose a data type that can hold the largest value
you will encounter. Choosing a size too large can waste space and cause slow
calculations, but if in doubt, choose a larger size.

72Chapter 2: Database Design

Dates and Times
All databases need a special data type for dates and times. Most systems com-
bine the two into one domain; some provide two separate definitions. Many be-
ginners try to store dates as string or numeric values. Avoid this temptation. Date
types have important properties. Dates (and times) are actually stored as single
numbers. Dates are typically stored as integers that count the number of days or
seconds from some base date. This base date may vary between systems, but it
is only used internally. The value of storing dates by a count is that the system
can automatically perform date arithmetic. You can easily ask for the number of
days between two dates, or you can ask the system to find the date that is 30 days
from today. Even if that day is in a different month or a different year, the proper
date is automatically computed. Although most systems need 8 bytes to store date/
time columns, doing so removes the need to worry about any year conversion
problems.

A second important reason to use internal date and time representations is that
the database system can convert the internal format to and from any common
format. For example, in European nations, dates are generally displayed in day/
month/year format, not the month/day/year format commonly used in the United
States. With a common internal representation, users can choose their preferred
method of entering or viewing dates. The DBMS automatically converts to the
internal format, so internal dates are always consistent.

Databases also need the ability to store time intervals. Common examples in-
clude a column to hold years, months, days, minutes, or even seconds. For in-
stance, you might want to store the length of time it takes an employee to per-
form a task. Without a specific interval data type, you could store it as a number.
However, you would have to document the meaning of the number—it might be
hours, minutes, or seconds. With a specified interval type, there is less chance for
confusion.

Binary Objects
A different type of domain is a category for objects or binary large object
(BLOB). It enables you to store any type of object created by the computer. A use-
ful example is to use a BLOB to hold images and files from other software pack-
ages. For example, each row in the database could hold a different spreadsheet,
picture, or graph. An engineering database might hold drawings and specifications
for various components. The advantage is that all of the data is stored together,
making it easier for users to find the information they need and simplifying back-
ups. Similarly, a database could hold several different revisions of a spreadsheet
to show how it changed over time or to record changes by many different users.

On the other hand, BLOBs can quickly eat up space in the database. The free
versions of commercial software all place limits on the size of the database files.
This limit tends to be around 2 gigabytes. If your application loads thousands of
BLOBs into the database, it will quickly reach this upper limit; requiring you to
move up to a paid version of the DBMS. Increasing the size of the data files also
complicates the backup process and might slow down other operations. So, many
developers store binary files as regular operating system files and store the file-
name within the DBMS—which requires only a few dozen text characters for
each file.

73Chapter 2: Database Design

Computed Values
Some business attributes can be computed. For instance, a sales form typically
computes SalePrice times Quantity. Or an employee’s age can be computed as
the difference between today’s date and the DateOfBirth. At the design stage, you
should indicate which data attributes could be computed. The UML notation is to
precede the name with a slash (/) and then describe the computation in a note. For
example, the computation for a person’s age is shown in Figure 2.29. The note is
displayed as a box with folded corner. It is connected to the appropriate property
with a dashed line.

User-Defined Types (Domains/Objects)
A relatively recent object-relational feature is supported by a few of the larger
database systems. You can build your own domain as a combination of existing
types. This domain essentially becomes a new object type. The example of a geo-
code is one of the easiest to understand. You can define a geographic location in
terms of its latitude and longitude. You also might include altitude if the data is
available. In a simple relational DBMS, this data is stored in separate columns.
Anytime you want to use the data, you would need to look up and pass all values
to your code. With a user-defined data type, you can create a new data type called
geolocation that includes the desired components. Your column definition then
has only the single data type (geolocation), but actually holds two or three pieces
of data. These elements are treated by the DBMS as a single entry. Note that when
you create a new domain, you also have to create functions to compare values so
that you can sort and search using the new data type.

Events
What are events, and how are they described in a database design? Events are
another important component of modern database systems that you need to under-
stand and document. Many database systems enable you to write programming
code within the database to take action when some event occurs. In general, three
different types of events can occur in a database environment:

1.	Business events that trigger some function, such as a sale triggering a
reduction in inventory.

2.	Data changes that signal some alert, such as an inventory that drops
below a preset level, which triggers a new purchase order.

3.	User interface events that trigger some action, such as a user clicking on
an icon to send a purchase order to a supplier.

Employee
Name
DateOfBirth
/Age
Phone
…

{Age	=	Today	- DateOfBirth}{Age	=	Today	- DateOfBirth}

Figure 2.29
Derived values. The Age attribute does not have to be stored, since it can be
computed from the date of birth. Hence, it should be noted on the class diagram.
Computed attribute names are preceded with a slash.

74Chapter 2: Database Design

Events are actions that are dependent on time. UML provides several diagrams
to illustrate events. The collaboration diagram is the most useful for recording
events that happen within the database. Complex user interface events can be dis-
played on sequence diagrams or statechart diagrams. These latter diagrams are
beyond the scope of this book. You can consult an OO design text for more details
on how to draw them.

Database events need to be documented because (1) the code can be hard to
find within the database itself, and (2) one event can trigger a chain that affects
many tables and developers often need to understand the entire chain. Handling
business inventory presents a useful example of the issues. Figure 2.30 is a small
collaboration diagram that shows how three classes interact by exchanging mes-
sages and calling functions from other classes. Note that because the order is im-
portant, the three major trigger activities are numbered sequentially. First, when a
customer places an order, this business event causes the Order class to be called
to ship an order. The shipping function triggers a message to the Inventory class
to subtract the appropriate quantity. When an inventory quantity changes, an au-
tomatic trigger calls a routine to analyze the current inventory levels. If the appro-
priate criteria are met, a purchase order is generated and the product is reordered.

The example represents a linear chain of events, which is relatively easy to
understand and to test. More complex chains can be built that fork to alternatives
based on various conditions and involve more complex alternatives. The UML se-
quence diagram can be used to show more detail on how individual messages are
handled in the proper order. The UML statechart diagrams highlight how a class/
object status varies over time. Details of the UML diagramming techniques are
covered in other books and online tutorials. For now you should be able to draw
simple collaboration diagrams that indicate the primary message events.

low

Order
OrderID
OrderDate
…
ShipOrder
…

Inventory
ItemID
QtyOnHand
…
Subtract
Analyze
…

Purchase
PurchaseID
…
Reorder
…

1.	Subtract(Prod,	
Qty	sold)

1.1.1	Reorder(ItemID,	Qty)

1.1	CheckReorder(ItemID)

Figure 2.30
Collaboration diagram shows inventory system events. An Order shipment triggers
a reduction of inventory quantity on hand which triggers an reorder-point analysis
routine. If necessary, the analysis routine triggers a new purchase order for the
specified item.

75Chapter 2: Database Design

In simpler situations you can keep a list of important events. You can write
events as triggers, which describe the event cause and the corresponding action to
be taken. For example, a business event based on inventory data could be written
as shown in Figure 2.31. Large database systems such as Oracle and SQL Server
support triggers directly. Microsoft Access added a few data triggers with the in-
troduction of the 2010 version. You define the event and attach the code that will
be executed when the condition arises. These triggers can be written in any basic
format (e.g., pseudocode) at the design stage, and later converted to database trig-
gers or program code. UML also provides an Object Constraint Language (OCL)
that you can use to write triggers and other code fragments. It is generic and will
be useful if you are using a tool that can convert the OCL code into the database
you are using.

Large Projects
 How are teams organized on large projects? If you build a small database sys-
tem for yourself or for a single user, you will probably not take the time to draw
diagrams of the entire system. However, you really should provide some docu-
mentation so the next designer who has to modify your work will know what you
did. On the other hand, if you are working on large projects involving many de-
velopers and users, everyone must follow a common design methodology. What is
a large project and what is a small project? There are no fixed rules, but you start
to encounter problems like those listed in Figure 2.32 when several developers
and many users are involved in the project.

Design is harder on large projects.
	 Communication with multiple users.
	 Communication between IT workers.
	 Need to divide project into pieces for teams.
	 Finding data/components.
	 Staff turnover-retraining.
Need to monitor design process.
	 Scheduling.
	 Evaluation.
Build systems that can be modified later.
	 Documentation.
	 Communication/underlying assumptions and model.

Figure 2.32
Development issues on large projects. Large projects require more communication,
adherence to standards, and project monitoring.

ON (QuantityOnHand < 100)
THEN Notify_Purchasing_Manager

Figure 2.31
Sample trigger. List the condition and the action.

76Chapter 2: Database Design

Methodologies for large projects begin with diagrams such as the class and col-
laboration diagrams described in this chapter. Then each company or team adds
details. For example, standards are chosen to specify naming conventions, type of
documentation required, and review procedures.

The challenge of large projects is to split the project into smaller pieces that can
be handled by individual developers. Yet the pieces must fit together at the end.
Project managers also need to plan the project in terms of timing and expenses.
As the project develops, managers can evaluate team members in terms of the
schedule.

