
111

What You Will Learn in This Chapter
•	 Why is database design important?
•	 What is a table and how do you choose keys?
•	 What are the fundamental rules of database normalization?
•	 How do you begin analyzing a form to create normalized tables?
•	 How do you create a design in first normal form?
•	 What is second normal form?
•	 What is third normal form?
•	 What problems exist beyond third normal form?
•	 How does a database record constraints?
•	 How do business rules change the database design?
•	 What problems arise when converting a class diagram to normalized tables?
•	 What tables are needed for the Sally’s Pet Store?
•	 How do you combine tables from multiple forms and many developers?
•	 How do you record the details for all of the columns and tables?

Introduction, 112
Two-Minute Chapter, 113
Tables, Classes, and Keys, 113

Composite Keys	 114
Surrogate Keys	 115
Notation	 116

Database Normalization: Atomic Values
and Dependency, 117

Atomic Data Values	 117
Dependency	 119

Sample Database for Typical Sales, 121
Initial Objects	 122
Initial Form Evaluation	 123
Problems with Repeating Sections	
125

First Normal Form, 125
Repeating Groups	 125
Multiple Repeating Groups	 127
Nested Repeating Groups	 127

Second Normal Form, 128
Problems with First Normal Form	128
Second Normal Form Definition	 129

Third Normal Form, 132
Problems with Second Normal Form	
132
Third Normal Form Definition	 132
Checking Your Work	 135

Beyond Third Normal Form, 135
Boyce-Codd Normal Form	 136

Fourth Normal Form	 137
Domain-Key Normal Form	 137
Summary	 139

Data Rules and Integrity, 139
The Effects of Business Rules, 141
Converting a Class Diagram to Normalized
Tables, 143

One-to-Many Relationships	 144
Many-to-Many Relationships	 146
N-ary Associations	 147
Generalization or Subtypes	 149
Composition	 150
Recursive (Reflexive) Associations	
151

The Pet Store Example, 151
View Integration, 153

The Pet Store Example	154
Rolling Thunder Sample Integration
Problem	 156

Data Dictionary, 162
DBMS Table Definition	 163
Data Volume and Usage	 166

 Summary, 168
Key Terms, 170
Review Questions, 170
Exercises, 171
Web Site References, 179
Additional Reading, 179
Appendix: Normalization, 180

Chapter Outline

Data Normalization
3Chapter

112Chapter 3: Data Normalization

A Developer’s View
	Miranda:	That was actually fun. I learned a

lot about the company’s procedures
and rules. I think I have everything
recorded properly on the class
diagram; along with some notes in
the data dictionary.

	 Ariel:	Great! We should go to the concert
tonight and celebrate.

	Miranda:	I could use a night off. Maybe
giving my brain cells a rest will
help me figure out what to do next.

	 Ariel:	What do you mean? How much
longer do you think the project will
take?

	Miranda:	That’s the problem. I put all this
time in, and I don’t really have a
start on the application at all.

	 Ariel:	Well, isn’t the data the most
important aspect to building a
database application? I heard that
database systems are touchy. You
have to define the data correctly the
first time; otherwise, you will have
to start over.

	Miranda:	Maybe you’re right. I’ll take the
night off; then I’ll study these rules
to see how I can turn the class
diagram into a set of database
tables.

Introduction
Why is database design important? A database management system is a power-
ful tool. It provides many advantages over traditional programming and hierarchi-
cal files. However, you get these advantages only if you design the database cor-
rectly. Recall that a database is a collection of tables. The goal of this chapter is to
show you how to design the tables for your database.

The essence of data normalization is to split your data into several tables that
will be connected to each other based on the data within them. Mechanically, this
process is not very difficult. There are perhaps four rules that you need to learn.
On the other hand, the tables have to be created specifically for the business or
application that you are dealing with. Therefore, you must first understand the
business, and your tables must match the rules of the business. So the challenge
in designing a database is to first understand how the business operates and what
its rules are. Some of these rules were hinted at in Chapter 2 with the focus on
relationships. Business relationships (one-to-one and one-to-many) form the
foundation of data normalization. These relationships are crucial to determining
how to set up your database. These rules vary from firm to firm and sometimes
even depend on which person you talk to in the organization. So when you create
your database, you have to build a picture of how the company works. You talk to
many people to understand the relationships among the data. The goal of data nor-
malization is to identify the business rules so that you can design good database
tables.

Getting Started
Refine your table definitions by double-checking the primary keys.
Then examine each non-key column to ensure that it depends on the
whole key and nothing but the key. Each table should represent a single
concept and all business rules should be explicit. There can be no hid-
den dependencies.

113Chapter 3: Data Normalization

By designing database tables carefully, you (1) save space, (2) minimize dupli-
cation, (3) protect the data to ensure its consistency, and (4) provide faster transac-
tions by sending less data. One method for defining database tables is to use the
graphical approach presented in Chapter 2 and build a class diagram. A related
method is to collect the basic paperwork, starting with every form and every re-
port you might use. Then take apart each collection of data and break it down into
respective tables. Most people find that a combination of both approaches helps
them find the answer. However, the discussion will begin by describing the two
methods separately.

Two-Minute Chapter
Database design takes practice and experience. In the end, the design encapsulates
the rules and relationships in the underlying business problem. Chapter 2 empha-
sized that tables represent business objects and each table must have a primary
key. Composite keys (multiple columns) in a table indicate many-to-many rela-
tionships. Tables are linked together by the data in keys. For example, The Sale
table has a primary key of SaleID but CustomerID is a foreign key column in the
Sale table. This approach saves space and prevents other problems because only
the CustomerID number is stored for each Sale. Instead of repeating all Customer
data for every Sale, the number refers back to the detailed information in the Cus-
tomer table.

When deciding which columns belong in each table, the three primary rules of
normalization are: (1) each entry must be atomic or single-valued not repeating,
(2) each non-key column must depend on the whole key, and (3) each non-key
column must depend on nothing but the key. Another general way to look at the
problem is to note that there can be no hidden dependencies. If some business
relationship or rule exists, it needs to be defined as its own table. The hard part is
identifying these business rules. Some of them can be determined from existing
forms and data. Others have to be elicited through interviews and discussions with
managers.

This approach leads to tables that can efficiently store data with minimal prob-
lems. However, you have to carefully evaluate every table, every key, and every
column. Watch for many-to-many relationships, and understand the concept of
dependence.

Tables, Classes, and Keys
What is a table and how do you choose keys? Chapter 2 focuses on identifying
the business classes and associations. Now, these classes need to be more careful-
ly defined so they can be converted into database tables. Of course, as you modify
the tables, you will also update the class diagram. The relationships among the
classes are critical to determining the final form of the tables. These relationships
are also expressed in terms of the primary keys of the tables. Remember that a
primary key consists of a collection of columns that uniquely identify each row.
Since the key must be guaranteed to always be unique, it is common to create a
new key column that holds generated keys. But, in many cases, you will use mul-
tiple columns to make up the primary key. These situations are important enough
to require a detailed explanation.

114Chapter 3: Data Normalization

Composite Keys
In many cases, as you design a database, you will have tables that will use more
than one column as part of the primary key. These are called composite keys. You
need composite keys when the table contains a one-to-many or many-to-many
relationship with another table.

As an example of composite keys, look at the OrderItems table in Figure 3.1.
These two tables are common in business and they form a master-detail or par-
ent-child relationship. The Orders table is straightforward. It has one column as a
primary key, where you created the OrderID. This table contains the basic infor-
mation about an order, including the date and the customer. The OrderItems table
has two columns as keys: OrderID and Item. The purpose of the OrderItems table
is to show which products the customers chose to buy. In terms of keys the im-
portant point is that each order can contain many different items. In the example
OrderID 8367 has three items. Because each order can have many different items,
Item must be part of the key. Reading the table description from left to right you
can say that each OrderID may have many Items. The “many” says that Item must
be keyed. What about the other direction in the OrderItems table? Do you really
need to key OrderID? The answer is yes because the firm can sell the same item to
many different people (or to the same customer at different times). For example,
Item 229 appears on OrderIDs 8367 and 8368. Because each item can appear on
many different orders, the OrderID must be part of the primary key. For compari-
son, reconsider the Orders table in Figure 3.1. Each OrderID can have only one
Customer, so Customer is not keyed.

To be sure you understand how keys and relationships interact, look again at
the OrderItems table. Looking at the ItemID column, ask yourself: For each Orde-
rID, can there be one or many ItemIDs? If the answer is many, then ItemID must
be keyed (underlined). Now, look at OrderID and ask yourself, Can an ItemID
appear on one or many orders? Again, the answer is many, so OrderID must also
be keyed.

Look at the CustomerID column in the Order table and ask, For each order, can
there be one or many customers? The common business rule says there is only

Orders

OrderItems

OrderID Date Customer
8367 5-5-04 6794
8368 5-6-04 9263

OrderID Item Quantity
8367 229 2
8367 253 4
8367 876 1
8368 555 4
8368 229 1

Figure 3.1
Composite keys. OrderItems uses a composite key (OrderID + Item) because there is
a many-to-many relationship. Each order can contain many items (shown by the solid
arrows). Each item can show up on many different orders (dotted arrows).

115Chapter 3: Data Normalization

one customer per order, so CustomerID is not part of the primary key. On the
other hand, because CustomerID is a primary key within the Customer table, it is
known as a foreign key in the Order table. Think of it as a foreign dignitary visit-
ing a different country (table). It is required in the Order table because it serves as
a link to the rest of the customer data in the Customer table; but it does not have to
be a key (king) in that table.

To properly normalize the data and store the data as efficiently as possible, you
must identify keys properly. Your choice of the key depends on the business rela-
tionships, the terminology in the organization, and the one-to-many and many-to-
many relationships within the company.

Surrogate Keys
It can be difficult to ensure that any real-world data will always generate a unique
key. Consequently, you will often ask the database system to generate its own
key values. These surrogate keys are used only within the database and are often
hidden so users do not even know they exist. For example, the database system
could assign a unique key to each customer, but clerks would look up customers
by conventional data such as name and address. Surrogate keys are especially use-
ful when there is some uncertainty with the business key. Think about SalesID or
PurchaseOrderID which need to be assigned at the time of each sale or purchase.
How can a person create these to guarantee they are unique? Numbers such as

Customer

SalesOrder

Salesperson

Item

OrderItem

1
* 1

*
1

1
*

*

Figure 3.2
A small class diagram for a basic order system. The numbers indicate relationships.
For instance, each customer can place many orders, but a given order can come from
only one customer.

Customer(CustomerID, Name, Address, City, Phone)
Salesperson(EmployeeID, Name, Commission, Datehired)
SaleOrder(OrderID, OrderDate, CustomerID, EmployeeID)
OrderItem(OrderID, ItemID, Quantity, SalePrice)
Item(ItemID, Description, ListPrice)

Figure 3.3
Table notation. Column details are easier to see in a simple listing of the tables. This
list is also useful when the tables are entered into the database.

116Chapter 3: Data Normalization

CustomerID and EmployeeID could be defined by the marketing or HRM depart-
ments, but it is simpler to just let the DBMS create unique values when they are
needed.

The use of surrogate keys can be tricky when the database becomes large. With
many simultaneous users, creating unique numbers becomes more challenging.
Additionally, several performance questions arise involving surrogate keys in
large databases. For example, a common method of generating a surrogate key is
to find the largest existing key value and increment it. But what happens if two us-
ers attempt to generate a new key at the same time? A good DBMS handles these
problems automatically.

Microsoft Access uses the autonumber data type to generate unique numbers
for key columns. Similarly, SQL Server uses the Identity data type. Oracle has a
SEQUENCES command to generate unique numbers, but it operates differently
than the Microsoft approaches. As a programmer, you generate and use the new
values when a new row is inserted—the process is not automatic (but you can
automate it with a couple lines of code). There are advantages and drawbacks
to both approaches. The biggest difficulty with the Microsoft approach is that it
is sometimes difficult to obtain the new value that was generated when a row is
inserted. The drawback to the Oracle approach is that you must ensure that all us-
ers and developers use the proper number generation commands throughout the
application. Additionally, both approaches can cause problems when transferring
data—particularly to other database systems.

Generated numbers are even trickier in distributed databases—where new
numbers must be generated in multiple locations. One approach is to assign differ-
ent ranges to each location so each location generates a different type of number.
A second approach is the globally-unique identifier (GUID) which is essentially
a very large random number. Microsoft software has tools for generating 128-
bit GUIDs. Oracle also has functions for generating GUIDs. GUIDs are rarely
sequential and they are large numbers. The point is that although they are useful
for creating key values, think of generated keys as random values, and you almost
always want to hide these numbers from the users.

Notation
A detailed class diagram can describe each table and include all properties within
each class and marked key columns. The advantage to using class diagrams is that
they highlight the associations among the classes. Additionally, some people un-
derstand the system better with a visual representation. Figure 3.2 shows a simple
example class diagram, but it leaves out the properties.

1.	 Each cell in a table contains atomic (single-valued) data.
2.	 Each non-key column depends on all of the primary key

columns (not just some of the columns).
3.	 Each non-key column depends on nothing outside of the

key columns.

Figure 3.4
The three main rules for data normalization. Essentially, each table has to accurately
represent the business definitions. Each table represents a single entity and the keys
accurately identify the entity and represent the one-to-many relationships among the
attributes.

117Chapter 3: Data Normalization

The drawback to class diagrams is that they can become very large. By the time
you get to 30 classes, it is hard to fit all the information on one page. Also, many
of the association lines will cross, making the diagram harder to read. CASE tools
help resolve some of these problems by enabling you to examine a smaller section
of the diagram.

However, you can also use a shorter notation, as shown in Figure 3.3. The nota-
tion consists of a straight listing of the tables. Each column is listed with the table
name. The primary keys are underlined and generally listed first. This notation
is easy to write by hand or to type, and it can display many tables in a compact
space. However, it is hard to show the relationships between the tables. You can
draw arrows between the tables, but your page can become messy.

Designers frequently create both the class diagram and the list of tables. The
list identifies all of the columns and the keys. The class diagram shows the rela-
tionships between the tables. The class diagram can also contain additional de-
tails, such as existence constraints and minimum requirements.

Database Normalization: Atomic Values and Dependency
What are the fundamental rules of database normalization? Database re-
searchers have shown that if tables are not designed carefully, several serious
problems can arise. These problems can be avoided by following some basic
rules. The primary rules are written as the first three normal forms. Figure 3.4 lists
the most important rules. These rules are explained in detail in the following sec-
tions. You need to understand each rule in detail because you use them to improve
your designs and ensure that the tables you create accurately reflect the business
rules. One way to think about the rules is that every database table represents the
business rules so that there are no hidden relationships. Everything is spelled out
correctly in the tables.