Several types of tools can help you design database systems, and they are par-
ticularly useful for large projects. To assist in planning and scheduling, managers
can use project-planning tools (e.g., Microsoft Project) that help create Gantt and
PERT charts to break projects into smaller pieces and highlight the relationships
among the components. Computer-assisted software engineering (CASE) tools
(like IBM’s Rational set) can help teams draw diagrams, enforce standards, and
store all project documentation. Additionally, groupware tools (like SharePoint
or Lotus Notes/Domino) help team members share their work on documents, de-
signs, and programs. These tools annotate changes, record who made the changes
and their comments, and track versions.

As summarized in Figure 2.33, CASE tools perform several useful functions
for developers. In addition to assisting with graphical design, one of the most im-
portant functions of CASE tools is to maintain the data repository for the project.
Every element defined by a developer is stored in the data repository, where it is
shared with other developers. In other words, the data repository is a specialized
database that holds all of the information related to the project’s design. Some
CASE tools can generate databases and applications based on the information
you enter into the CASE project. In addition, reverse-engineering tools can read
files from existing applications and generate the matching design elements. These
CASE tools are available from many companies, including Rational Software,
IBM, Oracle, and Sterling Software. CASE tools can speed the design and de-
velopment process by improving communication among developers and through
generating code. They offer the potential to reduce maintenance time by providing
complete documentation of the system.

Computer-Aided Software Engineering
	 Diagrams (linked)
	 Data dictionary
	 Teamwork
	 Prototyping
	 	 Forms
	 	 Reports
	 	 Sample data
	 Code generation
	 Reverse engineering

Figure 2.33
CASE tool features. CASE tools help create and maintain diagrams. They also
support teamwork and document control. Some can generate code from the designs
or perform reverse engineering.

77Chapter 2: Database Design

Good CASE tools have existed for several years, yet many firms do not use
them, and some that have tried them have failed to realize their potential advan-
tages. Two drawbacks to CASE tools are their complexity and their cost. The cost
issue can be mitigated if the tools can reduce the number of developers needed
on a given project. But their complexity presents a larger hurdle. It can take a de-
veloper several months to learn to use a CASE tool effectively. Fortunately, some
CASE vendors provide discounts to universities to help train students in using
their tools. If you have access to a CASE tool, use it for as many assignments as
possible.

Rolling Thunder Bicycles
How does UML split a big project into packages? The Rolling Thunder Bicycle
case illustrates some of the common associations that arise in business settings.
Because the application was designed for classroom use, many of the business
assumptions were deliberately simplified. The top-level view is shown in Figure
2.34. Loosely based on the activities of the firm, the elements are grouped into
six packages: Sales, Bicycles, Assembly, Employees, Purchasing, and Location.
The packages will not be equal: some contain far more detail than the others. In
particular, the Location and Employee packages currently contain only one or two
classes. They are treated as separate packages because they both interact with sev-
eral classes in multiple packages. Because they deal with independent, self-con-
tained issues, it makes sense to separate them.

Each package contains a set of classes and associations. The Sales package is
described in more detail in Figure 2.35. To minimize complexity, the associations
with other packages are not displayed in this figure. For example, the Customer
and RetailStore classes have an association with the Location::City class. These
relationships will be shown in the Location package. Consequently, the Sales
package is straightforward. Customers place orders for Bicycles. They might use a
RetailStore to help them place the order, but they are not required to do so. Hence
the association from the RetailStore has a (0…1) multiplicity.

Sales Assembly

PurchasingLocation

Bicycle

Employee

Figure 2.34
Rolling Thunder Bicycles—top-level view. The packages are loosely based on
the activities of the firm. The goal is for each package to describe a self-contained
collection of objects that interacts with the other packages.

78Chapter 2: Database Design

Bicycle
SerialNumber
CustomerID
ModelType
PaintID
FrameSize
OrderDate
StartDate
ShipDate
ShipEmployee
FrameAssembler
Painter
Construction
WaterBottleBrazeOn
CustomName
LetterStyleID
StoreID
EmployeeID
TopTube
ChainStay
…

1…1ModelType
ModelType
Description

Paint
PaintID
ColorName
ColorStyle
ColorList
DateIntroduced
DateDiscontinued

LetterStyle
LetterStyleID
Description

BicycleTubeUsed
SerialNumber
TubeID
Quantity

BikeParts
SerialNumber
ComponentID
SubstituteID
Location
Quantity
DateInstalled
EmployeeID

1…*

0…*

1…1

1…1

0…*

0…*

0…*

1…1

1…1

Figure 2.36
Rolling Thunder Bicycles—Bicycle package. Note the composition associations into
the Bicycle class from the BikeTubes and BikeParts classes. To save space, only
some of the Bicycle properties are displayed.

Figure 2.35
Rolling Thunder Bicycles—Sales package. Some associations with other packages
are not shown here. (See the other packages.)

Customer
CustomerID
Phone
FirstName
LastName
Address
ZipCode
CityID
BalanceDue

Customer
Transaction

CustomerID
TransactionDate
EmployeeID
Amount
Description
Reference

Retail	Store
StoreID
StoreName
Phone
ContactFirstName
ContactLastName
Address
ZipCode
CityID

Bicycle::Bicycle

BicycleID
…
CustomerID
StoreID
…

1…1

0…*
1…1

0…*

0…*

0…1

79Chapter 2: Database Design

The Bicycle package contains many of the details that make this company
unique. To save space, only a few of the properties of the Bicycle class are shown
in Figure 2.36. Notice that a bicycle is composed of a set of tubes and a set of
components. Customers can choose the type of material used to create the bicycle
(aluminum, steel, carbon fiber, etc.). They can also select the components (wheels,
crank, pedals, etc.) that make up the bicycle. Both of these classes have a com-
position association with the Bicycle class. The Bicycle class is one of the most
important classes for this firm. In conjunction with the BicycleTubeUsed and
BikeParts classes, it completely defines each bicycle. It also contains information
about which employees worked on the bicycle. This latter decision was a design
simplification choice. Another alternative would be to move the ShipEmployee,
FrameAssembler, and other employee properties to a new class within the Assem-
bly package.

As shown in Figure 2.37, the Assembly package contains more information
about the various components and tube materials that make up a bicycle. In prac-
tice, the Assembly package also contains several important events. As the bicycle
is assembled, data is entered that specifies who did the work and when it was
finished. This data is currently stored in the Bicycle class within the Bicycle pack-
age. A collaboration diagram or a sequence diagram would have to be created to
show the details of the various events within the Assembly package. For now,
the classes and associations are more important, so these other diagrams are not
shown here.

All component parts are purchased from other manufacturers (suppliers). The
Purchase package in Figure 2.38 is a fairly traditional representation of this activ-
ity. Note that each purchase requires the use of two classes: PurchaseOrder and
PurchaseItem. The PurchaseOrder is the main class that contains data about the

Bicycle::BikeParts
SerialNumber
ComponentID
...

1…1

Component
ComponentID
ManufacturerID
ProductNumber
Road
Category
Length
Height
Width
Description
ListPrice
EstimatedCost
QuantityOnHand

ComponentName
ComponentName
AssemblyOrder
Description

GroupComponents
GroupID
ComponentID

Groupo
GroupID
GroupName
BikeType

Bicycle::
BicycleTubeUsed
SerialNumber
TubeID
Quantity

TubeMaterial
TubeID
Material
Description
Diameter
…

0…*

1…1

0…*

1…1

0…*

1…1

0…*

0…*

1…1

Figure 2.37
Rolling Thunder Bicycles—Assembly package. Several events occur during
assembly, but they cannot be shown on this diagram. As the bicycle is assembled,
additional data is entered into the Bicycle table within the Bicycle package.

80Chapter 2: Database Design

order itself, including the date, the manufacturer, and the employee who placed
the order. The PurchaseItem class contains the detail list of items that are being
ordered. This class is specifically included to avoid a many-to-many association
between the PurchaseOrder and Component classes.

Observe from the business rules that a ManufacturerID must be included on
the PurchaseOrder. It is dangerous to issue a purchase order without knowing the
identity of the manufacturer. Chapter 10 explains how security controls can be im-
posed to provide even more safety for this crucial aspect of the business.

An additional class (ManufacturerTransactions) is used as a transaction log to
record each purchase. It is also used to record payments to the manufacturers.
On the purchase side, it represents a slight duplication of data (AmountDue is in
both the PurchaseOrder and Transaction classes). However, it is a relatively com-
mon approach to building an accounting system. Traditional accounting methods
rely on having all related transaction data in one location. In any case the class is
needed to record payments to the manufacturers, so the amount of duplicated data
is relatively minor.

The Location package in Figure 2.39 was created to centralize the data related
to addresses and cities. Several classes have address properties. In older systems
it was often easier to simply duplicate the data and store the city, state, and ZIP
code in every class that referred to locations. Today, however, it is relatively easy
to obtain useful information about cities and store it in a centralized table. This
approach improves data entry, both in speed and data integrity. Clerks can simply
choose a location from a list. Data is always entered consistently. For example,
you do not have to worry about abbreviations for cities. If telephone area codes
or ZIP codes are changed, you need to change them in only one table. You can
also store additional information that will be useful to managers. For example, the

PurchaseOrder
PurchaseID
EmployeeID
ManufacturerID
TotalList
ShippingCost
Discount
OrderDate
ReceiveDate
AmountDue

1…1

PurchaseItem
PurchaseID
ComponentID
PricePaid
Quantity
QuantityReceived

Manufacturer
ManufacturerID
ManufacturerName
ContactName
Phone
Address
ZipCode
CityID
BalanceDue

ManufacturerTrans
ManufacturerID
TransactionDate
Reference
EmployeeID
Amount
Description

Assembly::
Component

ComponentID
ManufacturerID
ProductNumber

0…*

1…1

1…1

1…1

0…*

1…1

1…*

0…*

0…*

Figure 2.38
Rolling Thunder Bicycles—Purchasing package. Note the use of the Transaction
class to store all related financial data for the manufacturers in one location.