When you first read the rules, they seem slightly confusing because they rely
on some special terms. In fact, understanding the rules basically comes down to
understanding two specific concepts: atomicity and dependency. These terms are
described in this section and the following sections describe how to apply them to
real-world problems.

Atomic Data Values
The first rule is the easiest to understand and one of the most important. However,
sometimes it can be tricky to apply. A table cell contains an atomic value if there
is only a single non-repeating item. Consider a Customer table that shows up in
most business databases. A Name column in a Customer table can contain only
one name on each row. That example certainly seems simple. Why would anyone
ever try to store multiple names in one cell? People have only one name anyway?
Wait a second. What about first name and last (family) name? If you enter “John
Doe” into a Name column, is that one name or two? The answer is that it depends
on how the data will be used. If you want to sort the rows based on last name and
then first name, you really need to create two columns: LastName and FirstName
instead of just the Name column. Yes, you could write a special function that
would split a single name into its two components. But, needing to write special
functions to extract data from a cell is a major sign that your database is violating
the rule of atomic data. Now, if the users always look at the entire name as a single
thing, it is fine to store the entire name in one column. This example highlights
one of the most important things you need to learn: the database design depends

118Chapter 3: Data Normalization

heavily on the business rules and assumptions. In fact, the design is a model of the
business because the tables, columns, and keys reflect the business rules.

The Name column is relatively easy. In practice, most designers do split Name
into LastName and FirstName columns. Now, look at some other columns in the
potential Customer table. Many companies want to store the customer’s phone
number, so you can add a Phone column to the table. But once again, you have to
ask: Can a customer have more than one phone number? Twenty years ago, this
question was easy to answer as “no,” customers have only one phone number.
Today, you might want to add a cell phone number or business number. Figure 3.5
shows how you might add three types of phone numbers to a table. It certainly ap-
pears that each cell contains a single value. However, notice that customers might
not have all three numbers. Also, what will you do if a customer has a fourth or
fifth phone number?

CustomerID LastName FirstName Phone Fax CellPhone
15023 Jones Mary 222-3034 222-4094 223-0984
63478 Sanchez Miguel 030-9693 403-4094
94552 O’Reilly Madelline 849-4948 292-3332 139-3831
45791 Stein Marta 294-4421
49004 Brise Mer 764-5103

Figure 3.5
Atomic values for phone numbers. Is phone number atomic (single-valued) or
repeating? You might add a column for each possible type of phone number. But how
many customers have each type of phone and what if more types are needed in the
future?

CustomerID LastName FirstName Phone
15023 Jones Mary 222-3034

222-4094
223-0984

63478 Sanchez Miguel 030-9693
403-4094

94552 O’Reilly Madeline 849-4948
292-3332
139-3831
339-4040

45791 Stein Marta 294-4421
49004 Brise Mer 764-5103

Figure 3.6
Repeating values for phone numbers. Each customer can have from one to many
phone numbers. This table would be a bad design because it would cause problems
with retrieving or editing an individual phone number.

119Chapter 3: Data Normalization

Today, it is possible that phone number is a repeating (or multi-valued) entity.
Figure 3.6 shows another possible way of looking at the phone number data. At
least with this approach, you would not have to guess at the number of phone
number columns. However, it would be difficult to find or edit individual phone
numbers, so you would never actually store the data this way. You could make do
with the multiple columns shown in Figure 3.5, but it will waste space when you
get beyond two or three types of numbers.

So what is a better answer? The solution to each of the normalization steps is
always the same: Split the table into two tables. In this case, the phone number is
causing the problem, so you need to put the phone numbers into a separate table.
The one catch is that you must bring along the key column (CustomerID) so you
will be able to join the phone numbers back to the customers.

Figure 3.7 shows the resulting two tables. Look at the sample data to see how
the problems have been solved. Each phone number is listed in a separate row in
the CustomerPhones table. A customer with a single phone number takes only one
row of space. Yet, the table can hold data for as many phone numbers per person
as you will need—even if new phone types are added later.

The example of phone numbers as repeating data is tricky. Most designers
would probably choose to go with the method in Figure 3.5 by using multiple
columns. However, as the number of phone types proliferates, you might need to
switch to the version in Figure 3.7 to reduce the wasted space. In every case, the
overtly repeating version in Figure 3.6 would be wrong. Fortunately, most situa-
tions of repeating data are considerably more obvious. Usually, you can identify
repeating sections of data on a form because multiple lines are provided for enter-
ing data.

Dependency
Although researchers have defined dependency in mathematical terms, the con-
cept is truly an issue of business rules. You can read the formal definitions in

CustomerID LastName FirstName
15023 Jones Mary
63478 Sanchez Miguel
94552 O’Reilly Madeline
45791 Stein Marta
49004 Brise Mer

CustID PhoneType Phone
15023 Land 222-3034
15023 Fax 222-4094
15023 Cell 223-0984
63478 Land 030-9693
63478 Fax 403-4094
94552 Land 849-4948
94552 Fax 292-3332
94552 Cell 139-3831
94552 Laptop 339-4040
45791 Land 294-4421
49004 Land 764-5103

Figure 3.7
Repeating values for phone numbers. Split the phone numbers into a separate table.
Include the key (CustomerID) to link back to the original Customer table.

120Chapter 3: Data Normalization

the appendix, but the discussion in the chapter focuses on the business rules and
uses language to explain dependency. If one attribute always identifies a specific
value for another attribute, the second attribute is said to depend on the first. For
instance, if someone gives you the CustomerID of 15023, you know that the Last-
Name will always be Jones. It can never be anything else. Hence, LastName de-
pends on CustomerID. Which would mean that CustomerID is a good candidate
for becoming the primary key. On the other hand, if you were given the LastName
of Jones, you probably would not be able to identify just one phone number. Jones
is a fairly common name and the company probably has many customers with that
name, so many phone numbers would show up for that name. Consequently, it is
wrong to say that Phone depends on LastName. LastName would be a bad choice
for a key column.

How do you know when one column depends on another? This question is the
most difficult problem you face when designing a database. In fact, if someone
were to tell you every single dependency in a case, it is easy to create the appro-
priate database design. In fact, you could create a program to build the design au-
tomatically (it has been done already). In other words, when you build a database
design, you are really just identifying the business rules that specify how attributes
(columns) depend on each other. Did you notice that the original question has not
been answered? The answer is that you must talk with the users, study the forms
and reports, and identify the dependency rules specifically for each situation.

To create an example, you need to know the basic business rules. Writing the
business rules out would give away the answers, so usually you will be asked to
study forms and reports to identify dependencies. However, you still need to use
your business judgment. (It truly is important to take all of those other business
courses—they will help you identify common business rules.) Consider a firm that
sells products to other companies. Figure 3.8 shows a portion of an order form.
You need to use your knowledge of common business rules to determine the de-
pendencies among the attributes.

As a first attempt, you might try putting all of the attributes together into a
single table. The CustomerID looks like it would make a good primary key. But,
now you have to look at each potential column and ask yourself a basic question:
(1) For a given value of the CustomerID, can there be more than one value of this
attribute? If the answer is “yes,” you must move the questioned attribute into a
new table.

In the customer example, it is clear that the CompanyName depends on the
CustomerID. The City attribute might be trickier. A customer could have offices in
several cities. And, it might be critically important to your application to store the
data this way. However, in many situations you can simply assume that City refers

CustomerID	 	 	 Company Name
City
Contact Last Name, First Name
Phone

Figure 3.8
A portion of a form for a firm that sells products to other companies. The
dependencies among the attributes have to be identified based on common business
practices.

121Chapter 3: Data Normalization

to the corporate headquarters in a single city. You should record this assumption
in your design notes so others can understand your design decisions. The Contact
last and first names are more important. Although you might currently have only
one contact at a customer firm, it is more reasonable to assume that in the future
you will have multiple contacts at a company. From the repeating rule, you need
to create a new table for the contacts. Figure 3.9 shows the initial tables. Notice
that CustomerID is not part of the key in the Contact table because each contact
person works for only one customer.

Now, where do you put the phone number column? This question illustrates
the concept of dependency. Does the phone depend on (refer to) the customer or a
contact? Technically, it could refer to either one. Most companies have a primary
switchboard number that you could call. However, it is a generic number and re-
quires you to go through several steps to find the person you want. It is more
likely that the users of the system want the phone number of the specific contact
person so that person can be reached directly. Consequently, Phone depends on
ContactID and belongs in the Contact table instead of the Customer table. Figure
3.10 shows the resulting database design section.

Sample Database for Typical Sales
How do you begin analyzing a form to create normalized tables? The best way
to illustrate data normalization is to examine a sample problem. Remember that
the results you get (the tables you create) depend heavily on the specific example
and the assumptions you make. The following example uses a basic Sales Order
form. The sample data are from fictional sales at a SCUBA dive shop, but the ac-
tual items could be anything and the principles will remain the same.

Customer(CustomerID, CompanyName, City)
Contact(ContactID, CustomerID, LastName, FirstName)

Figure 3.10
The final design with the Customer and Contact tables. The most reasonable
assumption is to decide that users will want to call contacts directly, so Phone
depends on ContactID instead of CustomerID.

Figure 3.9
The two main tables for the customer case. The key columns in the Contact table
reveal that there can be many ContactIDs at each customer, but each contact works
for only one customer. Where does the phone number belong?

122Chapter 3: Data Normalization

Figure 3.11 shows a basic sales order form. The main components of the sample
form are the customer and the items being sold. When the form is built in the
database, it will automatically keep track of the total amount due. It should also
automatically assign a SaleID that is unique. The database form will also have
buttons and drop-down lists to help the user enter data with a minimum of effort.
For now, as you talk with the manager, you should sketch the desired features of
the form. Values that can be computed (e.g., subtotals) should be marked, and the
appropriate equations provided if needed. For the most part you do not want to
store computed values in the data tables.

Initial Objects
One way to begin the design process is to identify the primary objects on a form.
This step helps you think about the overall design and provides a start at identify-
ing the tables. A form generally has several obvious entities. In this case, the ob-
vious ones are customers and items. In real life you would also have employees.
Managers also need to keep track of who purchased specific items. For example,
if a manufacturer finds a problem with a piece of diving gear, the manager wants
to send a notice to any customer who purchased that item. Hence you need two
additional objects. The first is a transaction that records the date and the customer.
It represents the overall form itself. The second is a list of the items purchased by
that customer at that time. It represents the repeating section of the form.

Examine the initial objects in Figure 3.12. You need a primary key for custom-
ers (and items). Clearly, Name will not work, but you might consider using the
Phone number. This approach would probably work, but it might cause some mi-
nor difficulties down the road. For example, if a customer gets a new phone num-
ber, you would have to change the corresponding phone number in every table
that referred to it. As a primary key, it could appear in several different tables. A
bigger problem would arise if a customer (Adams) moves, freeing up the phone
number, which the phone company reassigns to another person (Brown) several
months later. If Brown opens an account at your store, your database might mis-

SaleID Date
Customer
First Name
Last Name
Address
City, State ZIPCode

ItemID Description List Price Quantity QOH Value

Total

Figure 3.11
Sample sales form. First look for possible keys, keeping in mind that repeating
sections (one-to-many relationships) will eventually need composite keys.

123Chapter 3: Data Normalization

takenly identify customer Brown as the customer Adams. The safest approach is
to have the database create a new number for every customer.

The Item object also needs a key. In practice you might be able to use the prod-
uct identifiers created by the manufacturer. For now, it is easiest to assign a sepa-
rate number. Basic properties include the item description, list price and quantity
on hand (QOH). More attributes (such as size) can be added later if necessary.

Every transaction must be recorded. The transaction in this case is the entire
sale. This object refers to the overall sale form and is also assigned a unique key
value. Remember this approach. Almost all of the problems you encounter will
end up with a table to hold data for the base form or report.

An important issue in many situations is the presence of a repeating section,
which can cause problems for storing data. Hence, the section is split from the
main transaction and stored in its own table. Keys here include the SaleID from
the Sale table and the ItemID. Note that the key is composite because a many-to-
many relationship exists. A customer can buy many products at one time and a
product can be purchased (at different times) by more than one customer.

Initial Form Evaluation
Practice is required to identify all of the tables needed for a form or report. In the
Sales Order example, most people should be able to identify the Customer and
Item tables. Some will recognize the need for a Sale table. However, the purpose
of the SaleItems table is not as clear. Fortunately, there is a method to derive the
individual tables by starting with the entire form and breaking it into pieces. This
method is the data normalization approach, and it is a mechanical process that fol-
lows from the business assumptions.

Figure 3.13 shows the first step in the evaluation. As you learn normalization,
you should be careful to write out this first step. As you gain experience, you
might choose to skip this step. The procedure is to look through the form or report
and write down everything that you want to store. The objective is to write it in a
structured format. Give the form a name and list the items as column names. You
can generally start at the top left of the form and write a column name for each
data element. Try to list items together that fall into natural groupings—such as all
customer data. The SaleForm begins with the SaleID, which looks like it would
make a good key. The SaleDate and CustomerID are listed next, followed by the

Initial Object Key Sample Properties
Customer Assign CustomerID Name

Address
Phone

Item Assign ItemID Description
List Price
Quantity On Hand

Sale Assign SaleID Sale Date
SaleItems SaleID + ItemID Quantity

Figure 3.12
Initial objects for the sale form. Note that the transaction has two parts, Sale and
SaleItems because many items can be sold at many different times.

124Chapter 3: Data Normalization

basic customer data. The next step is slightly more complicated because you have
to signify that the section with the items contains repeating data. That is, it has
multiple lines of data or the potential for several similar entries. Repeating data
represents a one-to-many relationship that must be handled carefully. An easy way
to signify the repeating section is to put it inside another set of parentheses. Some
people also list it on a new line.

Observe that the computed total was not included, since it can be recalculated
as needed. However, in some cases you might want to store computed data. For
instance, if you compute a sales tax with each order, it is convenient to store the
computed value. Even though the tax could be recomputed later, changing tax
rates and round-off differences might lead to errors in the later calculations. The
reduction in risk is worth the small extra storage of data. However, you should
mark the items or add a description so you remember they are computed values.

 While you are working on the first step, be sure to write down every item
that you want to store in the database. In addition, make sure to identify every
repeating section. Here you have to be careful. Sometimes repeating sections are
obvious: They might be in a separate section, highlighted by a different color, or
contain sample data so you can see the repetition. Other times, repeating sections
are less obvious. For example, on large forms repeating sections might appear on
separate pages. Other times, some entries might not seem to be repeating. You
should also try to mark potential keys at this point, both to indicate repeating sec-
tions and to highlight columns that you know will contain unique data. On some
DBMSs, you can create a pseudo column to define a computed value. This value
is not actually stored, but recomputed as needed. For instance, the Value column
could be computed as price times quantity. Finally, when you write down a col-
umn name, you should add it to a data dictionary and record attributes such as the
data type and which person is responsible for the item.