81Chapter 2: Database Design

population and geographical locations can be used to analyze sales data and direct
marketing campaigns.

 The Employee package is treated separately because it interacts with so many
of the other packages. The Employee properties shown in Figure 2.40 are straight-
forward. Notice the reflexive association that denotes the management relation-
ship. For the moment there is only one class within the Employee package. In
actual practice this is where you would place the typical human resources data and
associations. For instance, you would want to track employee evaluations, assign-
ments, and promotions over time. Additional classes would generally be related to
benefits such as vacation time, personal days, and insurance choices.

A detailed, combined class diagram for Rolling Thunder Bicycles is shown in
Figure 2.41. Some associations are not included—partly to save space. A more
important reason is that all of the drawn associations are enforced by Microsoft
Access. For example, once you define the association from Employee to Bicycle,
Access will only allow you to enter an EmployeeID into the Bicycle class that al-
ready exists within the Employee class. This enforcement makes sense for the per-
son taking the order. Indeed, financial associations should be defined this strongly.
On the other hand, the company may hire temporary workers for painting and
frame assembly. In these cases the managers may not want to record the exact
person who painted a frame, so the association from Employee to Painter in the
Bicycle table is relaxed.

Application Design
What is an application? The concept of classes and attributes seems simple at
first, but can quickly become complicated. Practice and experience make the pro-
cess easier. For now, learn to focus on the most important objects in a given proj-
ect. It is often easiest to start with one section of the problem, define the basic

City
CityID
ZipCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

Sales::
Customer

CustomerID
…
CityID

Sales::
RetailStore

StoreID
…
CityID

Employee::
Employee

EmployeeID
…
CityID

Purchasing::
Manufacturer

ManufacturerID
…
CityID

0…*

1…1

1…1

1…1

1…1

0…*
0…*

StateTaxRate
State
TaxRate

1…1

0…1

Figure 2.39
Rolling Thunder Bicycles—Location package. By centralizing the data related to
cities, you speed clerical tasks and improve the quality of the data. You can also store
additional information about the location that might be useful to managers.

82Chapter 2: Database Design

elements, add detail, then expand into other sections. As you are designing the
project, remember that each class becomes a table in the database, where each at-
tribute is a column, and each row represents one specific object.

You should also begin thinking about application design in terms of the forms
or screens that users will see. Consider the simple form in Figure 2.42. On paper,
this form would simply have blanks for each of the items to be entered. Eventu-
ally, you could build the same form with blanks as a database form. In this case,
you might think only one table is associated with this form; however, you need to
think about the potential problems. With blank spaces on the form, people can en-
ter any data they want. For example, do users really know all of the breed types?
Or will they sometimes leave it blank, fill in abbreviations, or misspell words?
All of these choices would cause problems with your database. Instead, it will be
better to give them a selection box, where users simply pick the appropriate item
from a list. But that means you will need another table that contains a list of pos-
sible breeds. It also means that you will have to establish a relationship between
the Breed table and the Animal table. In turn, this relationship affects the way the
application will be used. For example, someone must enter all of the predefined
names into the Breed table before the Animal table can even be used.

At this point in the development, you should have talked with the users and
collected any forms and reports they want. You should be able to sketch an initial
class diagram that shows the main business objects and how they relate to each
other, including the multiplicity of the association. You should also have a good
idea about what attributes will be primary keys, or keys that you will need to cre-
ate for some tables. You also need to specify the data domains of each property.

Corner Med
What process is followed when starting a project? Before you can design tables
and relationships, you need to talk with the users and determine what data needs
to be collected. It is easier to understand the users if you have some knowledge of

Employee
EmployeeID
TaxpayerID
LastName
FirstName
HomePhone
Address
ZipCode
CityID
DateHired
DateReleased
CurrentManager
SalaryGrade
Salary
Title
WorkArea

Bicycle::
Bicycle

SerialNumber
…
EmployeeID
ShipEmployee
FrameAssembler
Painter

Bicycle::
BikeParts

SerialNumber
ComponentID
…
EmployeeID

Purchasing::
PurchaseOrder
PurchaseID
…
EmployeeID

1…1

0…*
0…*
0…*
0…*

0…*

1…1 1…1

0…*

manager

m
an
ag
es


worker0…*

0…1

Figure 2.40
Rolling Thunder Bicycles—Employee package. Note the reflexive association to
indicate managers.

83Chapter 2: Database Design

Figure 2.41
Rolling Thunder detailed class diagram. The detail class diagram is a nice reference tool for
understanding the organization, but for many organizations this diagram will be too large to
display at this level of detail.