Total

ValueQOHQuantityList PriceDescriptionItemID

Customer
First	Name
Last	Name
Address
City,	State		ZIPCode

DateSale	ID

Total

ValueQOHQuantityList PriceDescriptionItemID

Customer
First	Name
Last	Name
Address
City,	State		ZIPCode

DateSale	ID

SaleForm(SaleID,	SaleDate,	CustomerID,	FirstName,	LastName,	Address,	City,	State,	ZIPCode,
(ItemID,	Description,	ListPrice,	Quantity,	QuantityOnHand))

Identify	potential	keys.
Identify	repeating	groups.

Figure 3.13
Initial form evaluation. Once you have collected basic user forms, you can convert them into
a more compact notation. The notation makes the normalization steps easier by highlighting
potential issues.

125Chapter 3: Data Normalization

Problems with Repeating Sections
The reason you have to be so careful in identifying repeated sections or one-to-
many relationships is that they can cause problems in the database. The situation
in Figure 3.14 shows what happens when you try to store the data from the form
exactly the way it is written now. In particular, the repeating section causes prob-
lems. As it is displayed, it results in non-atomic data in the cells because of the
need to store multiple items for each order. You might try to avoid the problem by
storing each item in a separate row, but then you would have to duplicate the sale
and customer data for each item being sold. The other problems with this attempt
are explained in the next sections, but you might as well solve the problem now.

Several other problems arise because of this weak design. What do you know
about products that have not been sold yet? Conversely, what if you delete old
data, such as all of last year’s sales? As you delete sales, you also delete item and
customer data. Suddenly, you notice that you deleted half of the customer base.
Technically, these problems are known as an insertion anomaly and a deletion
anomaly; that is, when the data is not stored in a proper format, you encounter
difficulties as you try to add or delete data. These problems arise because you tried
to store all the data in one table.

First Normal Form
How do you create a design in first normal form? The answer to the problem
with repeating sections is to put them into a separate table. When all cells contain
atomic data, (for example, a table has no repeating groups), it is said to be in first
normal form (1NF). That is, for each cell in a table (one row and one column),
there can be only one value. This value is atomic in the sense that it cannot be de-
composed into smaller pieces.

Repeating Groups
As shown in some of the prior examples, some repeating groups are obvious.
Others are more subtle and deciding whether to split them into a separate table
is more difficult. The first normalization rule is clear: If a group of items repeats,

SaleForm(SaleID,	SaleDate,	CustomerID,	FirstName,	LastName,	Address,	City,	State,	ZIPCode,
(ItemID,	Description,	ListPrice,	Quantity,	QuantityOnHand))

3
6
17

2
1
1

215.00
65.00
83.00

Wet	suit-S
Mask	1557
Snorkel	95

75
32
57

Dublin333	TamO’ReillyMadeline945527/1711854

15
3

2
1

44.00
215.00

Snorkel	71
Wet	suit-S

41
75

60601ILChicago111	ElmJonesMary150237/1611853

15
3

4
1

192.00
91.00

Air	Tank
Mask	2020

15
33

Madrid222	OroSanchezMiguel634787/1511852

15
5
6

2
1
1

192.00
251.00
65.00

Air	Tank
Regulator
Mask	1557

15
27
32

60601ILChicago111	ElmJonesMary150237/1511851

QOHQuantityListPriceDescriptionItemIDZIPStateCityAddressLastNameFirstNameCIDDateSaleID

3
6
17

2
1
1

215.00
65.00
83.00

Wet	suit-S
Mask	1557
Snorkel	95

75
32
57

Dublin333	TamO’ReillyMadeline945527/1711854

15
3

2
1

44.00
215.00

Snorkel	71
Wet	suit-S

41
75

60601ILChicago111	ElmJonesMary150237/1611853

15
3

4
1

192.00
91.00

Air	Tank
Mask	2020

15
33

Madrid222	OroSanchezMiguel634787/1511852

15
5
6

2
1
1

192.00
251.00
65.00

Air	Tank
Regulator
Mask	1557

15
27
32

60601ILChicago111	ElmJonesMary150237/1511851

QOHQuantityListPriceDescriptionItemIDZIPStateCityAddressLastNameFirstNameCIDDateSaleID

Repeating	section
Not	atomicDuplication

Figure 3.14
Problems with repeating data. Storing repeating data with the main form results in either non-
atomic cells or substantial duplication of data.

126Chapter 3: Data Normalization

it should be split into a new table. The solution in all cases is the same: Split the
design into two tables. If repeating groups remain, split the design again.

Return to the scuba store example, as shown in Figure 3.15, and notice the re-
peating section that is highlighted by the parentheses. To split this form, first sepa-
rate everything that is not in the repeating group. These columns might need other
changes later, but the section contains no repeating groups. Second, put all the
columns from the repeating item sales section into a new table. However, be care-
ful. When you pull out a repeating section, you must bring down the key from the
original table. The SaleForm table has SaleID as a primary key. This key, along
with the ItemID key, must become part of the new table SaleLine. You need the
Sale key so that the data from the two tables can be recombined later. Note that
the new table (SaleLine) will always have a composite key—signifying the many-
to-many relationship between sales and items.

Figure 3.16 shows the current design in the database design system. Keep in
mind that this design is merely the first step. Just glancing at the figure should
tell you there is a serious problem—because the SaleLine table contains both a
generated key and a non-generated key column. Remember, because there is a
many-to-many relationship between Sale and Item, you eventually need a table

SaleForm(SaleID,	SaleDate,	CustomerID,	FirstName,	LastName,	Address,	City,	State,	ZIPCode,
(ItemID,	Description,	ListPrice,	Quantity,	QuantityOnHand))

SaleForm2(SaleID,	SaleDate,	CustomerID,	FirstName,	LastName,	Address,	City,	State,	ZIPCode)

SaleLine(SaleID,	ItemID,	Description,	ListPrice,	Quantity,	QuantityOnHand)

Figure 3.15
First normal form. All repeating (non-atomic) groups must be split into new tables. Be sure
that the new table includes a copy of the key from the original table. The table holding the
repeating group must have a composite key so that the data can be recombined in queries.

Figure 3.16
Current design. Splitting the repeating items into the SaleLine table helps but it does
not solve all of the problems.

127Chapter 3: Data Normalization

that contains both SaleID and ItemID as keys. The point to remember is that this
design is in 1NF, which means it is better than putting everything into a single
table—but not much better.

Splitting off the repeating groups solves several basic problems. First, it reduc-
es the duplication: You no longer have to enter customer data for every item that
is sold. In addition, you do not have to worry about allocating storage space: Each
item sold will be allocated to a new row.

Multiple Repeating Groups
Before looking at the next step in normalization, you should realize that repeating
sections can be considerably more complicated. Remember that you pick up the
initial design from forms and reports, and you will be amazed at the complexity
that can arise on business forms. Two common situations are: (1) independently
repeating groups, and (2) nested repeating groups.

Many forms will have several different groups that repeat. As shown in Fig-
ure 3.17, if they repeat independently of each other, the split is straightforward;
each group becomes a new table. Just be careful to include the original key in
every new table so the tables can be linked together later. Using the base notation,
groups are independent if the parentheses do not overlap. For example, a more
complex sales case could have a second repeating group of items that are being
leased. The leased items would often be stored separately because additional lease
data is needed for each item.

Nested Repeating Groups
More complicated situations arise when several different repeating groups occur
within a table—particularly when one repeating group is nested inside another
group. The greatest difficulty lies in identifying the nested nature of the groups.
As illustrated in Figure 3.18, after you identify the relationships, splitting the ta-
bles is straightforward. Just go one step at a time, pulling the outermost groups
first. Always remember to bring along the prior key each time you split the tables.
So when you pull the second group (Key2 … (Key3 …)) from the first group
(Key1 …), the new TableA must include Key1 and Key2. When you pull Table3
from TableA, you must bring along all the prior keys (Key1 and Key2) and then
add the third key (Key3).

A more sophisticated sale problem could encounter nested repeating groups.
For example, the store might sell (and ship) items to several departments for the

FormA(Key1,	Simple	Columns,	(Group1,	A,	B,	C),	(Group2,	X,	Y))

MainTable(Key1,	Simple	Columns)

Group1(Key1,	Group1,	A,	B,	C) Group2(Key1,	Group2,	X,	Y)

Figure 3.17
Independent groups. In this example, two groups are repeating independently of each
other. They are split separately into new tables. Remember to include the original key
(Key1) in every new table.

128Chapter 3: Data Normalization

customer. The Sale would be the top level, departments would be next, and in-
dividual sale items would be nested within the departments. The table resulting
from the innermost nesting would have a primary key consisting of the SaleID,
Department, and ItemID columns.

Second Normal Form
What is second normal form? It was straightforward to reach first normal form:
Just identify the repeating groups and put them into their own table that is linked
to the main table through the initial key. The next step is a little more complicated
because you have to look at relationships between the key value and the other
(nonkey) columns in the table. Correct specification of the keys is crucial. At this
point it would be wise to double-check all the keys to make sure they are unique
and that they correctly identify many-to-many relationships. In particular, focus
on tables where the primary key consists of more than one column. Second nor-
mal form is concerned with the situation where a nonkey column depends on only
part of the key.

Problems with First Normal Form
It is fairly clear that 1NF is not the final answer. You still face a couple of major
design issues. The DB Design system highlights some of the issues with the keys
in the SaleLine group. A generated key must always be the only key column in a
table, but the SaleLine table needs both SaleID and ItemID as keys. One solution
might be to just remove the generator from ItemID so it is a simple key column.
But, if you make that change, where would you get values for the ItemID? The
problem is that the SaleLine table is trying to do two things: show which items
were sold and describe individual items.

You can guess by the temporary names of the tables in Figure 3.15 that first
normal form might still have problems storing data efficiently. Consider the situa-
tion in Figure 3.19 that illustrates the current Sale Item table. Every time someone
buys item 15, the database stores the Air Tank description. The problem is that the
description depends on only part of the key (ItemID). If you know the ItemID,
you always know the corresponding description. The description does not change
with every transaction. Beyond the waste of space and clerical time, there is an

Table	(Key1,	…,		(Key2,	…,	(Key3,	…)))

Table1(Key1,	…) TableA (Key1,	Key2,	…,	(Key3,	…))

Table2(Key1,	Key2,	…) Table3(Key1,	Key2,	Key3,		…)

Figure 3.18
Nested repeating groups. Groups are nested when they repeat within another group
(key3 inside key2 inside key1). Split them in steps: Pull all of group2 from group1,
then pull group3 from group2. Note that every table will contain the original key
(key1). With three levels, the final table (Table3) must contain three columns in the
key.

129Chapter 3: Data Normalization

additional problem: If an item has not yet been sold, what is its description (and
price)? Because items are only entered into the database with a transaction, this
data will not be stored in the database. Similarly, if all the rows for item 15 are
deleted, you will lose all the associated information about that product.

Second Normal Form Definition
The problem with the preceding example is that once you know the ItemID, you
always know the description. A one-to-one relationship exists between the ItemID
and the Description (perhaps many-to-one). As shown in Figure 3.20, the impor-
tant point is that the sale transaction does not matter. If someone buys item 15 in
June, the description is Air Tank. If someone buys item 15 in December, the de-
scription is still Air Tank. Hence, the description depends on only part of the key
(the ItemID and not the SaleID). A table is in second normal form (2NF) if every
nonkey column depends on the entire key (not just part of it). Note that this issue
arises only for composite keys (with multiple columns).

The solution is to split the table. Pull out the columns that depend on part of
the key. Remember to include that part of the key in the new table. The new tables
(SaleItems and Item) are shown in Figure 3.21. Note that ItemID must be in both
tables. It stays in the SaleItems table to indicate which items have been purchased
at each time. It is the primary key in the Item table because it is the unique identi-
fier. Including the column in both tables enables you to link the data together later.

In creating the new Item table, you are faced with the interesting question of
where to put the price. There are two choices: in the SaleItems table or in the
Item table. The answer depends on the operations and rules used in the business.
From a technical standpoint you can choose either table. However, from a busi-
ness standpoint there is a big difference. Consider the case where the price is in

SaleLine(SaleID,	ItemID,	Description,	ListPrice,	Quantity,	QuantityOnHand)

17183.00Snorkel	955711854

6165.00Mask	15573211854

32215.00Wet	suit-S7511854

31215.00West	suit-S7511853

15244.00Snorkel	714111853

3191.00Mask	20203311852

154192.00Air	Tank1511852

6165.00Mask	15573211851

51251.00Regulator2711851

152192.00Air	Tank1511851

QOHQuantityListPriceDescriptionItemIDSaleID

17183.00Snorkel	955711854

6165.00Mask	15573211854

32215.00Wet	suit-S7511854

31215.00West	suit-S7511853

15244.00Snorkel	714111853

3191.00Mask	20203311852

154192.00Air	Tank1511852

6165.00Mask	15573211851

51251.00Regulator2711851

152192.00Air	Tank1511851

QOHQuantityListPriceDescriptionItemIDSaleID

Duplication	for	columns	that	depend	only	on	ItemID

Figure 3.19
Problems with first normal form. This design is in 1NF but it still contains duplicated
data. Every time an item is sold, the clerk has to reenter its description, list price, and
quantity on hand. Also, if an item has not yet been sold, what is its ListPrice? The
problems arise because these columns depend only on the ItemID, not on the SaleID.

130Chapter 3: Data Normalization

the Item table. This model of the firm says that if you know the ItemID, you al-
ways know the price. In other words, the price is fixed for each item and does
not change over time. Now consider the interpretation when the price is stored in
the Item table. Here you are explicitly saying that the price depends on both the
ItemID and on the specific sale. In other words, for one customer the price for Air
Tank might be $192, whereas another customer might pay only $175. The price
difference might arise because you give end-of-season discounts, or if someone
purchases several items at one time. Most business database designers quickly
encounter the problem of where to store prices. One solution is to store prices in
both tables. That is, the price in the Items table (ListPrice) would be the list price
that the business intends to charge. The price in the SaleItems table would be the
actual price paid that incorporates various discounts (SalePrice). The key point is
that the final list of tables depends not just on mechanical rules but is also deter-
mined by the operations of the business. The assumptions you make about how a
particular business operates determine the tables you get. For now, you will stick
with the simpler assumption that assigns a fixed ListPrice to each item.

Figure 3.22 gives sample data for the new tables. Notice that 2NF resolves the
problem of repeating the description each time an item is sold. The base product
data is stored one time in the Item table. It is referenced in the SaleItem table
by the ItemID. Looking through the SaleItem table, you can easily get the cor-
responding description by finding the matching ID in the Item table. Chapter 4
explains how the database query system handles this link automatically.