Cu
st

om
er

ID
Ph

on
e

Fi
rs

tN
am

e
La

st
N

am
e

Ge
nd

er
Ad

dr
es

s
ZI

PC
od

e
Ci

ty
ID

Ba
la

nc
eD

ue

Cu
st

om
er

Se
ria

lN
um

be
r

Cu
st

om
er

ID
M

od
el

Ty
pe

Pa
in

tID
Fr

am
eS

ize
O

rd
er

Da
te

St
ar

tD
at

e
Sh

ip
Da

te
Sh

ip
Em

pl
oy

ee
Fr

am
eA

ss
em

bl
er

Pa
in

te
r

Co
ns

tr
uc

tio
n

W
at

er
Bo

tt
le

Br
az

eO
n

Cu
st

om
er

N
am

e
Le

tt
er

St
yl

eI
D

St
or

eI
D

Em
pl

oy
ee

ID
To

pT
ub

e
Ch

ai
nS

ta
y

He
ad

Tu
be

An
gl

e
Se

at
Tu

be
An

gl
e

Li
st

Pr
ic

e
Sa

le
Pr

ic
e

Sa
le

sT
ax

Sa
le

St
at

e
Sh

ip
Pr

ic
e

Fr
am

eP
ric

e
Co

m
po

ne
nt

Li
st

Bi
cy

cl
e

Cu
st

om
er

ID
Tr

an
sa

ct
io

nD
at

e
Em

pl
oy

ee
ID

Am
ou

nt
De

sc
rip

tio
n

Re
fe

re
nc

e

Cu
st

om
er

Tr
an

s

St
or

eI
D

St
or

eN
am

e
Ph

on
e

Co
nt

ac
tF

irs
tN

am
e

Co
nt

ac
tL

as
tN

am
e

Ad
dr

es
s

ZI
PC

od
e

Ci
ty

IDRe
ta

ilS
to

re

St
at

e
Ta

xR
at

e

St
at

eT
ax

Ra
te

M
od

el
Ty

pe
De

sc
rip

tio
n

Co
m

po
ne

nt
ID

M
od

el
Ty

pe

Pa
in

tID
Co

lo
rN

am
e

Co
lo

rS
ty

le
Co

lo
rL

ist
Da

te
In

tr
od

uc
ed

Da
te

Di
sc

on
tin

ue
d

Pa
in

t

Em
pl

oy
ee

ID
Ta

xp
ay

er
ID

La
st

N
am

e
Fi

rs
tN

am
e

Ho
m

eP
ho

ne
Ad

dr
es

s
ZI

PC
od

e
Ci

ty
ID

Da
te

Hi
re

d
Da

te
Re

le
as

ed
Cu

rr
en

tM
an

ag
er

Sa
la

ry
Gr

ad
e

Sa
la

ry
Ti

tle
W

or
kA

re
a

Em
pl

oy
ee

W
or

kA
re

a
De

sc
rip

tio
n

W
or

kA
re

a

Ci
ty

ID
ZI

PC
od

e
Ci

ty
St

at
e

Ar
ea

Co
de

Po
pu

la
tio

n2
00

0
Po

pu
la

tio
n1

99
0

Po
pu

la
tio

n1
98

0
Co

un
tr

y
La

tit
ud

e
Lo

ng
itu

de
Se

le
ct

io
nC

DF
FI

PS
In

co
m

e2
00

4
Di

vi
sio

n
St

at
eC

od
e

M
SA

CM
SA

M
AS

C
CM

SA
<m

or
e>

Ci
ty

Se
ria

lN
um

be
r

Tu
be

ID
Q

ua
nt

ity

Bi
cy

cl
eT

ub
eU

sa
e

M
od

el
Ty

pe
M

si
ze

To
pT

ub
e

Ch
ai

nS
ta

y
To

ta
lL

en
gt

h
Gr

ou
nd

Cl
ea

ra
nc

e
He

ad
Tu

be
An

gl
e

Se
at

Tu
be

An
gl

e

M
od

el
Ty

pe

Le
tt

er
St

yl
eI

D
De

sc
rip

tio
n

Le
tt

er
St

yl
e

Pu
rc

ha
se

ID
Em

pl
oy

ee
ID

M
an

uf
ac

tu
re

rID
To

ta
lL

ist
Sh

ip
pi

ng
Co

st
Di

sc
ou

nt
O

rd
er

Da
te

Re
ce

iv
eD

at
e

Am
ou

nt
Du

e

Pu
rc

ha
se

O
rd

er

M
an

uf
ac

tu
re

rID
M

an
uf

ac
tu

re
rN

am
e

Co
nt

ac
tN

am
e

Ph
on

e
Ad

dr
es

s
ZI

PC
od

e
Ci

ty
ID

Ba
la

nc
eD

ue

M
an

uf
ac

tu
re

r

M
an

uf
ac

tu
re

rID
Tr

an
sa

ct
io

nD
at

e
Em

pl
oy

ee
ID

Am
ou

nt
De

sc
rip

tio
n

Re
fe

re
nc

e

M
an

uf
ac

tu
re

rT
ra

ns

Pu
rc

ha
se

ID
Co

m
po

ne
nt

ID
Pr

ic
eP

ai
d

Q
ua

nt
ity

Q
ua

nt
ity

Re
ce

iv
ed

Pu
rc

ha
se

Ite
m

Se
ria

lN
um

be
r

Co
m

po
ne

nt
ID

Su
bs

tit
ut

eI
D

Lo
ca

tio
n

Q
ua

nt
ity

Da
te

In
st

al
le

d
Em

pl
oy

ee
ID

Bi
ke

Pa
rt

s

Se
ria

lN
um

be
r

Tu
be

N
am

e
Tu

be
ID

Le
ng

th

Bi
ke

Tu
be

s

Co
m

po
ne

nt
G

ro
up

ID
Gr

ou
pN

am
e

Bi
ke

Ty
pe

Ye
ar

En
dY

ea
r

W
ei

gh
tGr

ou
po

Co
m

po
ne

nt
ID

M
an

uf
ac

tu
re

rID
Pr

od
uc

tN
um

be
r

Ro
ad

Ca
te

go
ry

Le
ng

th
He

ig
ht

W
id

th
W

ei
gh

t
Ye

ar
En

dY
ea

r
De

sc
rip

tio
n

Li
st

Pr
ic

e
Es

tim
at

ed
Co

st
Q

ua
nt

ity
O

nH
an

d

Co
m

po
ne

nt

Tu
be

ID
M

at
er

ia
l

De
sc

rip
tio

n
Di

am
et

er
Th

ic
kn

es
s

Ro
un

dn
es

s
W

ei
gh

t
St

iff
ne

ss
Li

st
Pr

ic
e

Co
ns

tr
uc

tio
n

Is
Ac

tiv
e

Tu
be

M
at

er
ia

l

G
ro

up
ID

Co
m

po
ne

nt
ID

Gr
ou

pC
om

po
ne

nt

Co
m

po
ne

nt
N

am
e

As
se

m
bl

yO
rd

er
De

sc
rip

tio
n

Co
m

po
ne

nt
N

am
e

84Chapter 2: Database Design

their field. You probably do not need a medical degree to build a business system
for physicians; however, you will have to learn some of the basic terminology to
understand the various data relationships. This is a good place to point out that
the sample Corner Med database is merely a start of an application. None of the
components should be used in an actual medical situation. It is designed purely as
a demonstration project to highlight some of the issues in database design.

In a family-practice physician office, the patient visit is going to be a key ele-
ment in any business administration system. Figure 2.43 shows a simple version
of a form to record data about a patient visit. The first thing to note is that the main
form contains two subforms. Note that each subform represents repeating data or
a one-to-many relationship. A useful question to ask the managers at this point
would be to confirm the insurance data. In particular, can patients have more than
one insurance plan? If this data is important, the form would have to be modified
to add a repeating section for insurance data. It might be tempting to argue that
almost all data could potentially be repeating, so perhaps there should be dozens
of repeating sections on the form. Given the state of health insurance in the U.S.,
it is possible that you will need to add this repeating section. However, be cautious
with other items. One-to-many relationships add flexibility to collecting and stor-
ing data, but they make the data form considerably more complex. If patients rare-
ly have more than one insurance provider, it will be cumbersome for the clerks to
deal with the extra repeating section when it is rarely used. On the other hand, the
patient diagnoses and treatments sections are required because most patient visits
will require multiple entries. The patient visit form also illustrates one of the key
steps in starting a database project: Collect input forms and reports from users so
you can identify the data that needs to be stored.

Figure 2.42
Basic Animal form. Initially this form seems to require one table (Animal). But
to minimize data-entry errors, it really needs a table to hold data for Category and
Breed, which can be entered via a selection box.

85Chapter 2: Database Design

When you look at the patient visit form, you should start thinking about the
tables that will be needed to hold the data. At the start, you should quickly identify
three starting tables: (1) PatientVisit, a table that represents the form itself, (2)
PatientDiagnoses, a table that arises because of the first repeating section, and (3)
PatientProcedures, a table representing the second repeating section.

When you identify a new table, you should also think about the possible key
columns. The PatientVisit table will most likely need a generated key—a value
that the DBMS will create whenever a new visit is added to the database. Call the
column VisitID. It is the best way to guarantee a unique value for every visit. A
generated VisitID value also makes it easier to identify the keys for the repeating
sections. Each of these tables will need two key columns. For instance, VisitID,
ICD10Diagnosis will be the two key columns for the PatientDiagnoses table. It is
easy to verify that both columns need to be keyed because on a specific visit, a pa-
tient could be diagnosed with many different problems, requiring ICD10Diagno-
sis to be part of the key. In reverse, a specific diagnosis could be applied to many
different visits (either for one patient or different patients), requiring VisitID to be
keyed. The same analysis reveals the two keys required for the PatientProcedures
table.

Figure 2.43
Patient Visit form. This form has two repeating sections: One for diagnoses and one
for treatment. Many more details can be added but it is possible to start with these
key data elements.

86Chapter 2: Database Design

The next step is to ask where the ICD10Diagnosis and ICD10Procedure col-
umns will be defined. These are slightly trickier in the context of the medical
world. Ideally, you would create a table of standard codes for each of these values.
The best approach would be to purchase a complete list of codes. For example,
you could buy the current ICD10 codes from the United Nation’s World Health
Organization. Enabling physicians to pull the codes from a standard list will re-
duce errors. However, it would also require physicians to become familiar with
the codes and to take the time to read through the list to find the specific code
for every diagnosis and procedure. In practice, large healthcare institutions find it
more efficient to have physicians enter written descriptions of diagnoses and pro-
cedures and hire medical coders to identify the specific codes later. This decision
is an example of a complex business problem that you will have to solve early in
the design process. In many cases, you will have to outline the options and present
them to senior management for the final decision.

Figure 2.44 shows the basic tables used for the Corner Med case. In a real case,
all of these tables will contain more data columns. However, the strength of the re-
lational data model is that the basic structure will remain the same. It is relatively
easy to add more columns to each table later. Notice that data for all employees is
handled in a single class. That is, physician, nurse, and clerical data are all stored
in the same table. The employees are identified by EmployeeCategory which is
stored in a lookup list. However, you might want to think about this decision. The
company might want to keep considerably more data for physicians. This data
could be highly specialized, such as license number and date. If the amount of
data gets large, it will be more efficient to store data for physicians in a table sepa-
rate from the other employees. Otherwise, you will waste space and complicate
the data-entry form for employees where you do not need this extra data.

Figure 2.44
Corner Med basic tables. Ultimately, all of these tables will contain more data
columns.

PatientID
LastName
FirstName
DateOfBirth
Gender
Telephone
Address
City
State
ZIPCode
Race
TobaccoUse

Patient

SeqNo
LabelCode
ProdCode
Strength
Units
Rx_OTC
TradeName

DrugListings

VisitID
PatientID
VisitDate
InsuranceCompany
InsuranceGroupCode
InsuranceMemberCode
PatientAmountPaid
DateBillsubmitted
DateInsurancePaid
AmountInsurancePaid
Diastolic
Systolic

Visit VisitID
ICD10CM
ICD9Diagnosis
Comments

VisitDiagnoses

VisitProcedureID
VisitID
ICD10PCS
Comment
EmployeeID
AmountCharged
ICD9Procedure

VisitProcedures

VisitID
DrugSeqNo
DrugCode
Comments

VisitMedications

ICD10CM
Description

ICD10DiagnosisCodes

ICD10PCS
Description
BaseCost
PhysicianRole
TechnicianRole
PhysicianAssistant

ICD10ProcedureCodes

EmployeeID
LastName
FirstName
EmployeeCategory
DateHired
DateLeft
EmergencyPhone

Employee EmployeeID
VacationStart
VacationEnd

EmployeeVacation

EmployeeCategory

EmployeeCategory

1
*

1

*

*

*

1

1

1

1

*

*

*

*

*

1

*

1

87Chapter 2: Database Design

By now, you should be able to make a first pass at creating a class diagram for
a specific problem. You should also recognize that the final structure of the dia-
gram depends on the business rules and assumptions. You can often resolve these
questions by talking with users, but some decisions have to be passed up to senior
management.

Summary
Managing projects to build useful applications and control costs is an important
task. The primary steps in project management are the feasibility study, systems
analysis, systems design, and implementation. Although these steps can be com-
pressed, they cannot be skipped.