SaleLine(SaleID,	ItemID,	Description,	ListPrice,	Quantity,	QuantityOnHand)

Depends	on	both	SaleID and	ItemID

Depend	only	on	ItemID

Figure 3.20
Second normal form definition. Each nonkey column must depend on the entire key.
It is only an issue with composite keys. The solution is to split off the parts that only
depend on part of the key.

SaleLine(SaleID,	ItemID,	Description,	ListPrice,	Quantity,	QuantityOnHand)

SaleItems(SaleID,	ItemID,	Quantity)

Item(ItemID,	Description,	ListPrice,	QuantityOnHand)

Figure 3.21
Creating second normal form. Split the original table so that the items that depend on only part
of the key are moved to a separate table. Note that both tables must contain the ItemID key.

131Chapter 3: Data Normalization

Figure 3.23 shows the current status of the tables in DB Design. The problem
with the ItemID key has been solved. The ItemID key values are generated in the
Item table whenever a new product is added to inventory. Every column in the
Item table depends only on the ItemID key. The ItemID values are used along
with the SaleID values in the SaleItems table to show exactly which items are
purchased on each sale. Almost any time you have a many-to-many relationship,
you will see a similar pattern. One table will be used to generate each key column,
and the intermediate or junction table will use the two keys to handle the many-to-
many relationship. The challenge is to identify exactly which columns depend on
both key columns and belong in the intermediate table.

SaleID ItemID Quantity
11851 15 2
11851 27 1
11851 32 1
11852 15 4
11852 33 1
11853 41 2
11853 75 1
11854 75 2
11854 32 1
11854 57 1

SaleItems(SaleID, ItemID, Quantity)

ItemID Description ListPrice QOH
15 Air Tank 192.00 15
27 Regulator 251.00 5
32 Mask 1557 65.00 6
33 Mask 2020 91.00 3
41 Snorkel 71 44.00 15
57 Snorkel 95 83.00 17
75 Wet suit-S 215.00 3
77 Wet suit-M 215.00 7

Item(ItemID, Description, ListPrice,
QuantityOnHand)

Figure 3.22
Second normal form data. Product items are now stored only one time. Other tables
(SaleItems) can refer to an item just by its key (ItemID), which provides a link back
to the Item table.

Figure 3.23
Second normal form in DB Design. ItemID is generated in a table that only refers to
items. This value is used along with SaleID in a table that shows which items were
purchased on each sale.

132Chapter 3: Data Normalization

Third Normal Form
What is third normal form? The logic, analysis, and elements of designing for
third normal form (3NF) are similar to those used in deriving 2NF. In particular,
you still concentrate on the issue of dependence. With experience, most designers
combine the derivation of 2NF and 3NF into a single step. Technically, a table in
3NF must also be in 2NF.

Problems with Second Normal Form
At this point, you need to examine the SaleForm2 table that was ignored in the
earlier analysis. It is displayed in Figure 3.24. In particular, notice that SaleID is
the key. The problem can be seen in the sample data. Every time a customer par-
ticipates in a sale, the database stores his or her name, address, and phone number
again. This unnecessary duplication is a waste of space and probably a waste of
the clerk’s data entry time. Consider what happens when a customer moves. You
would have to find the address and change it for every transaction the customer
had with the store. Likewise, if the customer has not yet purchased any items,
you do not have a place to store the customer data. Similarly, if you delete old
transactions from the database, you risk losing customer data. The problem arises
because you have a hidden dependency. The solution is to make the dependency
explicit.

Third Normal Form Definition
The problems in the previous section are fairly clear. The customer name, address,
phone, and so on depend on the CustomerID. Given a specific value for Custom-
erID, you immediately know the rest of the customer data. The problem with the
design at this point is that CustomerID is not part of the key for the table. In other
words, some nonkey columns do not depend on the key. So why are they in this
table? The question also provides the solution. If columns do not depend on the
primary key, they should be placed in a separate table.

To be in 3NF a table must already be in 2NF, and every nonkey column must
depend on nothing but the key. In the video example in Figure 3.25, the problem

Dublin333	TamO’ReillyMadeline945527/1711854

60601ILChicago111	ElmJonesMary150237/1611853

Madrid222	OroSanchezMiguel634787/1511852

60601ILChicago111	ElmJonesMary150237/1511851

ZIPStateCityAddressLastNameFirstNameCustomerIDDateSaleID

Dublin333	TamO’ReillyMadeline945527/1711854

60601ILChicago111	ElmJonesMary150237/1611853

Madrid222	OroSanchezMiguel634787/1511852

60601ILChicago111	ElmJonesMary150237/1511851

ZIPStateCityAddressLastNameFirstNameCustomerIDDateSaleID

SaleForm2(SaleID,	SaleDate,	CustomerID,	FirstName,	LastName,	Address,	City,	State,	ZIPCode)

Duplication

Figure 3.24
Problems with second normal form. The hidden dependency in the customer data
leads to duplicating the customer address each time a customer rents videos from the
store. Similarly, if old transaction rows are deleted, the firm might lose all of the data
for some customers.

133Chapter 3: Data Normalization

is that basic customer data columns depend on the CustomerID, which is not part
of the key.

At first glance, two solutions seem possible: (1) make CustomerID part of the
key or (2) split the table. If the table is already in 2NF, option (2) is the only
choice that will work. The problem with the first option is that making Custom-
erID part of the key is equivalent to stating that each transaction can involve many
customers. This assumption is not likely to be true. However, even if it is, your
table would no longer be in 2NF, since the customer data would then depend on

SaleForm2(SaleID,	SaleDate,	CustomerID,	FirstName,	LastName,	Address,	City,	State,	ZIPCode)

Depend	on	SaleID

Depend	on	CustomerID

Figure 3.25
Third normal form definition. This table is not in 3NF since some of the columns
depend on CustomerID, which is not part of the key.

SaleForm2(SaleID,	SaleDate,	CustomerID,	FirstName,	LastName,	Address,	City,	State,	ZIPCode)

945527/1711854

150237/1611853

634787/1511852

150237/1511851

CustomerIDDateSaleID

945527/1711854

150237/1611853

634787/1511852

150237/1511851

CustomerIDDateSaleID

Dublin333	TamO’ReillyMadeline94552

Madrid222	OroSanchezMiguel63478

60601ILChicago111	ElmJonesMary15023

ZIPStateCityAddressLastNameFirstNameCustomerID

Dublin333	TamO’ReillyMadeline94552

Madrid222	OroSanchezMiguel63478

60601ILChicago111	ElmJonesMary15023

ZIPStateCityAddressLastNameFirstNameCustomerID

Sale(SaleID,	SaleDate,	CustomerID)

Customer(CustomerID,	FirstName,	LastName,	Address,	City,	State,	ZIPCode)

Figure 3.26
Third normal form. Putting customer data into a separate table eliminates the hidden
dependency and resolves the problems with duplicate data. Note that CustomerID remains in
both tables, but it is still not a key in the Sale table because only one customer participates in a
given sale.

134Chapter 3: Data Normalization

only part of the key (CustomerID and not TransID). Hence the correct solution is
to split the table into two parts: the columns that depend on the whole key and the
columns that depend on something else (CustomerID).

The solution in the sale example is to pull out the columns that are determined
by the CustomerID. Remember to include the CustomerID column in both tables
so they can be relinked later. The resulting tables are displayed in Figure 3.26.
Notice that CustomerID is not a key in the Sale table because only one customer
participates in any given sale. Figure 3.26 also illustrates how splitting the tables
resolves the problems from the hidden dependency.

The final collection of tables is presented in Figure 3.27. This list is in 3NF:
Each cell is atomic and there are no repeating groups within a table (1NF), and
each nonkey column depends on the whole key (2NF) and nothing but the key
(3NF). You can change the layout of the tables, but the relationships remain the
same. As shown in Figure 3.28, you can also write the list of tables and their
column names. This approach makes it easy to fit dozens of tables on one page;
however, the relationships are more difficult to see.

The astute reader should raise a question about the address data. That is, City,
State, and ZipCode have some type of dependent relationship. Perhaps the Cus-
tomer table is not really in 3NF? In theory, it is true: ZIP codes were created as a
means to identify locations. The catch is that at a five-digit level, the relationship
is relatively weak. A ZIP code identifies an individual post office. Each city can
have many ZIP codes, and a ZIP code can be used for more than one city. At the
moment, it is true that a ZIP code always identifies one state. However, can you
be certain that this relationship will always hold—even in an international setting?
Hence it is generally acceptable to include all three items in the same table. On the
other hand, as pointed out in the pet store discussion in Chapter 2, there are some
advantages to creating a separate City table. The most important advantage is that
you can reduce data entry time and errors by selecting a city from a predefined
list.

Figure 3.27
Third normal form tables. Each cell is atomic, with no no repeating groups within a
table, and each nonkey column depends on the whole key and nothing but the key.

135Chapter 3: Data Normalization

Checking Your Work
At this critical point, you must double-check your work. In large projects it is
beneficial to have several team members participate in the review to make sure the
assumptions used in defining the data tables match the business operations.

The essence of data normalization is to collect all the forms and reports and
then to inspect each form to identify the data that will be stored. Writing the col-
umns in a standard notation makes the normalization process more mechanical,
minimizing the potential for mistakes. In particular, look for keys and highlight
one-to-one and one-to-many relationships. To check your work, you need to ex-
amine each table to make sure it demonstrates the assumptions and operations of
the firm.

To check your tables, you essentially repeat the steps in normalization. First,
make sure that you have pulled out every repeating group. While you are at it,
double-check your keys. Be sure you know exactly where each key value is gener-
ated. To verify the key columns, start with the first key column in a table and ask
yourself if there is a one-to-one or a one-to-many relationship with each of the
other columns. If it is a one-to-many relationship (or many-to-many), you need
to underline the column title. If it is one-to-one (or many-to-one), the column in
question should not be underlined. The second step is to look at each nonkey col-
umn and ask yourself if it depends on the whole key and nothing but the key.
Third, verify that the tables can be reconnected. Try drawing lines between each
table. Tables that do not connect with the others are probably wrong. Fourth, ask
yourself if each table represents a single object. Try giving it a name. If you can-
not find a good single name for the table, it probably represents more than one ob-
ject and needs to be split. Finally, enter sample data for each table and make sure
that you are not entering duplicate rows. Some underlying problems may become
obvious when you begin to enter data. It is best to enter test data during the design
stage, instead of waiting until the final implementation.

Beyond Third Normal Form
What problems exist beyond third normal form? In designing relational data-
base theory, E. F. Codd first proposed the three normalization rules. On examining
real-world situations, he and other writers realized that additional problems could
occur in some situations. In particular, Codd’s initial formal definition of 3NF was
probably too narrow. Hence he and Boyce defined a new version, which is called
Boyce-Codd normal form (BCNF).

Other writers eventually identified additional problems that could arise and cre-
ated further “normal forms.” If you are careful in designing your database—par-
ticularly in creating keys—you should not have too many problems with these

Customer(CustomerID, FirstName, LastName, Address, City, State, ZIPCode)
Sale(SaleID, SaleDate, CustomerID)
SaleItems(SaleID, ItemID, Quantity)
Item(ItemID, Description, ListPrice, QuantityOnHand)

Figure 3.28
Third normal form table list. The list is an easy way to fit dozens of tables on a page
but does not show the relationships.

136Chapter 3: Data Normalization

issues. However, occasionally problems arise, so a good database designer will
check for the problems described in the following sections. In particular, in large
projects with many designers, one member of the team should check the final list
of tables.

Boyce-Codd Normal Form
You have already seen how problems can arise when hidden dependencies oc-
cur within a table. A secondary relationship between columns within a table can
cause problems with duplication and lost data. Consider the example in Figure
3.29, which contains data about employees. From the business rules, it is clear
that the table is in 3NF. The keys are correct, and from rule (c) the nonkey column
(Manager) depends on the entire key. That is, each employee can have a different
manager for each specialty. The problem arises because of business rule (d): Each
manager has only one specialty. The manager determines the specialty, but since
Manager can never be a key for the entire table, you have a hidden dependency
(Manager → Specialty) in the table. A hidden dependency arises when there is a
functional rule that is not part of the primary key. What if you delete old data rows
and delete all references to one manager? Then you lose the data that revealed that
manager’s specialty. BCNF prevents this problem by stating that any dependency
must be explicitly shown in the keys.

The solution is to add a table to make the dependency explicit. Because
each specialty can have many managers, the best solution is to add the table
Manager(Manager, Specialty). Note that technically, you can now remove the
Specialty column from the original table (and key Manager). Because a manager
can have only one specialty, as soon as you know the manager, you can use a link
to obtain the specialty. However, as a designer, you have to question to rules. This
situation requires some unusual rules. If the manager-specialty rule is relaxed in
the future, allowing managers to have multiple specialties, you would have to re-
design the tables (and forms and reports). In the example it is not very realistic to
believe the firm will always have managers with only one specialty. It is better to
leave the original table and add the new Manager table. Then if the assumptions
change, you simply need to make Specialty a key in the Manager table. The main
point is that you have solved the BCNF problem by explicitly recording the hid-
den relationship—so you no longer need to worry about losing important relation-
ships when you delete rows.

Employee-Specialty(EID,	Specialty,	Manager)

c

d
ab

Figure 3.29
Boyce-Codd normal form. There is a hidden dependency (d) between manager and
specialty. If we delete rows from the original table, we risk losing data about our
managers. The solution is to add a table to make the dependency explicit.

a. Each employee has many specialties
b. Each specialty has many managers
c. Employee + manager is one specialty
d. Each manager has one specialty

137Chapter 3: Data Normalization

Fourth Normal Form
Fourth normal form (4NF) problems arise when there are two binary relation-
ships, but the modeler attempts to show them as one combined relationship. An
example should clarify the situation.

In Figure 3.30, employees can have many specialties, and they perform many
tasks for each specialty. Because all three columns are keyed, the table must be in
3NF. From the business rules, you can see that the keys are legitimate. However,
there are really two binary relationships instead of one ternary relationship: Em-
ployee → Specialty and Employee → Tool.

Since the third business rule specifies that Specialty and ToolID are not directly
dependent on each other, you need to break up the original table into two tables
to remove the hidden dependency. The problem you would face with the original
is that there could be considerable duplication of data if for every employee you
have to list each tool for every specialty. It is more efficient to list specialties and
tools separately.

Fourth normal form problems can occur and they can cause problems, so you
should be able to spot them. The main trick is to watch for hidden dependencies,
and make sure they are made explicit.