The primary objective is to design an application that provides the benefits
needed by the users. System models are created to illustrate the system. These
models are used to communicate with users, communicate with other developers,
and help us remember the details of the system. Because defining data is a crucial
step in developing a database application, the class diagram is a popular model.

The class diagram is created by identifying the primary entities in the system.
Entities are defined by classes, which are identified by name and defined by the
properties of each entity. Classes can also have functions that they perform.

Associations among classes are important elements of the business design be-
cause they identify the business rules. Associations are displayed as connecting
lines on the class diagram. You should document the associations by providing
names where appropriate, and by identifying the multiplicity of the relationship.
You should be careful to identify special associations, such as aggregation, com-
position, generalization, and reflexive relationships.

Designers also need to identify the primary events or triggers that the appli-
cation will need. There are three types of events: business events, data change
events, and user events. Events can be described in terms of triggers that contain a
condition and an action. Complex event chains can be shown on sequence or col-
laboration diagrams.

Designs generally go through several stages of revision, with each stage be-
coming more detailed and more accurate. A useful approach is to start with the big
picture and make sure that your design identifies the primary components that will
be needed in the system. Packages can be defined to group elements together to
hide details. Detail items are then added in supporting diagrams for each package
in the main system diagram.

Models and designs are particularly useful on large projects. The models pro-
vide a communication mechanism for the designers, programmers, and users.
CASE tools are helpful in creating, modifying, and sharing the design models. In
addition to the diagrams, the CASE repository will maintain all of the definitions,
descriptions, and comments needed to build the final application.

A Developer’s View
Like any developer, Miranda needs a method to write down the system goals and
details. The feasibility study documents the goals and provides a rough estimate
of the costs and benefits. The class diagram identifies the main entities and shows
how they are related. The class diagram, along with notes in the data dictionary,
records the business rules. For your class project, you should study the case.
Then create a feasibility study and an initial class diagram.

88Chapter 2: Database Design

Key Terms

Review Questions
1.	 How do you identify user requirements?
2.	 What is the purpose of a class diagram (or entity-relationship diagram)?
3.	 What is a reflexive association and how is it shown on a class diagram?
4.	 What is multiplicity and how is it shown on a class diagram?
5.	 What are the primary data types used in business applications?
6.	 How is inheritance shown in a class diagram?
7.	 How do events and triggers relate to objects or entities?
8.	 What problems are complicated with large projects?
9.	 How can computer-aided software engineering tools help on large projects?
10.	 What is an application?

aggregation
association
association role
attribute
binary large object (BLOB)
class
class diagram
class hierarchy
collaboration diagram
composition
data normalization
data type
derived class
encapsulation
entity

generalization
inheritance
method
multiplicity
n-ary association
null
polymorphism
primary key
property
rapid application development (RAD)
reflexive association
relational database
relationship
table
Unified Modeling Language (UML)

89Chapter 2: Database Design

Exercises
1. 	 Most medical practices use turn-key systems to handle billing data and basic

electronic medical records. But a local physician wants a system to help him
perform deeper statistical analyses on basic patient data. Specifically, he
wants to track basic test results for patients and wants to compare them by
families. For example, he wants to see if families where parents have high
blood pressure also affect the blood pressure of the children and at what age
those values change. Initially, he just wants to track basic medical values
including heart rate, pressure, and basic blood test. Notes:

Patient Last name, First Name
Date of Birth
Gender
Race
Tobacco y/n	 	 Alcohol y/n
Marital Status
Phone, e-mail
Address, City, State, ZIP

Father:

Mother:

Family history notes,
particularly if data is not
available.

Test date:
Last meal time:
Test Meas. Value Low High Comments
Albumin g/dL 3.9 5.0
Alkaline phosphatase IU/L 44 147
ALT IU/L 8 37
AST IU/L 10 34
BUN mg/dL 7 20
Calcium mg/dL 8.5 10.9
Chloride mmol/L 96 106
CO2 mmol/L 20 29
Creatinine mg/dL 0.8 1.4
Glucose mg/dL 100
Potassium mEq/L 3.7 5.2
Sodium mEg/L 136 144
Total bilirubin mg/dL 0.2 1.9
Total protein g/dL 6.3 7.9
Blood Pressure-systolic mm Hg 90 140
Pressure-diastolic mm Hg 60 90
Heart rate bpm 50 90

90Chapter 2: Database Design

2. 	 A local store that sells household appliances wants a database to track special
orders. Most of the items ordered are large and from high-end vendors so
they are too expensive to stock in the display room. Also, customers tend
to order them when they are remodeling their houses so they do not want
the items immediately. Instead, they need to be ordered and scheduled for
delivery on a specified date. Of course, construction delays are common
so the managers also need the ability to delay delivery by a few days or
weeks when necessary. Most of the items are ordered directly from the
manufacturers and they are good at scheduling deliveries, but sometimes
highly-customized items need to be tracked down at other stores across the
nation.

Customer Name
Address (delivery location)
City, State, ZIP

Salesperson	 	 Deposit Amount: $

Order Date
Desired Delivery Date
Comments

Item Manufac/Loc. ModelID Color Descrip/Size Price Actual Deliv.

Delivery comments and changes:
Contact Date Item (or All) Employee Comments New Deliv. Date

	 If the item is not available from the manufacturer, the location is specified
in terms of the store and contact information. Typically, it is ordered
immediately and held in storage until needed; because it is too hard to find a
new version so safer to buy it now.

91Chapter 2: Database Design

3.	 A friend of yours lives in a town with many older houses and he repairs
antique lights for homeowners. Many of the lights use crystals and colored
panels that were designed by artists. Fortunately, most of the electrical
components are relatively standard and compatible with today’s parts. The
most common problems involve the wiring, because old wires used paper
and plastic insulation that tends to crack and disintegrate over time. He often
has to rewire the entire light and he usually replaces the bulb sockets at
the same time. When possible, he takes down the lights and brings them to
his shop, other times he has to set up appointments to do the work in place
because the light cannot be removed easily. He needs an application to track
appointments, the work done, and a basic billing system that includes his
time and the parts used.

Contact Last Name, First Name
Phone
Address
City, State, ZIP

Contact Date
Referred by:

Date Paid:

Description of problem
Description of light, style, est. year
In-place or shop

Date Work Performed Hours

Part No. Description Quantity Cost Source

Total Hours: ______
Total Parts: ______
Amount Due: ______

Rate: _______
Value: _______

92Chapter 2: Database Design

4.	 A local day spa wants you to build an application that can be used to track
services provided by the various employees. You do not need to handle
reservations and scheduling—which are currently handled by an online
provider based primarily on number of slots available during the day.
Instead, you want to focus on billing and payments for an application that
will be used when clients arrive. In the past, a paper card would be created
for guests and services listed on the cards. Payment methods often include
gift cards. Staff members often write up comments regarding treatments of
clients so they can refer to them when the client returns in the future. Most
treatments have a set amount of time, such as 50 minutes for a massage. At
the end of the visit, clients are asked to evaluate the staff members in terms
of the service quality, knowledge, and friendliness. For most people, the
owner simply talks to the guests and then fills out a form later. In a modern
twist, the staff members are also asked to rate the clients—largely in terms of
dealing with special requests; which might lead to changes in the treatment
offerings.

Guest Name
Cell phone, Address, City, State, ZIP

Health issues or concerns

Date

Payment method

Room & Time Treatment Staff
Specialty, Phone

Staff
comments

Amount &
Tip

Subtotal
Tax
Total

Guest, Gender, Approx. Age	 	 	 	 Comments
Facility comments/overall

Staff member Treatment Quality Knowledge Friendliness Staff rate Guest

Suggested changes in treatments

Treatment Change Est. Time

93Chapter 2: Database Design

5.	 A small company makes winter gloves for men and women. Originally, the
gloves were woven wool, but recently the company has also added leather
gloves and might consider synthetic materials in the future. The woolen
gloves come in a variety of colors. Sizes are typically small, medium, and
large which are slightly different for men and women (largely in terms
of finger length). The factory also produces different styles which tend to
be variations in length of the glove, cuffs, or designs in the stitching or
emblems. The company needs a database to track production and shipments.

	 Production runs emphasize a single style, material, and size. Changes in
yarn or material color do not require reconfiguring the machine so colors are
tracked within the same production run. The IDs from the input material are
tracked and an employee inspects the output batch and adds any comments.

Production Run ID
Machine ID
Material
Glove Style
Men/Women
Size

Date
Start Time
Employee Last/First Name
Job Title

InspectorID

Color Quantity Made Material Batch Qty Rejected Comments

Order ID
Customer/Store
Contact Person
Address
City, State, ZIP

Order Date
Ship Date

ItemID Description Size Color Style Gender Quantity Sale Price

94Chapter 2: Database Design

6.	 A start-up company is assembling customized stereo ear-buds. Instead of
shipping dozens of different sizes and shapes of in-ear pieces, the company
distributes a clear piece of plastic with various marks. Customers hold the
piece on their ear and take a photograph. A system at the company reads the
markings and determines the best ear-piece for each customer. The assembly
team then builds the custom ear-buds for the customer allowing them to set
additional specifications including colors, logos, number of “armatures”
or speaker cones, and control switches for android or Apple devices. The
company needs a database to track orders, assembly, and shipping.