Domain-Key Normal Form
In 1981 Fagin described a different approach to normalized tables when he pro-
posed the domain-key normal form (DKNF). DKNF describes the ultimate goal
in designing a database. If a table is in DKNF, Fagin proved that it must also be in
4NF, 3NF, and all of the other normal forms. The catch is that there is no defined
method to get a table into DKNF. In fact, it is possible that some tables can never
be converted to DKNF.

Despite these difficulties, DKNF is important for application developers be-
cause it is a goal to work toward when designing applications. Think of it as driv-
ing to the mall when you do not have exact directions. You can still get there as
long as you know how to start (1NF, 2NF, and 3NF are well-defined) and can
recognize the mall when you arrive (DKNF).

The goal of DKNF is to have each table represent one topic and for all the busi-
ness rules to be expressed in terms of domain constraints and key relationships.

Business	rules.
(a) Each	employee	has	many	specialties.
(b) Each	employee	has	many	tools.
(c) Tools	and	specialties	are	unrelated.

EmployeeTasks(EID,	Specialty,	ToolID)

EmployeeSpecialty(EID,	Specialty)
EmployeeTools(EID,	ToolID)

Figure 3.30
Fourth normal form. The original table is 3NF because there are no nonkey columns.
The keys are legitimate, but there is a hidden (multivalued) dependency because
Specialty and ToolID are unrelated. The solution is to create two tables—one to show
each of the two dependencies.

138Chapter 3: Data Normalization

That is, all business rules are explicitly described by the table rules. Domain con-
straints are straightforward—they represent limitations placed on the data held in
a column. For example, prices cannot be negative.

All other business rules must be expressed in terms of relationships with keys.
In particular, there can be no hidden relationships. Consider the example in Figure
3.31, which shows a table that records the tasks performed by employees and the
tools they used. The primary business rule you were given states that each em-
ployee performs many tasks with many tools, so all three columns need to be part
of the primary key. The key columns are legitimate and the table is in 3NF. Since
only one rule (dependency) has been specified, the table is also in BCNF. How-
ever, if you think about the business problem for a few minutes, you can see that
the table might be used to cover two topics: (1) The tools that employees actually
used, and (2) The tools that are commonly used for a specific task. Think about
the problem from the perspective of a novice employee who needs to know which
tools to pick up for a specific task. You could query the database to see what tools
other employees used in the past, but there could be considerable variation. Per-
haps there needs to be a second dependency that lists the minimum set of tools
required for each task. If you know about this rule at the start, you can see that the
single EmployeeTask table violates BCNF because it ignores a hidden rule. But,
since the rule was not explicitly stated, you used the DKNF approach to realize
the initial table was trying to cover two different facts. With this insight, you can
look harder to identify formal rules.

This example also shows you the challenge of DKNF. There is no formal meth-
od to arrive at DKNF. To define a set of tables in DKNF, you can start by work-
ing through the 3NF rules. Then look carefully for hidden dependencies and add
tables to reach BCNF. Then, verify keys and ensure that each table describes a
single fact, and that facts are stored in only one location. Domain-key normal
form returns to the beginning of Chapter 2. The goal in designing the database is
to build a model of the organization, and DKNF clarifies this goal by stating that
the best database design is one that explicitly states all business rules as database
rules.

EmployeeTask(EmployeeID, TaskID, ToolID)

Defined business rules
(a) Each employee performs many tasks with many tools.

But, maybe you need a second rule.
(b) Each task has commonly used tools.
RequiredTools(TaskID, ToolID)

Figure 3.31
DKNF example. With the stated rule, the tables are in BCNF but might not be in
DKNF. The initial table combines information about tasks and tools. Maybe there
is an additional undefined dependency between task and tool, where employees
commonly use the same tools for each task.

139Chapter 3: Data Normalization

In theory, there can be no normal forms beyond DKNF. That is a nice theory,
but since there is no well-defined way to put a set of tables in DKNF, it is not al-
ways helpful. Several authors have identified other potential problems and derived
additional versions of normal forms, such as fifth normal form. For the most part
these definitions are not very useful in practice; they will not be described here.
You can consult C. J. Date’s textbooks for details and examples of more theoreti-
cal concepts.

Summary
You can review the technical definitions in the appendix for a formal statement of
the normalization conditions. However, the most important thing to remember is
that normalization ultimately comes down to properly understanding the business
rules (dependencies). The first rule is straightforward: Each cell contains atomic,
non-repeating data. The second and third rule can be summarized by remember-
ing that: Each nonkey column depends on the whole key and nothing but the key.
(So help me Codd.) BCNF seems slightly trickier, but a simple rule can be used
to represent the entire process: There must be no hidden dependencies. All depen-
dencies should be explicitly stated within the primary keys.

Data Rules and Integrity
How does a database record constraints? As you talk to users and managers to
design reports and tables, you also need to think about what business rules need
to be enforced. One of the goals of a database designer is to ensure that the data
remains accurate. Many cases have straightforward business rules. For example,
you typically want to make sure that price is greater than zero. Similarly, you may
have a constraint that salaries should not exceed some number like $100,000 or
that the date hired has to be greater than the date the company was founded. These
data integrity constraints are easy to assign in most databases. Typically, you can
go to the table definitions and add the simple constraints along with a message.
The advantage of storing these constraints with the tables is that the DBMS en-
forces the conditions for every operation on the table, regardless of the source or
method of data entry. No programming is necessary, and the constraint is stored
in one location. If you need to change the condition, it is readily accessible (to
authorized users).

A second type of constraint is to choose data from a set of predefined options.
For example, gender may be listed as male, female, or unavailable. Providing a
list helps clerks enter data, and it forces them to enter only the choices provided.
For instance, you do not have to worry whether someone might enter f, F, or fem.
The data is more consistent.

A third type of data integrity is a bit more complicated but crucial in a relation-
al database. The tables are nicely organized with properties that ensure efficient
storage of the data. Yet you need to be able to reconnect the data in the tables to
get the reports and forms the users need. Consider the sale example in Figure 3.32
when a clerk enters a customer number in the Sale table. What happens if the clerk
enters a customer number that does not exist in the Customer table? If you want
to check later on customer purchases, you will be unable to find matching data for
that customer. Hence you need a constraint to ensure that when a customer num-
ber is entered into the Sale table that number must already exist in the Customer
table. The CustomerID in the Sale table is a foreign key in that table, and the
constraint you need is known as referential integrity. Referential integrity exists

140Chapter 3: Data Normalization

when a value for a foreign key can be entered only if the corresponding value al-
ready exists in the originating table.

Essentially, once you define the relationship between tables, you can tell the
DBMS to enforce referential integrity. The method for defining referential integ-
rity depends on the specific DBMS. Generally, the constraint is specified in the
CREATE TABLE command. Most relational databases also support cascading
delete, which uses the same concepts. If a user deletes a row in the Customer
table, you also need to delete the related entries in the Sale table. Then you need to
delete the corresponding rows in the SaleItems table. If you build the relationships
and specify cascade on delete, the database will automatically delete the related

SaleID SaleDate CID …
1173 1/4 321
1174 1/5 938
1185 1/8 337
1190 1/9 321
1192 1/9 776

Sale

CID Name Phone …
321 Jones 998-
337 Sanchez 773-
938 Carson 873-

Customer

No	data	for	this
customer	yet!

Simple business rules
	 Limits on data ranges
	 	 Price > 0
	 	 Salary < 100,000
	 	 DateHired > 1/12/1995
	 Choosing from a set
	 	 Gender = M, F, Unknown
	 	 Jurisdiction=City, County, State, Federal

Referential Integrity
Foreign key values in one table must exist
in the master table.

	 Sale(SaleID, SaleDate, CID,…)
	 CID must exist in the customer table.

Figure 3.32
Data integrity. Integrity can be maintained by simple rules. Relational databases
rely on referential integrity constraints to ensure that customer data exists before the
customer number can be entered in the Rental table.

CREATE TABLE Sale
(SaleID Integer NOT NULL,
 SaleDate Date,
 CustomerID Integer,
 CONSTRAINT pk_Sale PRIMARY KEY (SaleID),
 CONSTRAINT fk_SaleCustomer FOREIGN KEY (CustomerID)
 REFERENCES Customer (CustomerID)
 ON DELETE CASCADE
)

Figure 3.33
SQL referential integrity definition. In the Sale table, declaring a column as a foreign
key tells the DBMS to check each value in this table to find a matching value in the
referenced (e.g., Customer) table.

141Chapter 3: Data Normalization

rows when a user deletes an entry in the Customer table. These actions maintain
the consistency of the database by ensuring that links between the tables always
refer to legitimate rows.

Oracle and SQL Server support referential integrity by declaring a foreign key
when you create a table. Figure 3.33 shows the command that can be used to cre-
ate a Sale table with three columns. The company wants to make sure that all or-
ders are sent to legitimate customers, so the customer number (CustomerID) in the
Sale table must exist in the Customer table. The foreign key constraint enforces
this relationship. The constraint also specifies that the relationship should handle
cascading deletes. Oracle and SQL Server use the standard SQL language to cre-
ate tables.

When you start to enter data into a DBMS, you will quickly see the role played
by referential integrity. Consider two tables: Sale(SaleID, SaleDate, CustomerID)
and Customer(CustomerID, Name, Address, etc.). You have a referential integrity
constraint that links the CustomerID column in the Sale table to the CustomerID
column in the Customer table. As you enter sample data, begin with the Sale table.
The DBMS will not accept any data—because the corresponding CustomerID
must already exist in the Customer table. That is, the referential integrity rules
force you to enter data in a certain order. Clearly, these rules would present prob-
lems to users, so you cannot expect users to enter data directly into tables. Chap-
ters 6, 7, and 8 explain how forms and applications will automatically ensure that
the user enters data in the proper sequence.

The Effects of Business Rules
How do business rules change the database design? It is important to under-
stand how different business rules affect the database design and the normalization
process. As a database designer, you must identify the basic rules and build the da-
tabase to match them. However, be careful because business rules can change. If
you think a current business rule is too restrictive, you should design the database
with a more flexible structure.

Location
Date Played

Referee Name
Phone Number, Address

Team 1
Name
Sponsor

Score Team 2
Name
Sponsor

Score

Player
Name

Phone Age Points Penal. Player
Name

Phone Age Points Penal.

Figure 3.34
Database design for a soccer league. The design and normalized tables depend on the
business rules. Some of the rules are shown on the form.

142Chapter 3: Data Normalization

Consider the example shown in Figure 3.34. The local parks and recreation
department runs a soccer league and collects basic statistics at the end of every
match. You need to design the data tables for this problem.

To illustrate the effect of different rules, consider the two main rules and the
resulting tables displayed in Figure 3.35. The first rule states that there can be only
one referee per match. Hence the RefID can be placed in the Match table. Note
that it is not part of the primary key. The second rule states that a player can play
on only one team; therefore, the appropriate TeamID can be placed in the Player
table.

Now consider what happens if these two rules are relaxed as shown in Figure
3.36. The department manager believes that some day there might be several ref-
erees per match. Also, the issue of substitute players presents a problem. A sub-
stitute might play on several different teams in a season—but only for one team
during a match. To handle these new rules, the key values must change. You might
be tempted to make the simple changes indicated in Figure 3.36; that is, make Re-
fID part of the key in the Match table and make TeamID part of the primary key in
the Player table. Now each Match can have many Referees, and each Player can
play on many teams. The problem with this approach is that the Match and Player

There	is	one	referee	per	match.
A	player	can	play	on	only	one	team.

Match(MatchID,	DatePlayed,	Location,	RefID)
Score(MatchID,	TeamID,	Score)
Referee(RefID,	Phone,	Address)
Team(TeamID,	Name,	Sponsor)
Player(PlayerID,	Name,	Phone,	DoB,	TeamID)
PlayerStats(MatchID,	PlayerID,	Points,	Penalties)

Figure 3.35
Restrictive rules. With only one referee per match, the referee key is added to the
Match table. Similarly, the TeamID column is placed in the Player table.

There can be several referees per match.
A player can play on several teams (substitute), but only one team per match.

Match(MatchID, DatePlayed, Location, RefID)
Score(MatchID, TeamID, Score)
Referee(RefID, Phone, Address)
Team(TeamID, Name, Sponsor)
Player(PlayerID, Name, Phone, DoB, TeamID)
PlayerStats(MatchID, PlayerID, Points, Penalties)

Figure 3.36
Relaxing the rules to allow many-to-many relationships. You might try to make the
RefID and TeamID columns part of the primary key, but the resulting tables are not
in 3NF. Location does not depend on RefID, and Player Name does not depend on
TeamID.

143Chapter 3: Data Normalization

tables are no longer in 3NF. For example, DatePlayed does not depend on RefID.
Likewise, Name in the Player table does not depend on the TeamID. For example,
Paul Ruiz does not change his name every time he plays on a different team.

The solution is displayed in Figure 3.37. A new table is added to handle the
many-to-many relationship between referees and matches. Similarly, the player’s
TeamID is moved to the PlayerStats table, but it is not part of the primary key. In
this solution, each match has many players, and players can participate in many
matches. Yet, for each match, each player plays for only one team. This new da-
tabase design is different from the initial design. More importantly it is less re-
strictive. As a designer, you must look ahead and build the database so that it can
handle future needs of the department.

Which of these database designs is correct? The answer depends on the needs
of the department. In practice, it would be wiser to choose the more flexible de-
sign that can assign several referees to a match and allows players to substitute
for different teams throughout the season. However, in practice you should make
one minor change to this database design. If no matches have been played, how do
you know which players are on each team? As it stands, the database cannot an-
swer this question. The solution is to add a BaseTeamID to the Player table. At the
start of the season, each team will submit a roster that lists the initial team mem-
bers. Players can be listed on only one initial team roster. If someone substitutes
or changes teams, the data can be recorded in the PlayerStats table.

Converting a Class Diagram to Normalized Tables
What problems arise when converting a class diagram to normalized tables?
Each normalized table represents a business entity or class. Hence a class diagram
can be converted into a list of normalized tables. Likewise, a list of normalized
tables can be drawn as a class diagram. Technically, the entities in a class diagram
do not have to be in 3NF (or higher). Some designers use a class diagram as an
overview, or big picture, of the business, and they leave out some of the normal-
ized details. In this situation you will have to convert the classes into a list of nor-
malized tables. As noted in Chapter 2, some features commonly arise on a class
diagram, so you should learn how to handle these basic conversions.

There can be several referees per match.
A player can play on several teams (substitute), but only one team per match.

Match(MatchID, DatePlayed, Location)
RefereeMatch(MatchID, RefID)
Score(MatchID, TeamID, Score)
Referee(RefID, Phone, Address)
Team(TeamID, Name, Sponsor)
Player(PlayerID, Name, Phone, DoB)
PlayerStats(MatchID, PlayerID, TeamID, Points, Penalties)

Figure 3.37
Relaxing the rules and normalizing the tables. The RefereeMatch table enables the
department to have more than one referee per match. Moving the TeamID to the
PlayerStats table indicates that someone can play for more than one team—but for
only one team during a given match.