Customer Last name, First name
Phone, e-mail
Address
City, State, Postal Code
Country

Referrer/Source

Measure Photo
Horizontal Distance
Vertical Distance
Depth

Left Ear Right Ear

Color
Wire color/type
Logo
Armatures
Apple/Android

Assembly Date
Work station #
Employee Name, Date Hired, Title

Customer
Order ID

Comments/
Changes

Item ID Quantity Comments Start Time
End Time

Inspector ID, Supervisor

Test Value Pass/Fail
Audio low
Audio high
Stretch

Inspection outcome:

95Chapter 2: Database Design

7.	 A rich uncle owns about a dozen classic automobiles. He keeps them in
several garages around town and actually drives them for different events.
At a recent family holiday get-together, he mentioned that he struggles to
remember the maintenance schedules for all of the vehicles. He has records
for all of the service work, including oil changes, tune-ups, and other repairs.
But currently, they are just paper receipts and he needs a way to track and
schedule the maintenance so that any of the cars will be available for use
when he wants it. He also would like to plan his usage so that he doesn’t have
to get all of the cars serviced at the same time. You suggested that it would be
a good application for a database. Actually, you are really hoping he will let
you borrow one of them for a date; but first you have to design the database.

Car Make, Model, Year, Color
VIN

Storage Location, Name, Address
Size, Heat/Cool
Monthly Cost

Date Acquired
Exterior Condition
Interior Condition
Amount Paid
Source

Manufacturer Service Intervals
Miles Interval
3000

Oil change
Grease frame fittings
Tire pressure

15000 Replace spark plugs,…, Tune-up
Rotate tires
Grease door fittings

Actual Service Records
Miles Date Location Service Comments Cost

Labor Parts

96Chapter 2: Database Design

8.	 Experience exercise: Talk to a friend, relative, or local manager to identify a
basic job and create a class diagram for the problem.

9.	 Identify the typical relationships between the following entities. Write down
any assumptions or comments that affect your decision. Be sure to include
minimum and maximum values. Use the Internet to look up terms and
examples.

a)	 Company, CEO
b)	 Restaurant, Cook
c)	 TV Show, commercial ad
d)	 E-mail address, computer user
e)	 Item, List price
f)	 Car, Car wash
g)	 House, Painter
h)	 Dog, Owner
i)	 Manager, Worker
j)	 Doctor, Patient

10.	 For each of the entities in the following list (left side), identify whether each
of the items on the right should be an attribute of that entity or a separate
entity.

a)	 Employee	 Name, Date Hired, Manager, Spouse, Job
b)	 Factory	 Manager, Address, Supplier, Machine, Size
c)	 Boat	 Dock, Length, Passenger, Captain, Weight
d)	 Dentist	 Patient, Graduate School, Emergency Phone, Drill
e)	 Library	 Book, Librarian, Number of Books, Visitor

Sally’s Pet Store
11.	 Do some initial research on retail sales and pet stores. Identify the primary

benefits you expect to gain from a transaction processing system for Sally’s
Pet Store. Estimate the time and costs required to design and build the
database application.

12.	 Extend the class diagram by adding comments about each animal, beginning
with adoption group remarks and including comments by employees and
customers.

13.	 Write classes for the pet store case to track special sales events. Every couple
of months the store has clearance sales and places specific items on sale.
Eventually, Sally wants to evaluate the sales data to see how customers
respond to the reduced prices.

97Chapter 2: Database Design

14.	 Extend the pet store class diagram to include scheduling of appointments for
pet grooming.

Rolling Thunder Bicycles
15.	 The Bicycle table includes entries for several employees who worked on the

bike. The advantage to this approach is that it leaves all the work in one table
and identifies the work performed, making it easier to enter the data. The
drawback is that it is more difficult to query (and would require several links
to the Employee table). Redesign the table to eliminate these problems.

16.	 Rolling Thunder Bicycles is thinking about opening a chain of bicycle stores.
Explain how the database would have to be altered to accommodate this
change. Add the proposed components to the class diagram.

17.	 If Rolling Thunder Bicycles wants to add a Web site to sell bicycles over the
Internet, what additional data needs to be collected? Extend the class diagram
to handle this additional data.

Corner Med
18.	 One of the first things Corner Med needs for the database is the ability to

enter multiple numbers for the physicians, such as pager and cell phone. Add
the necessary class.

19.	 Corner Med needs more information about insurance companies. Each
company requires claims to be submitted to a specific location. Today, much
of the data can be submitted electronically, so there will be an electronic
address as well as a physical address. There will also be an account number
and password, as well as a phone number and contact person. Add these
elements to the class diagram.

20.	 In theory, prescriptions could be handled as ICD10 procedures. However,
because of various drug laws, including pharmacy verification and tracking
needs, it is easier to store the data separately. Add the class(es) to the diagram
to handle drug prescriptions. Be sure to include the drug name, the dosage,
instructions for taking the drug, and the time period. Note that you do not
need to add a Drug table because it would be too large and change too often;
although the physicians might want to add the Physician’s Desk Reference
(PDR) on CD later.

Corner
Med

Corner
Med

98Chapter 2: Database Design

Web Site References

http://www.rational.com/uml/ The primary site for UML documentation
and examples.

http://www.iconixsw.com UML documentation and comments.
http://docs.oracle.com/cd/B28359_01/server.111/
b28318/datatype.htm

Oracle data type description.

http://msdn.microsoft.com/en-us/library/
ms187752(SQL.90).aspx

SQL Server data types.

http://msdn.microsoft.com/en-us/library/ms130214.
aspx

SQL Server Books Online documentation.

http://JerryPost.com/DBDesign Database design system.

Additional Reading
Codd, E. F., “A Relational Model of Data for Large Shared Data Banks,”

Communications of the ACM, 13 no. 6, (1970), pp. 377-387. [The paper that
initially described the relational model.]

Constantine, L., “Under Pressure,” Software Development, October 1995, pp.
111-112. [The importance of design.]

Constantine, L., “Re: Architecture,” Software Development, January 1996, pp.
87-88. [Update on a design competition.]

McConnell, S., Rapid Development: Taming Wild Software Schedules,
Redmond: Microsoft Press, 1996. [An excellent introduction to building
systems, with lots of details and examples.]

Penker, M. and H. Eriksson, Business Modeling with UML: Business Patterns at
Work, New York: John Wiley & Sons, 2000. [Detailed application of UML to
business applications.]

Silverston, Len, The Data Model Resource Book, Vol 1 and 2, 2001, New
York: John Wiley & Sons. [A collection of sample models for a variety of
businesses.]

http://www.rational.com/uml/
http://www.iconixsw.com
http://JerryPost.com/DBDesign

99Chapter 2: Database Design

 Appendix: Database Design System
Many students find database design to be challenging to learn. The basic concept
seems straightforward: define a table that represents one basic entity with columns
that describe the properties to hold the necessary data. For example, a Customer
table will have columns for CustomerID, LastName, FirstName, and so on. But it
is often difficult to decide exactly which columns belong in a table. It is also dif-
ficult to identify the key columns, which are used to establish relationships among
tables. The design is complicated by the fact that the tables reflect the underlying
business rules, so students must also understand the business operations and con-
straints in order to create a design that provides the functionality needed by the
business.

In addition to reading Chapters 2 and 3 closely, one of the most important steps
in learning database design is to work as many problems as possible. The catch is
that students also need feedback to identify problems and improve the design. An
online expert system is available to instructors and students to provide this im-
mediate feedback. This online system is available at: http://JerryPost.com/DBDe-
sign. This appendix uses the DB Design system to highlight a graphical approach
to designing a database. However, even if you do not use the DB Design system,
this appendix provides a useful summary of how to approach database design.

The design process in this appendix is illustrated with a generic sales order
form. If you are unfamiliar with order forms and the entire ordering process,
check out the Universal Business Language on the Oasis Web site at http://docs.
oasis-open.org/ubl/cd-UBL-1.0. This organization has defined a generic purchas-
ing process that applies to any organization. The goal is to create a standard means
of transferring data among businesses. The specification includes several XML
schema definitions. Because the goal is to create a generic format, the specifica-
tion is considerably more complex than the example presented here, but the docu-
ment also defines the common terms, processes, and business rules.

Sample Problem: Customer Orders
It is easiest to understand database design and the DB Design system by following
an example. Customer orders are a common situation in business databases, so

Order Form
Order # Date
 Customer
 First Name, Last Name
 Address
 City, State ZIP

Item Description List Price Quantity QOH Value

Order total:

Figure 2.1A
Typical order form. Each order can be placed by one customer but can contain
multiple items ordered as shown by the repeating section.

100Chapter 2: Database Design

consider the simple sales order form displayed in Figure 2.1A. The layout of the
form generally provides information about the business rules and practices. For
example, there is space for only one customer on the order, so it seems reasonable
that no more than one customer can participate in an order. Conversely, the repeat-
ing section shows multiple rows to allow several items to be ordered at one time.
These one-to-many relationships are important factors in the database design.

Getting Started: Identifying Columns
One of the first steps in creating the database design is to identify all of the prop-
erties or items for which you need to collect data. In the example, you will need
to store customer first name, last name, address, and so on. You will also need
to store an order number, order date, item description, and more. Basically, you
identify each item on the form and give it a unique name. Note that some items
can be easily computed and will not need to be stored. For instance, value is list
price times quantity, and the order total is the sum of the value items. In a business
environment, you will have to identify these items yourself and write them down.
The DBDesign system handles this step for you and displays all of the columns in
a list.

As shown in Figure 2.2A, after you have opened a problem, the DB Design
system provides you with a list of items from the form. This list is presented in the

Menu

Drawing	area
• Right-click	to	add	tables

Title	box	
• Drag	to	move
• Double-click	to	set	title

Feedback	window	(Double-click	errors	for	details.)

Scroll	bars	to	
display	more	of	
the	drawing	area

Column	list

Status	line

Drag	borders
to	resize

Figure 2.2A
DB Design screen. Once you log in, use the menu option File/Open to choose the
Order Problem. The Help menu has an option to View the Problem. The right-hand
window contains a list of the available columns that will be placed into tables.
Selecting the Grade menu option generates comments in the feedback window.

101Chapter 2: Database Design

right-hand column. The list of columns is the foundation for the database design.
Your job is to create tables and then select the columns that belong in each table.
You can rename the columns by right clicking the column name and selecting
the Rename option, but be careful to use names that represent the data. Also, key
columns should have unique names. To get a better grasp of the columns avail-
able, you can sort the list by right clicking the list and selecting the Sort option.
You can also double-click a column to see more details about it, including a brief
description. If two columns have the same name (such as LastName), you will
have to look at the description to see which entity it refers to (such as employee or
customer).

Creating a Table and Adding Columns
The main objective is to create tables and specify which columns belong in each
table. It is fairly clear that the sale order problem will need a table to hold cus-
tomer data, so begin by right-clicking the main drawing window and selecting
the option to add a table. The system enters a default name for the table, but you
should change it by typing in a new name. Later, you can change the name by
right-clicking the name and selecting the rename option. For this demonstration,
enter “Customer” to provide the new name.

Each table must have a primary key—one or more columns that uniquely iden-
tify each row in the table. Looking at the order form and the column list you will
not see a column that can be used as a primary key. You might consider using
the customer phone number, but that presents problems when customers change
their numbers. Instead, it is best to generate a new column called CustomerID. To
ensure each customer is given a different ID value, the data for this column will

1
2

3

4

Figure 2.3A
Adding a table and key. (1) Right click and select Add table. (2) Enter a new name
(Customer) in the title box. (3) Drag the Generate Key item onto the table. (4) Enter a
new name (CustomerID) in the edit box and click the OK button.

102Chapter 2: Database Design

be generated by the DBMS whenever a new customer is added. To create a new
key column that is generated by the DBMS, drag the Generate Key item from the
column list and drop it on the Customers table. The column-edit form will pop up
with a temporary name. Type a new name for the column (CustomerID). You can
enter a description if you want. Click the OK button when you are ready. Notice
that CustomerID will be displayed in the Customers table and as a new column in
the column list. Also, notice in Figure 2.3A that the CustomerID is marked with a
filled red star to indicate that it is part of the primary key in the Customers table.
You can edit a column name and description later by double-clicking the column
name.

A star in the DB Design system indicates that a column is part of the primary
key for a table. But, there are two types of stars: (1) a filled red star, or (2) an open
blue star. Both indicate that the column is part of the primary key. The filled red
star additionally notes that the key values are generated in that table whenever
a row is added. Because generated values must always be unique, any table that
contains a generated key column can only have that column as the primary key.
You can change the key attribute by opening the column-edit form or by double-
clicking the space in front of a column name. As you double-click the space, the
key indicator will rotate through the three choices: blank (no key), blue star (key),
red star (generated key).

Now that the table and primary key are established, you can add other columns
to the table. But which columns? The Customers table should contain columns
that identify attributes specifically about a customer. So, find each column that is
strictly identified by the new primary key CustomerID and drag it onto the Cus-
tomers table.

Relationships: Connecting Tables
Almost all database problems will need multiple tables. In the sales order prob-
lem, it is fairly clear that the database design will need an Orders table. Add a new
table, name it “Orders,” and generate a key for OrderID. Once again, you need to
identify the columns that belong in the Order table. Looking at the Order form,
you should add the OrderDate column. Notice that the order form also contains

Figure 2.4A
Two tables. Each table represents a single entity, and all columns are data collected
for that entity. The Orders table contains the CustomerID, which provides a method
to obtain the matching data in the Customer table. Build the Customer table first,
followed by the Orders table and the relationship line will probably be added
automatically for you.

103Chapter 2: Database Design

customer information. But it would seem to be a waste of effort to require clerks
to enter a customer’s name and address for every order. Instead, you need to add
only the CustomerID in the Order table.

When you add the CustomerID to the Orders table, as shown in Figure 2.4A,
the system will create a relationship back to the Customers table. It will even try
to get the multiplicity correct. Actually, your instructor can turn off the automatic
relationship and the multiplicity options, so there is a small chance that you will
have to create the relationship by hand. You can delete a relationship by right-
clicking the sloping line and choosing the Delete option. You edit a relationship
by double-clicking the connecting line. You create a new relationship by dragging
a column from one table and dropping it onto the matching column in a second
table.

Remember that CustomerID will not be a primary key in the Order table, be-
cause for each order, there can be only one customer. If it were keyed, you would
be indicating that more than one customer could take part in an order.

You often need to edit the multiplicity values when you create a relationship.
If all key columns are specified correctly, the system does a good job of setting
the values automatically. But, read that “if” condition again and you quickly real-
ize that you will have to edit multiplicity values for many of your relationships.
Double-click the connection line to open the relationship edit window. Figure
2.5A shows how the selections are displayed. Your form might be slightly differ-
ent from the one shown because the form is dynamic. It looks at the diagram and
displays the left-most table on the left. If your layout is different, the table names
will change positions to match your diagram. Every relationship has four values: a
minimum and maximum on each end of the relationship. These values are set with

Figure 2.5A
Relationships. Drag the CustomerID column from the Customer table and drop
it onto the CustomerID column in the Orders table. Then set the minimum and
maximum values for each side of the relationship. An order must have exactly one
customer, and a customer can place from zero to many orders.

104Chapter 2: Database Design

the option buttons. In this case, an order can be placed by exactly one customer,
so the minimum customer value is one and the maximum value is also one. On the
other side of the relationship, each customer can place from zero to many orders.
Some might argue that if a customer has not placed any orders, then he or she is
only a potential customer, but the difference is not critical to the database design.

The relationship-edit form has a couple of other options. The Connect option
box is useful when two tables are displayed vertically (above and below, instead
of the left and right used here). It enables you to specify the preferred side for
the relationship line (left or right). Look at the boxes containing the CustomerID
values, and you can use the drop-down lists to change the column matches if you
made a mistake when you dropped a column while building the relationship. You
can also create a relationship that connects tables on multiple columns by mov-
ing to a new row and choosing the matching columns. For more complex cases,
you can click the New button to create multiple relationships between two tables.
For example, you might need to connect a City.CityID column to both an Order.
DeliveryCity and an Order.BillingCity column. These would be two separate, in-
dependent relationships. None of these more complicated options are needed for
this example, but it is good to know they exist.

Saving and Opening Solutions
Be sure to save your work as you go. If you wait too long, the Internet connec-
tion will time-out and you might lose your changes. In most cases, if you lose
your session, you can log in and try again. The first time you save your solution,
you will be asked to give it a name and a brief description. You can use File/Save
to create copies with different names—enabling you to save multiple versions of
your work. Generally, you will only need this approach for complex problems.

Even if you save only one version of your solution, you need to understand the
File/Open box shown in Figure 2.6A. First, note that you can resize the box by
dragging its lower right-hand corner. This trick is useful when you have a long
list of problems or solutions. Second, the list is stored and displayed in a tree hi-

Figure 2.6A
Opening solutions. You can save multiple versions or solutions for any problem. To
open a saved solution, you have to expand the list by clicking the handle icon in front
of the problem name.

105Chapter 2: Database Design

erarchy that starts by listing each problem available to you. If you double-click a
problem (or select one and click the Open button), you will get a blank problem
where you start over. Sometimes this approach is useful if you really messed up
an earlier solution. In most cases, you will want to click the handle icon in front of
the problem name to open the list of solutions you saved for that problem. You can
open any of the solutions you have saved.

Grading: Detecting and Solving Problems
You will repeat these same steps to create the database design: add a table, set the
primary key, add the data columns, and link the tables. The DB Design system
makes the process relatively easy, and you can drag tables around to display them
conveniently. You can save your work and come back at a later time to retrieve
it and continue working on the problem. However, you still do not know if your
design is good or bad.

Consider adding another table to the sample order problem. Add a table for
Items and generate a new key column called ItemID. Add the columns for Item-
Description, ListPrice, and QuantityOnHand. The problem you face now is that
you need to link this new table with the Orders table. But, so far, they do not have
any related columns. So, as an experiment, try placing the OrderID column into
the Items table and build a relationship from Items to Orders by linking the Orde-
rID columns, as shown in Figure 2.7A.