144Chapter 3: Data Normalization

The most challenging problems you will encounter are from class diagrams
that utilize object-oriented features, such as subclasses and composition. Some
relational database systems have added object-oriented features to make it easier
to handle these issues. For example, you can store object data in a cell. How-
ever, storing object data (including XML) in a cell often violates the first rule of
normalization. From the database perspective, the data is no longer atomic, but
requires special routines to examine and compare the data within a cell. Some-
times it makes sense to use these extensions, but you will have to weigh the trad-
eoffs. For example, most systems enable you to define customized data types. A
common use is for spatial data where a location is stored as a single GPS (lati-
tude, longitude, and altitude) coordinate instead of three separate columns. For the
approach to be successful, you (or the DBMS vendor) need to write customized
functions to use this new object type. Some objects, such as location, are com-
monly used by many organizations, so it does make sense. Other, highly custom-
ized objects, could require considerable additional effort, and you need to evaluate
the tradeoffs before creating the custom objects.

Figure 3.38 illustrates a typical class diagram for a purchase order with four
basic types of relationships: (1) a one-to-many relationship between supplier and
the purchase order, (2) a many-to-many relationship between the purchase order
and the items, (3) a subtype relationship that contains different attributes, and (4)
a recursive relationship within the Employee entity to indicate that some employ-
ees are managers of others.

One-to-Many Relationships
The most important rule in converting class diagrams to normalized tables is that
relationships are handled by placing a common column in each of the related ta-
bles. This column is usually a key column in one of the tables. This process is
easy to see with one-to-many relationships.

The purchase order example has two one-to-many relationships. (1) Many dif-
ferent purchase orders can be sent to each supplier, but only one supplier appears
on a purchase order. (2) Each purchase order is created by only one employee, but

Supplier Purchase
Order

Item

Raw
Materials

Assembled
Components

Office
Supplies

Employee

Manager

1 * 1*

*

*

1*

Figure 3.38
Converting a class diagram to normalized tables. Note the four types of relationships:
(1) one-to-many, (2) many-to-many, (3) subtype, and (4) recursive.

145Chapter 3: Data Normalization

Supplier Purchase
Order

1 *

Supplier(SID,	Name,	Address,	City,	State,	Zip,	Phone)
Employee(EID,	Name,	Salary,	Address,	…)

PurchaseOrder(POID,	Date,	SID,	EID)

Employee
1*

Figure 3.39
Converting one-to-many relationships. Add the primary key from the one-side into
the many-side table. In the example SID and EID are added to the PurchaseOrder
table. Note that they are not primary keys in the PurchaseOrder table.

33588729/1122237
22178319/1022236
55456769/1022235
22156769/922234
EIDSIDDatePOID

33588729/1122237
22178319/1022236
55456769/1022235
22156769/922234
EIDSIDDatePOID

316-999-331267209KSWichita773	PoplarSwensen8872
601-333-993239205MSJackson873	HickoryPaniche7831
617-222-999902109MABoston938	OakMarkle6731
515-777-898850010IAAmes123	ElmJones5676
PhoneZipStateCityAddressNameID

316-999-331267209KSWichita773	PoplarSwensen8872
601-333-993239205MSJackson873	HickoryPaniche7831
617-222-999902109MABoston938	OakMarkle6731
515-777-898850010IAAmes123	ElmJones5676
PhoneZipStateCityAddressNameID

Supplier

Employee

Purchase	Order

440	E.	520035,000Johnson554
37	W.	720082,000Sanchez335
223	W.	230067,000Smith221
AddressSalaryNameEID

440	E.	520035,000Johnson554
37	W.	720082,000Sanchez335
223	W.	230067,000Smith221
AddressSalaryNameEID

Figure 3.40
Sample data for one-to-many relationships. The Supplier and PurchaseOrder tables
are linked through the SID column. Similarly, the Employee table is linked through
the data in the EID column. Both the SID and EID columns are foreign keys in the
PurchaseOrder table, but they are not primary keys in that table.

146Chapter 3: Data Normalization

an employee can create many purchase orders. To create the normalized tables,
first create a primary key for each entity (Supplier, Employee, and PurchaseOr-
der). As shown in Figure 3.39, the normalized tables can be linked by placing
the Supplier key (SID) and Employee key (EID) into the PurchaseOrder table.
Note carefully that all class diagram associations are expressed as relationships
between keys.

 Note also that SID and EID are not key columns in the PurchaseOrder table.
You can verify which columns should be keyed. Start with the POID column.
For each PurchaseOrder (POID), how many suppliers are there? The business rule
says only one supplier for a purchase order; therefore, SID should not be keyed,
so do not underline SID. Now start with SID and work in the other direction. For
each supplier, how many purchase orders are there? The business rule says many
purchase orders can be sent to a given supplier, so the PID column needs to be a
key. The same process indicates that EID should not be a key; it belongs in the
PurchaseOrder table, since each Employee can place many orders. Figure 3.40
uses sample data to show how the tables are linked through the key columns.

Many-to-Many Relationships
Overview class diagrams often contain many-to-many relationships. However, in
a relational database many-to-many relationships must be split into two one-to-
many relationships to get to BCNF. Figure 3.41 illustrates the process with the
PurchaseOrder and Item tables.

Each of the two initial entities becomes a table (PurchaseOrder and Item). The
next step is to create a new intermediate table (POItem) that contains the primary
keys from both of the other tables (POID and ItemID). This table represents the
many-to-many relationship. Each purchase order (POID) can contain many items,
so ItemID must be a key. Similarly, each item can be ordered on many purchase
orders, so POID must be a key. Think of the PurchaseOrder and Item tables as the
base tables that generate the purchase order and item data respectively. If you use
generated key columns, new key values will be generated within those two tables
when rows are added. The POItem table links the other two by using the existing
key values. It indicates the individual items being purchased on a specific order.

 You must have a table that contains both POID and ItemID as keys. Can you
create this relationship without creating a third table? In most cases the answer is

Purchase
Order

Item

*

*

PurchaseOrder(POID,	Date,	SID,	EID)

POItem(POID,	ItemID,	Quantity,	PricePaid)

Item(ItemID,	Description,	ListPrice)

*

*
1

1

Purchase
Order

Item

*

*

POItem

1

1

Figure 3.41
Converting a many-to-many relationship. Many-to-many relationships use a new,
intermediate table to link the two tables. The new POItem table contains the primary
keys from both the PurchaseOrder and Item tables.

147Chapter 3: Data Normalization

no. Consider what happens if you try to put the ItemID column into the Purchase-
Order table and make it part of the primary key. The resulting entity would not be
a 3NF table, because Date, SID, and EID do not depend on the ItemID. A similar
problem arises if you try to place the POID key into the Item table. Hence the in-
termediate table is required. Figure 3.42 uses sample data to show how the three
tables are linked through the keys.

N-ary Associations
As noted in Chapter 2, n-ary associations are denoted with a diamond. This dia-
mond association also becomes a class. In a sense, an n-ary association is simply
a set of several binary associations. As shown in Figure 3.43, the new association
class holds the primary key from each of the other classes. As long as the binary
associations are one-to-many, each column in the Assembly class will be part of
the primary key. If for some reason a binary association is one-to-one, then the
corresponding column would not be keyed.

33588729/1122237

22178319/1022236

55456769/1022235
22156769/922234

EIDSIDDatePOID

33588729/1122237

22178319/1022236

55456769/1022235
22156769/922234

EIDSIDDatePOID

5800.00155598222236

150.001055582822236

24.00444418522235

25.00144418522234
2.00344409822234

PriceQuantityItemIDPOID

5800.00155598222236

150.001055582822236

24.00444418522235

25.00144418522234
2.00344409822234

PriceQuantityItemIDPOID

Purchase	Order

Item

POItem

152.00Brake	assembly888371

5928.00Sheet	steel555982

158.00Wire555828

28.00Paper444185
2.00Staples444098

ListPriceDescriptionItemID

152.00Brake	assembly888371

5928.00Sheet	steel555982

158.00Wire555828

28.00Paper444185
2.00Staples444098

ListPriceDescriptionItemID

Figure 3.42
Sample data for the many-to-many relationship. Note that the intermediate POItem
table links the other two tables. Verify that the three tables are in 3NF, where each
nonkey column depends on the whole key and nothing but the key.

148Chapter 3: Data Normalization

Employee
*EmployeeID
Name
...

Component
*CompID
Type
Name

Product
*ProductID
Type
Name

*
* *

Assembly

Assembly
*EmployeeID
*CompID
*ProductID

1

1

1

…Maria	Rio12

…Joe	Jones11

…NameEmployeeID

…Maria	Rio12

…Joe	Jones11

…NameEmployeeID

CamaroB17A5411

CorvetteX32A3222

NameTypeProductID

CamaroB17A5411

CorvetteX32A3222

NameTypeProductID

Trunk	handleT54888

Trunk	hingeH33883

Door	hingeH32882

MirrorM15872

WheelW32563

NameTypeCompID

Trunk	handleT54888

Trunk	hingeH33883

Door	hingeH32882

MirrorM15872

WheelW32563

NameTypeCompID

A541188312

A322288212

A322256312

A541156311

A322287211

A322256311

ProductIDCompIDEmployeeID

A541188312

A322288212

A322256312

A541156311

A322287211

A322256311

ProductIDCompIDEmployeeID

Figure 3.43
N-ary association. The Assembly association is also a class. It can be modeled as
a set of binary (one-to-many) associations. The primary key from each of the main
classes is included in the new Assembly class.

Item

Raw
Materials

Assembled
Components

Office
Supplies

Item(ItemID,	Description,	ListPrice)
RawMaterials(ItemID,	Weight,	StrengthRating)
AssembledComponents(ItemID,	Width,	Height,	Depth)
OfficeSupplies(ItemID,	BulkQuantity,	Discount)

Figure 3.44
Converting subtypes. Every item purchased has basic attributes, which are recorded
in the Item table. Each item can be placed in one of three categories, which have
different attributes. To convert these relationships to 3NF, create new tables for each
subtype. Use the same key in the new tables and in the generic table. Add attributes
specific to each of the subtypes.

149Chapter 3: Data Normalization

Generalization or Subtypes
Some business entities are created as subtypes. Figure 3.44 illustrates this rela-
tionship with the Item entity. An item is a generic description of something that is
purchased. Every item has a description and a list price. However, the company
deals with three types of items: raw materials, assembled components, and office
supplies. Each of these subtypes has some additional properties that you wish to
track. For example, the company tracks the weight of raw materials, the dimen-
sion of assembled components, and quantity discounts for office supplies.

Two basic approaches exist for converting this design to a relational database.
(1) If subtypes are similar, you could ignore the subclasses and compress all the
subclasses into the main class that would contain every property for all of the sub-
classes. In this case each item entry would have several null values. (2) In most
cases a better approach is to create separate tables for each subclass. Each table
will contain the primary key from the main Item class.

As shown in Figure 3.45, each item has an entry in the Item table. The Item ta-
ble contains attributes that apply to all of the subtypes (Description and ListPrice).
Each item also has an entry in one of the three subtype tables, depending on the
specific type of item. For example, item 444098 is described in the Item table and

152.00Brake	assembly888371

5928.00Sheet	steel555982

158.00Wire555828

28.00Paper444185
2.00Staples444098

ListPriceDescriptionItemID

152.00Brake	assembly888371

5928.00Sheet	steel555982

158.00Wire555828

28.00Paper444185
2.00Staples444098

ListPriceDescriptionItemID

83212578555982
200057555828

StrengthRatingWeightItemID

83212578555982
200057555828

StrengthRatingWeightItemID

1.531888371

DepthHeightWidthItemID

1.531888371

DepthHeightWidthItemID

Item

RawMaterials

AssembledComponents

OfficeSupplies

15%10444185
10%20444098

DiscountBulkQuantityItemID

15%10444185
10%20444098

DiscountBulkQuantityItemID

Figure 3.45
Sample data for the subtype relationships. Notice how each Item has an entry in the
Item table and a row in one of the three subtype tables.

150Chapter 3: Data Normalization

has additional data in the OfficeSupplies table. If the subclass relationships are not
mutually exclusive, then each main item can have a matching row in more than
one of the subclass tables.

In most cases, it is simpler to ignore the subtypes and put all of the columns
into the single Item table. However, lumping the subtypes together could result in
a large number of null values. If the amount of wasted space becomes a significant
issue, or if you need to assign control of each subtype to a different department,
you will need to create the separate tables. The major DBMSs have the ability
to define subtables and can process queries with this structure automatically. If
subtables are not available, or you choose not to use them, you will have to write
queries to join the subtype tables back to the Item table.

Composition
In some ways composition is a combination of an n-ary association and sub-
types. Consider the bicycle example in Figure 3.46, in which a bicycle is built
from various components. The first decision to make is how to handle the many
components. It is a question of subtypes. In this situation the business keeps al-
most identical data for each component (ID number, description, weight, cost,
list price, and so on). Hence a good solution is to compress each subtype into a
generic Component class. However, it would also make sense to handle wheels
separately because they are a more complex component that is often built from
other components.

You can solve the main composition problem by creating properties in the main
Bicycle table for each of the component items (WheelID, CrankID, StemID, and
so on). These columns are foreign keys in the Bicycle table (but not primary keys).
When a bicycle is built, the ID values for the installed components are stored in
the appropriate column in the Bicycle table. You can find more details by examin-
ing the actual Rolling Thunder database.

Bicycle

Size
Model	Type
…

Wheels

Crank

Stem

Bicycle
SerialNumber

ModelType

WheelID

CrankID

StemID

…

Components
ComponentID

Category

Description

Weight

Cost

Figure 3.46
Normalizing a composition association. First decide how to handle the subclasses.
In this case they are combined into one Components table. Second, handle the
composition by storing the ComponentID and the SerialNumber as keys in a new
junction table.

151Chapter 3: Data Normalization

Recursive (Reflexive) Associations
Occasionally, an entity may be linked to itself. A common example is shown in
Figure 3.47, where employees have managers. Because managers are also em-
ployees, the entity is linked to itself. This relationship is easy to see when you
create the corresponding table. Simply add a Manager column to the Employee
table. The data in this column consists of an EID. For example, the first employee
(Smith, EID 221) reports to manager 335 (Sanchez). Is the Manager column part
of the primary key? No, because the business rule states that each employee can
have only one manager.