At any time, you can ask the server to grade the current design to see if there
are problems. In fact, it is a good idea to check your work several times as you
create the tables, so you can spot problems early. Use the Grade option on the
menu to Grade and Mark the diagram. This option generates a list of comments in
the bottom window. The Grade to HTML option generates the same list organized
by tables in a separate window. Both options automatically save your work, so
you do not need to worry about saving your solution as long as you continue to
grade it.

As shown in Figure 2.8A, when you grade this problem, you get a reasonably
good score (88.1). However, there are several important comments. When you
select (click) a comment, the system highlights the error in the diagram whenever
possible. Notice the first grade comment about the unused column. If you had oth-
ers, they would also be listed in that message. Clicking that message will cause all
of the column names to be highlighted in the right-hand side list—making them
easy to find.

Figure 2.7A
Creating errors. To demonstrate a potential problem, add the OrderID column to the
Items table and then link it to the Orders table.

106Chapter 2: Database Design

You use the error messages to help improve the design. In this case, most of the
comments indicate there is a problem with the Items table. In particular, the Or-
derID column is presenting a problem. The first couple of questions ask whether
the key values are correct. The question highlighted at the bottom is important
because it tells you how to solve the problem. It is asking whether an item can be
sold on more than one order. Currently, since OrderID is not part of the key, any
item can be sold only one time. This assumption is extremely restrictive and prob-
ably wrong. The system is telling you that you need a table where both ItemID
and OrderID are key columns.

At this point, you really should stop and think about this entire section of the
design. But, see what happens if you just look at the one comment and leap ahead.
Just make OrderID a key along with ItemID. Figure 2.9A shows the result of this
change. First, notice that the score actually decreased! The DB Design system is
still pointing out problems with the keys. In particular, note that ItemID was cre-
ated as a generated key, so it is always guaranteed to be unique. If that is true, then
you would never need a second key column in the same table. As a side note, ob-
serve that you can use the Ctrl+click approach to highlight several error messages
at once. The basic problem is that you cannot include the OrderID column in the
Items table.

The solution is to realize that a relational database cannot support a direct
many-to-many relationship between two tables (Orders and Items). Instead, you
must insert a new table between the two. In this case, call it an OrderItems table.
Then be sure to add the key columns from both of the linked tables (OrderID and
ItemID). As shown in Figure 2.10A, add both relationships as one-to-many links.

As indicated by the score, this four-table solution is the best database design for
the typical order problem. The Customers table holds data about each customer.

Figure 2.8A
Grading the exercise. Click a comment to highlight the table and column causing
problems. In this case, each ItemID can appear in many Orders, but OrderID is not
part of the key. Double-click an error message to see more information about the
error.

107Chapter 2: Database Design

The Items table contains rows that describe each item for sale. The Orders table
provides the order number, date, and a link to the customer placing the order. The
OrderItems table represents the repeating section of the order form and lists the
multiple items being purchased on each order. You should verify that all of the
data items from the initial form appear in at least one of the tables.

Specifying Data Types
You need to perform one additional step before the database design is complete.
Eventually, this design will be converted into database tables. When you create
the tables, you will need to know the type of data that will be stored in each col-
umn. For example, names are text data, and key columns are often 32-bit integers.
Make sure that all dates and times are given the Date data type. Be careful to
check when you need floating point versus integer values: use single or double
depending on how large the maximum value will be. Figure 2.11A shows that you
set the data type by double-clicking to open the column-edit form.

The default value is text since it is commonly used. Consequently, many col-
umns such as customer name will not need changes. Although there are standard
names for data types, every DBMS uses its own terms. You can control which
terms are displayed by setting the target DBMS under the Generate menu com-
mand. This choice makes it easier for you to choose the exact data type for a par-
ticular DBMS. Internally, the DB Design system assigns a generic definition. You
can use the generic definitions, the SQL standard names, or switch to one of the
common DBMSs to fine-tune the choice.

Figure 2.9A
Trying to fix the problems. You could try making OrderID part of the key, but notice
that the score decreased, so the fix actually made the situation worse. The problems
with the OrderID and the relationship have not been solved. You can use Ctrl+Click
to highlight several errors at the same time.

108Chapter 2: Database Design

You can also set default values and constraint rules for the form. Default val-
ues are fairly standard, but the syntax of constraint rules depends heavily on the
specific target DBMS. These options are provided primarily for when you want to
generate complete table descriptions. Until you gain experience with your target
DBMS, you should leave them blank.

Generating Tables
Once you are satisfied with your design, you can use the system to help create
the tables in your DBMS. Almost all DBMSs support the SQL CREATE TABLE
command. When you ask DB Design to generate tables, it writes a SQL script that
you can run to generate the tables within your DBMS. Note that DB Design does
not actually create the tables inside itself. You need to copy the SQL script and run
it on your database server.

Use the Generate/Generate Tables menu command to open a new browser win-
dow with the SQL script. As shown in Figure 2.12A, you can scroll to the bottom
of the window and change some of the options. For example, you might want to
change the target DBMS. When you are satisfied with the script, click within the
script window, press Ctrl+A to select all of the lines, and Ctrl+C to copy the text.
Open a text editor or a script edit window in your DBMS management tool. Paste
(Ctrl+V) the script and save it or execute it. If necessary, you can edit the script to
fine-tune some DBMS-specific options.

If you are using Microsoft Access, read the notes at the top of the script file.
While Access supports the CREATE TABLE command it does not support script
files (at least through Office 2010). Consequently, you can only run one CREATE
TABLE command at a time. Also, you need to hand-edit all of the final relation-
ships inside Access because it does not support the cascade options.

Figure 2.10A
A solution. Add the intermediate table OrderItems and include keys from both tables
(OrderID and ItemID). Use one-to-many relationships to link it to both tables. Notice
the difference in the key indicators. The solid red star shows where a key value is
generated.

109Chapter 2: Database Design

The Generate form contains some additional options. The name delimiter is
straightforward. You are not allowed to use reserved words or characters in table
and column names. For instance, column names cannot include spaces. However,
current DBMSs will allow you to violate these rules if you enclose the name in
special delimiters. The delimiters vary by DBMS. For example, Microsoft Ac-
cess and SQL Server use square brackets, while Oracle uses double quotes. If you
enter a delimiter in the box (such as [or “), the generator will apply it to all table
and column names. Why does the generator not apply delimiters by default? The
answer is because delimiters sometimes have other consequences. In particular,
if you use the double-quote delimiter (“) in Oracle, the table and column names
become case-sensitive. From that point, every time you reference a table or col-
umn name, you are required to enclose it in quotation marks. When you type SQL
statements by hand, it is annoying to type all of those quotation marks, so it is
easier to use well-formed names and avoid the delimiter completely.

Although it is not shown here, a checkbox option has been added to exclude
the descriptive comments. Most of the time, you should keep the comments as
documentation of the database design. However, if the comments are excessive or
intrusive, you can tell the generator to leave them out.

The prefix option needs more explanation than the others. It is included be-
cause of the way DB Design works. In particular, since DB Design displays all
of the columns in one list, it is helpful to ensure that the names are unique. For
instance, if you see several columns called LastName, it is not immediately clear
which entity or table is referenced. Consequently, it is helpful to add a prefix to
the names to make them unique. For instance, you could have Emp_LastName
and Cust_LastName. However, when you generate the tables in the DBMS, the

Figure 2.11A
Data types. Double-click a column name to open the edit window. Set the data type. The
default is Text, so you do not have to change common columns like the customer name. You
can also add a description and a default value setting. The Constraint setting has to match the
format of the target DBMS.

110Chapter 2: Database Design

column will gain the context of the table and the prefix is superfluous and just
something extra to type (such as Employee.Emp_LastName). If you adopt a con-
sistent naming convention, the generator can automatically remove the prefix. The
easiest approach is to use an abbreviation of the entity followed by an underscore
(e.g., Emp_Address, Cust_Address). When you enter the underscore character (_)
into the prefix box and generate the SQL script, the generator will examine every
column name and remove all characters that appear before the first underscore
(and the underscore).

Figure 2.12A
Generate Tables. Choose the Generate/Generate Tables menu option to create a set of SQL
commands that can be run on your DBMS to build the tables created in the diagram. You can
choose the target DBMS before running the command or select it on the generated page. Use
Ctrl+A to select the entire text in the window, then open a text editor or a SQL editor and paste
the commands with Ctrl+V.

	Chapter 2: Database Design
	Introduction
	Two-Minute Chapter
	Models
	Getting Started
	Designing Databases
	Identifying User Requirements
	Business Objects
	Tables and Relationships
	Definitions
	Primary Key

	Class Diagrams: Introduction
	Classes and Entities
	Associations and Relationships
	Class Diagram Details

	Quick Start
	Creating a Class Diagram
	Primary Keys and Relationships

	Class Diagrams: Details
	Association Details: N-ary Associations
	Association Details: Aggregation
	Association Details: Composition
	Association Details: Generalization
	Association Details: Reflexive Association

	Sally’s Pet Store Class Diagram
	Data Types (Domains)
	Text
	Numbers
	Dates and Times
	Binary Objects
	Computed Values
	User-Defined Types (Domains/Objects)

	Events
	Large Projects
	Rolling Thunder Bicycles
	Application Design
	Corner Med
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading
	Appendix: DBDesign