How would you handle a situation in which an employee can have more than
one manager? Key the Manager column? That would cause other problems, be-
cause the Employee table would not be in BCNF (an employee’s address would
not depend on the manager). The solution is to create a new table that lists Em-
ployeeID and ManagerID—both part of the primary key. The new table would
probably have additional data to describe the relationship between the employee
and the manager, such as a project or task.

The Pet Store Example
What tables are needed for the Sally’s Pet Store? To design the Sally’s Pet
Store database, you talk to the owner and investigate the way that other stores op-
erate. In the process you collect ideas for various forms so you can learn the busi-
ness rules. To expedite the development and hold down costs, you and Sally agree
to begin with a simplified model and add features later. The sales form sketched
in Figure 3.48 contains the primary data that will be needed when sales are made.

Sally wants you to create separate purchase orders for animals and products.
She has repeatedly emphasized the importance of collecting detailed animal data.
Eventually, Sally would also like to get medical records for the animals adopted
through the store. Common data would include their shots, any illnesses, and any

Employee

Employee(EID,	Name,	Salary,	Address,	Manager)

335440	E.	520035,000Johnson554
37	W.	720082,000Sanchez335

335223	W.	230067,000Smith221
ManagerAddressSalaryNameEID

335440	E.	520035,000Johnson554
37	W.	720082,000Sanchez335

335223	W.	230067,000Smith221
ManagerAddressSalaryNameEID

Employee worker
1…*

manager 0…1

managed	by

Figure 3.47
Converting recursive relationships. An employee can have only one manager, so
add a Manager column to the Employee table which contains the EID to point to the
manager. In the example, Smith reports to Manager 335 (Sanchez).

152Chapter 3: Data Normalization

medications or treatments they have received. For now, she is relying on the adop-
tion groups to keep this information. However, once the sales and basic financial
applications have been created, she wants to add these features to the database.

For the moment the most important job is to collect the transaction data. The
design should make it easy to add new attributes for all of the major entities. It
should also be easy to add new tables (such as health records) without making ma-
jor alterations to the initial structure. In addition to sales, purchasing merchandise
from suppliers is the other big transaction event.

A sample purchase order form is shown in Figure 3.49. Again, remember that
Sally wants to start with a small database. Later you will have to collect additional
data. For example, what happens if an order arrives and some items are missing?
The current form can only record the arrival of the entire shipment. Similarly,
each supplier probably uses a unique set of Item numbers. For example, a case of
cat food from one supplier might be ordered with ItemID 3325, but the same case
from a different supplier would be ordered with ItemID A9973. Eventually, Sally
will probably want to track the numbers used by her major suppliers. That way,
when invoices arrive bearing their numbers, matching the products to what she
ordered will be easier.

The next step in designing the Pet Store database is to take each form and cre-
ate a list of normalized tables that will be used to hold data for that form. Figure
3.50 shows the tables that were generated from the Sales form. Before examin-
ing the results in detail, you should attempt to normalize the data yourself. Then
see whether you derived the same answer. You should also derive the normalized
tables for the other two forms. Remember to double-check your work. First make
sure the primary keys are correct, then check to see that each nonkey column de-
pends on the whole key and nothing but the key.

Figure 3.48
Pet Store sample sales form. Separate sections for selling animals and merchandise
reflect a business rule to treat them differently.

	 	 	 	 Sales
SaleID	 	 	 	 	 	 	 	 Date
Customer
Name
Address
City, State, ZIP

EmployeeID
Name

	 	 	 	 Animal Adoption
ID Name Category Breed DoB Gender Reg Color Donation Group

	 	 	 Merchandise Sale
Item	 Description	 Category	 ListPrice	 SalePrice	 Quantity	 Value

Merchandise Subtotal
Tax
Total

153Chapter 3: Data Normalization

Note that because each animal is unique, there is no SaleAnimal table—unlike
the SaleItem table for merchandise. Because an animal can be adopted only one
time, it is possible to put the Donation amount and the SaleID into the Animal
table. Think about the keys for a minute. Each AnimalID can be adopted only
one time, so SaleID is not a key column. But, multiple animals could be adopted
at the same time, so SaleID needs to be in the Animal table where AnimalID is a
primary key.

Merchandise is different because an ItemID refers to a relatively generic item—
such as a bag of dog food. A bag of dog food with that ItemID can be purchased
many times. Physically, it is a different bag, but a specific brand/type/size of
dog food always has the same ItemID. Consequently, you need a table that links
SaleID and ItemID where each SaleID can have many ItemIDs (key ItemID); and
each ItemID can appear on many SaleIDs (key SaleID). In the SaleItem table,
both SaleID and ItemID are part of the primary key.

View Integration
How do you combine tables from multiple forms and many developers? Up to
this point, database design and normalization have been discussed using individ-
ual reports and forms, which is the basic step in designing a database. However,
most projects involve many reports and forms. Some projects involve teams of
designers, where each person collects forms and reports from different users and
departments. Each designer creates the normalized list of tables for the individual
forms, and you eventually get several collections of tables related to the same
topic. At this point you need to integrate all these tables into one complete, consis-
tent set of table definitions.

Figure 3.49
Pet Store sample purchase order for merchandise. Note the similarities and
differences between the two types of orders. Keep in mind that additional data will
have to be collected later.

	 	 Purchase Order for Merchandise
Order#	 	 	 	 	 	 Date Ordered
	 	 	 	 	 	 Date Received
Supplier
Name
Contact
Phone
Address
City, State, ZIP Code

Employee ID
Name
Home Phone

ItemID Description Category Price Quantity Ext. QOH

Subtotal
Shipping Cost
Total

154Chapter 3: Data Normalization

When you are finished with this stage, you will be able to enter the table defini-
tions into the DBMS. Although you might end up with a large list of interrelated
tables, this step is generally easier than the initial derivation of the 3NF tables. At
this point you collect the tables, make sure everything is named consistently, and
consolidate data from similar tables. The basic steps involved in consolidating the
tables are as follows:

1.	Collect the multiple views (documents, forms, etc.).
2.	Create normalized tables for each document.
3.	Combine the views into one complete model.

The Pet Store Example
Figure 3.51 illustrates the view integration process for the Pet Store case. The
tables generated from the Sale and Purchase forms are listed first. The integration
occurs by looking at each table to see which ones contain similar data. A good
starting point is to look at the primary keys. If two tables have exactly the same
primary keys, the tables should usually be combined. However, be careful. Some-
times the keys are wrong, and sometimes the keys might have slightly different
names.

Notice that the Employee table shows up twice in the example. By carefully
checking the data in each listing, you can form one new table that contains all of
the columns. Hence the Phone and DateHired columns are moved to one table,
and the two others are deleted. A similar process can be used for the Supplier, Ani-
mal, and Merchandise tables. The goal is to create a complete list of normalized
tables that will hold the data for all the forms and reports. Be sure to double-check
your work and to verify that the final list of tables is in 3NF or BCNF. Also, make
sure that the tables can be joined through related columns of data.

The finalized tables can also be displayed on a detailed class diagram. The class
diagram for the Pet Store is shown in Figure 3.52. A strength of the diagram is
the ability to show how the classes (tables) are connected through relationships.
Double-check the normalization to make sure that the basic forms can be re-creat-
ed. For example, the sales form will start with the Customer, Employee, and Sale
tables. The Animal table holds information about adoptions and donations. Sales
of products requires the SaleItem and Merchandise tables. All of these tables can
be connected by relationships on their attributes.

Sale(SaleID, Date, CustomerID, EmployeeID)
SaleAnimal(SaleID, AnimalID, SalePrice)
SaleItem(SaleID, ItemID, SalePrice, Quantity)
Customer(CustomerID, Name, Address, City, State, Zip)
Employee(EmployeeID, Name)
Animal(AnimalID, Name, Category, Breed, DateOfBirth,
	 Gender, Registration, Color, ListPrice)
Merchandise(ItemID, Description, Category, ListPrice)

Figure 3.50
Pet Store normalized tables for the basic sales form. You should do the normalization
first and see if your results match these tables.

155Chapter 3: Data Normalization

Most of the relationships are one-to-many relationships, but pay attention to
the direction. Access denotes the many side with an infinity (∞) sign. Of course,
you first have to identify the proper relationships from the business rules. For in-
stance, there can be many sales to each customer, but a given sale can list only one
customer.

This final list shown in the class diagram in Figure 3.52 has three new tables:
City, Breed, and Category. These validation tables have been added to simplify
data entry and to ensure consistency of data. Without these tables employees
would have to repeatedly enter text data for city name, breed, and category. There
are two problems with asking people to type in these values: (1) it takes time, and
(2) people might enter different data each time. By placing standardized values
in these tables, employees can select the proper value from a list. Because the
standard value is always copied to the new table, the data will always be entered
exactly the same way each time it is used.

Asking the DBMS to enforce the specified relationships raises an interesting
issue. The relationships require that data be entered in a specific sequence. The
foreign key relationship specifies that a value for the customer must exist in the
Customer table before it can be placed in the Sale table. From a business stand-
point the rule makes sense; you must first meet customers before you can sell
them something. However, this rule may cause problems for clerks who are enter-
ing sales data. You need some mechanism to help them enter new Customer data
before attempting to enter the Sales data. Chapters 6 and 7 explain one way to
resolve this issue.

Sale(SaleID, Date, CustomerID, EmployeeID)
SaleAnimal(SaleID, AnimalID, SalePrice)
SaleItem(SaleID, ItemID, SalePrice, Quantity)
Customer(CustomerID, Name, Address, City, State, Zip)
Employee(EmployeeID, Name, Phone, DateHired)
Animal(AnimalID, Name, Category, Breed, DateOfBirth, Gender, Registration, Color, ListPrice)
Merchandise(ItemID, Description, Category, ListPrice, Cost)

AnimalOrder(OrderID,	OrderDate,	ReceiveDate,	SupplierID,	EmpID,	ShipCost)
AnimalOrderItem(OrderID,	AnimalID,	Cost)
Supplier(SupplierID,	Name,	Contact,	Phone,	Address,	City,	State,	Zip)
Employee(EmployeeID,	Name,	Phone,	DateHired)
Animal(AnimalID,	Name,	Category,	Breed,	Gender,	Registration,	Cost)

MerchandiseOrder(PONumber,	OrderDate,	ReceiveDate,	SID,	EmpID,	ShipCost)
MerchandiseOrderItem(PONumber,	ItemID,	Quantity,	Cost)
Supplier(SupplierID,	Name,	Contact,	Phone,	Address,	City,	State,	Zip)
Employee(EmployeeID,	Name,	Phone)
Merchandise(ItemID,	Description,	Category,	QuantityOnHand)

Figure 3.51
Pet Store view integration. Data columns from similar tables can be combined into
one table. For example, we need only one Employee table. Look for tables that have
the same keys. The goal is to have one set of normalized tables that can hold the data
for all the forms and reports.

156Chapter 3: Data Normalization

Rolling Thunder Sample Integration Problem
The only way to learn database design and understand normalization is to work
through more problems. To practice the concepts of data normalization and to il-
lustrate the methods involved in combining sets of tables, consider a new prob-
lem involving a database for a small manufacturer: Rolling Thunder Bicycles. The
company builds custom bicycles. Frames are built and painted in-house. Compo-
nents are purchased from manufacturers and assembled on the bicycles according
to the customer orders. Components (cranks, pedals, derailleurs, etc.) are typically
organized into groups so that the customer orders an entire package of components
without having to specify every single item. Additional details about bicycles and
the company operations are available in the Rolling Thunder database.

To understand normalization and the process of integrating tables from various
perspectives, consider four of the input forms: Bicycle Assembly, Manufacturer
Transactions, Purchase Orders, and Components.

Builders use the Bicycle Assemble form shown in Figure 3.53 to determine the
basic layout of the frame, the desired paint styles, and the components that need
to be installed. As the frame is built and the components are installed, the workers
check off the operations. The employee identification and the date/time are stored

Figure 3.52
Pet Store class diagram. The tables become entities in the diagram. The relationships verify
that the tables are interconnected through the data. Some new data has been added for the
employees. Also, cities have been defined in a single table to simplify data entry. Likewise,
the new Breed and Category tables ensure consistency of data.

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed

157Chapter 3: Data Normalization

in the database. As the parts are installed, the inventory count is automatically
decreased. When the bicycle is shipped, a trigger executes code that records the
price owed by the customer so a bill can be printed and sent.

Collecting the data columns from the form results in the notation displayed in
Figure 3.54. Notice that two repeating groups (tubes and components) occur, but
they repeat independently of each other. They are not nested.

Components and other supplies are purchased from manufacturers. Orders are
placed as supplies run low and are recorded on a Purchase Order form. Shown in
Figure 3.55, the Purchase Order contains standard data on the manufacturer, along
with a list of components (or other supplies) that are ordered.

The notation and the 4NF tables are derived in Figure 3.56. For practice you
should work through the normalization on your own. Note that the computed col-
umns do not need to be stored. However, be careful to store the shipping cost and
discount, since those might be negotiated specifically on each order.

Payments to manufacturers are collected with a basic transaction form shown
in Figure 3.57. Note that the initial balance and balance due are computed by code
behind the form to display the effects of adding new transactions. Row entries for
purchases are automatically generated by the Purchase Order form, so this form is
generally used for payments or for corrections.

The 4NF tables resulting from the manufacturer transactions are shown in Fig-
ure 3.58. Again, work through the normalization yourself. Practice and experience
are the best ways to learn normalization. Do not be misled: It is always tempting
to read the “answers” in the book and say that normalization is easy. Normaliza-
tion becomes much more complex when you face a blank page. Investigating and
determining business rules is challenging when you begin.

The Component form in Figure 3.59 is used to add new components to the list
and modify the descriptions of the components. It can also be used to make chang-
es to the manufacturer data. Notice the use of two identification numbers: one is

Figure 3.53
Bicycle Assembly form. The main EmployeeID control is not stored directly, but
the value is entered in the FrameAssembler column of the Bicycle table when the
employee clicks the Frame box.

158Chapter 3: Data Normalization

assigned by Rolling Thunder, and the other is assigned by the manufacturer. As-
signing our own number ensures consistency of the data format and guarantees a
unique identifier. The manufacturer’s product number is used to help place orders,
since the manufacturer would have no use for our internal data.

The 4NF tables derived from the Component form are shown in Figure 3.60.
For the most part they are straightforward. One interesting difference in Rolling
Thunder is the treatment of addresses and cities. Many business tables for custom-
ers, employees, suppliers, and so on, contain columns for city, state, and ZIP code.
Technically, there is a hidden dependency in this basic data because the three are

BicycleAssembly(SerialNumber, Model, Construction, FrameSize, TopTube,
	 ChainStay, HeadTube, SeatTube, PaintID, PaintColor, ColorStyle, ColorList,
 	 CustomName, LetterStyle, EmpFrame, EmpPaint, BuildDate, ShipDate,
 (Tube, TubeType, TubeMaterial, TubeDescription),
 (CompCategory, ComponentID, SubstID, ProdNumber, EmpInstall, DateInstall,
	 Quantity, QOH)

Bicycle(SerialNumber, Model, Construction, FrameSize, TopTube, ChainStay,
	 HeadTube, SeatTube, PaintID, ColorStyle, CustomName, LetterStyle,
	 EmpFrame, EmpPaint, BuildDate, ShipDate)
Paint(PaintID, ColorList)
BikeTubes(SerialNumber, TubeID, Quantity)
TubeMaterial(TubeID, Type, Material, Description)
BikeParts(SerialNumber, ComponentID, SubstID, Quantity, DateInstalled, EmpInstalled)
Component(ComponentID, ProdNumber, Category, QOH)

Figure 3.54
Notation for the BicycleAssembly form. There are two repeating groups, but they
are independent. The 4NF tables from this form are displayed, but you should try to
derive the tables yourself.

PurchaseOrder(PurchaseID, PODate, EmployeeID, FirstName, LastName,
	 ManufacturerID, MfgName, Address, Phone, CityID, CurrentBalance,
	 ShipReceiveDate,
 (ComponentID, Category,ManufacturerID, ProductNumber, Description, PricePaid,
	 Quantity, ReceiveQuantity, ExtendedValue, QOH, ExtendedReceived),
 ShippingCost, Discount

PurchaseOrder(PurchaseID, PODate, EmpoyeeID, ManufacturerID, ShipReceiveDate,
	 ShippingCost, Discount)
EmployeeID(EmployeeID, FirstName, LastName)
Manufacturer(ManufacturerID, Name, Address, Phone, Address, CityID, CurrentBalance)
City(CityID, Name, ZIPCode)
PurchaseItem(PurchaseID, ComponentID, Quantity, PricePaid ReceivedQuantity)
Component(ComponentID, Category, ManufacturerID, ProductNumber, Description,
	 QOH)

Figure 3.55
Tables from the Purchase Order form. Note that the computed columns (extension is
price * quantity) are not stored in the tables.

159Chapter 3: Data Normalization

Figure 3.56
Purchase Order form. Only the items ordered is a repeating group. The Look for
Products section is a convenience for users and does not store data. The Date
Shipment Received box is initially blank and is filled in when the product arrives at
the loading dock.

Figure 3.57
Manufacturer Transaction form. The balance due is stored in the database, but only
one time. The Initial Balance and Balance Due boxes are computed by the form to
display the effect of transactions added by the user.

160Chapter 3: Data Normalization

related. Hence a database can save space and data entry time by maintaining a
separate City table. Of course, a City table for the entire United States, much less
the world, could become large. A more challenging problem is that there is not
a one-to-one relationship between cities and ZIP codes. Some cities have many
ZIP codes, and some ZIP codes cover multiple cities. Rolling Thunder resolves
these two issues by keeping a City table based on a unique CityID. If space is at a
premium, the table can be reduced to contain only cities used in the database. As
customers arrive from new cities, the basic city data is added. The ZIP code prob-
lem is handled by storing a base ZIP code for each city. The specific ZIP code re-
lated to each address is stored with the appropriate table (e.g., Manufacturer). This
specific ZIP code could also be a nine-digit code that more closely identifies the
location of the customer or manufacturer. Although it is possible to create a table

ManufacturerTransactions(ManufacturerID, Name, Phone, Contact, BalanceDue,
 (TransDate, Employee, Amount, Description)

Manufacturer(ManufacturerID, Name, Phone, Contact, BalanceDue)
ManufacturerTransaction(ManufacturerID, TransactionDate, EmployeeID, Amount,
	 Description)

Figure 3.58
Tables for Manufacturer Transaction form. This normalization is straightforward.
Note that the TransactionDate column also holds the time, so it is possible to have
more than one transaction with a given manufacturer on the same day.

Figure 3.59
Component form. Note that components have an internal ID number that is assigned
by Rolling Thunder employees. Products usually also have a Product number that is
assigned by the manufacturer. It is difficult to rely on this number, since it might be
duplicated across suppliers and the formats vary widely.

161Chapter 3: Data Normalization

ComponentForm(ComponentID, Product, BikeType, Category, Length,
	 Height, Width, Weight, ListPrice, Description, QOH,
	 ManufacturerID, Name, Phone, Contact, Address, ZIPCode, CityID,
	 City, State, AreaCode)

Component(ComponentID, ProductNumber, BikeType, Category,
	 Length, Height, Width, Weight, ListPrice, Description, QOH,
	 ManufacturerID)
Manufacturer(ManufacturerID, Name, Phone, Contact, Address,
	 ZIPCode, CityID)
City(CityID, City, State, ZIPCode, AreaCode)

Figure 3.60
Tables derived from the Component form. The ZipCode in the Manufacturer table is
specific to that company (probably a nine-digit code). The ZipCode in the City table
is a base (five-digit) code that can be used for a reference point, but there are often
many codes per city.

Bicycle(SerialNumber, Model, Construction, FrameSize, TopTube, ChainStay, HeadTube,
	 SeatTube, PaintID, ColorStyle, CustomName, LetterStyle, EmpFrame,
	 EmpPaint, BuildDate, ShipDate)
Paint(PaintID, ColorList)
BikeTubes(SerialNumber, TubeID, Quantity)
TubeMaterial(TubeID, Type, Material, Description)
BikeParts(SerialNumber, ComponentID, SubstID, Quantity, DateInstalled, EmpInstalled)
Component(ComponentID, ProductNumber, BikeType, Category, Length, Height, Width,
	 Weight, ListPrice, Description, QOH, ManufacturerID)
PurchaseOrder(PurchaseID, PODate, EmployeeID, ManufacturerID,
	 ShipReceiveDate, ShippingCost, Discount)
PurchaseItem(PurchaseID, ComponentID, Quantity, PricePaid, ReceivedQuantity)
Employee(EmployeeID, FirstName, LastName)
Manufacturer(ManufacturerID, Name, Contact, Address, Phone,
	 CityID, ZipCode, CurrentBalance)
ManufacturerTransaction(ManufacturerID, TransactionDate, EmployeeID, Amount,
	 Description, Reference)
City(CityID, City, State, ZipCode, AreaCode)

Figure 3.61
Integrated tables. Duplicate tables have been combined, and normalization (4NF)
has been verified. Also draw a class diagram to be sure the tables link together. Note
the addition of the Reference column as an audit trail to hold the corresponding
PurchaseID. Observe that some tables (e.g., Employee) will need additional data.

162Chapter 3: Data Normalization

of complete nine-digit codes, the size is enormous, and the data tends to change.
Companies that rely heavily on nine-digit mailings usually purchase verification
software that contains authenticated databases to check their addresses and codes.

Look at the tables from Figures 3.54, 3.55, 3.59, and 3.60 again. Notice that
similar tables are listed in each figure. In particular, look for the Manufacturer
tables. Observe that the overlapping tables often contain different data from each
form. In practice, particularly when there is a team of designers, similar columns
might have different names, so be careful. The objective of this step is to combine
the similar tables. The best way to start is to look for common keys. Tables that
have the same key columns should be combined. For example, the Manufacturer
variations are reproduced in Figure 3.61. The version from the PO table can be
extended by adding the Contact and ZIPCode columns from the other variations.

After combining duplicate tables, you should have a single list of tables that
contain all of the data from the forms. This list is shown in Figure 3.62. It is also
a good idea at this point to double-check your work. In particular, verify that the
keys are unique and that composite keys represent many-to-many relationships.
Then verify the 3NF rules: Does each nonkey column depend on the whole key
and nothing but the key? Also look for hidden dependencies that you might need
to make explicit. Be sure that the tables can be linked back together through the
data in the columns. You should be able to draw lines between all the tables. Now
is a good time to draw a more complete class diagram. Each of the normalized ta-
bles becomes an entity. The relationships show how the tables are linked together.
(See the Rolling Thunder database for the complete example.)

Finally, examine each table and decide whether you might want to collect addi-
tional data. For example, the Employee table would undoubtedly need more data,
such as Address and DateHired. Similarly, you saw that the ManufacturerTransac-
tion table could use a Reference column that will contain the PurchaseID when a
transaction is automatically generated by the Purchase Order form. This column
functions as an audit trail and makes it easier to trace accounting transactions back
to the source. Some people might use date/time for the same purpose, but a round-
off to seconds could cause problems.

Data Dictionary
How do you record the details for all of the columns and tables? In the process
of collecting data and creating normalized tables, be sure to keep a data dictionary
to record the data domains and various assumptions you make. A data dictionary
or data repository consists of metadata, which is data that describes the data
stored in the database. It typically lists all of the tables, columns, data domains,

PO Manufacturer(ManufD, Name, Address, Phone, CityID, CurrentBalance)
Mfg Manufacturer(ManufID, Name, Phone, Contact, BalanceDue)
Comp Manufacturer(ManufID, Name, Phone, Contact, Address, ZIPCode, CityID)

Figure 3.62
Multiple versions of the Manufacturer table. Tables with the same key should be
combined and reduced to one table. Moving Contact and ZipCode to the first table
means the other two tables can be deleted. Do not be misled by the two names
(CurrentBalance and BalanceDue) for the same column.

163Chapter 3: Data Normalization

and assumptions. It is possible to store this data in a notebook, but it is easier to
organize if it is stored on a computer. Some designers create a separate database to
track the underlying project data. Specialized computer tools known as computer-
aided software engineering (CASE) tools help with software design. One of their
strengths is the ability to create, store, and search a comprehensive data dictionary.

DBMS Table Definition
When the logical tables are defined and you know the domains for all of the col-
umns, you can enter the tables into a DBMS. Most systems have a graphical in-
terface that makes it easier to enter the table definitions. In some cases, however,
you might have to use the SQL data definition commands described in Chapter
4. In both cases, the process is similar. Define the table name, enter the column
names, select the data type for the column, and then identify the keys. Sometimes
keys are defined by creating a separate index. Some systems enable you to create a
description for each column and table. This description might contain instructions
to users or it might be an extension of your data dictionary to help designers make
changes in the future.

At this time, you should determine which keys you want to generate with an au-
tonumber function. Similarly, identify any computed columns and specify the cal-
culations needed for them. Some databases enable you to store these calculations
within the database definition; others require that you write them into queries.

You can also set default values for each column to speed up data entry. In the
video store example, you might set a default value for the base rental rate. De-
fault values can be particularly useful for dates. Most systems enable you to set
a default value for dates that automatically enters the current date. At this point
you should also set validation rules to enforce data integrity. As soon as the tables
are defined, you can set relationships. In Microsoft Access, go to the relationships

Figure 3.63
Table definition in Microsoft Access. Note the primary key indicator. Also note that
text size limits and numeric subtypes are defined in the list at the bottom of the form.

164Chapter 3: Data Normalization

screen, add all of the tables, then draw lines to show the connections (much like
the class diagram). Be sure to check the boxes that specify “Enforce referential
integrity,” “Cascade on delete,” and “Cascade on update.” With SQL Server and
Oracle, you specify referential integrity as constraints when you define the tables.

Figure 3.63 shows the form that Microsoft Access uses to define tables. Pri-
mary keys are set by selecting the appropriate rows and clicking an icon. Data
type details such as character length and numeric subtype are set in the list at the
bottom of the form. Changes to the table can be made at any time, but if data al-
ready exists in the table, you might lose some information if you select a smaller
data type.

Figure 3.64 shows the form that can be used within Oracle to create tables—it
is the Schema Manager. Primary and foreign keys can be set using the Constraints
tab. Keep in mind that once you create a table in Oracle (and SQL Server), it can
be difficult to change later. It is always possible to add new columns, but you
might not be permitted to change the data type of an existing column or to delete
columns.

If you are using Oracle version 8 or above, perform one additional step once
the tables have been created by telling it to analyze the tables. For example, use
the SQL Plus tool to issue commands for each table similar to: Analyze table Ani-
mal compute statistics. These commands tell Oracle to generate statistics for each
table (notice the Statistics tab in the Schema Manager). Oracle uses these statistics
to dramatically improve performance of queries.

Figure 3.64
Oracle Schema Manager for creating tables. Primary keys and foreign keys are set in
the Constraints tab. For primary key columns, be sure to also check that the values
cannot be null.

165Chapter 3: Data Normalization

Figure 3.65 shows the forms that SQL Server uses to create and edit tables. You
can right-click the design to set relationships and constraints. Relationships are
defined as constraints and all constraints are stored as separate rules.

It is easy to see the similarities of the database design tools for the various
products. Yet more important differences between the systems lie in the data types
used within each system. Although some of the data type names appear similar,
be particularly careful with Oracle databases. Oracle’s underlying data types are
different—particularly in dealing with numbers. Over time, the DBMS vendors
have loosely adopted the SQL standard data types. In fact, you can use the generic
names in almost any DBMS. However, each vendor adds additional types or inter-
esting twists. Designers often work with the vendor’s native data types instead of
the generic names.

For both Oracle and SQL Server, the graphical forms seem easy to use; howev-
er, experienced developers almost always rely on direct SQL statements stored in
a text file to create tables. Figure 3.66 gives an example for the Animal table. You
simply create a list of all of the table creation statements and store them in a text
file. This file is read by the database SQL processor to create the tables. The list
has several advantages over the graphical approach: (1) It is easier to change the
text file. (2) It is easier to re-create the tables on a different database or different
computer. (3) Changing a table definition usually requires creating a new table,
copying in the existing data, deleting the old table, and renaming the new one.
With the text file, you can quickly define the new table and run the statement to
create the table. (4) It is easier to specify the primary key and foreign key relation-
ships in the text file. Most of the graphical approaches are cumbersome and hard

Figure 3.65
Microsoft SQL Server form for creating tables. You can right-click and choose a
menu item to create relationships.

166Chapter 3: Data Normalization

to read. Also, some versions of Oracle had stricter limits using the graphical inter-
face that could be avoided by creating the SQL statements directly. (5) Because
of the foreign key constraints, the order in which the tables are created is critical.
You cannot refer to a table in the foreign key constraint unless that table already
has been created. For example, the Category and Breed tables must be created
before the Animal table. Keeping the table definitions in a text file means you only
have to set up the sequence one time. If you are uncertain about the SQL syntax
for creating a table, you can examine existing structure files, or you can use the
Schema Manager to enter the basic information, then click the Show SQL button
to cut and paste the underlying SQL code.

Note that the DB Design tool can automatically generate the CREATE TABLE
commands using the data types for each of the major DBMSs. It even analyzes the
foreign key references and generates the tables in the proper order. If you prefer
to stick with the individual vendor tools, note that almost all of them (except Ac-
cess) have an option to display the CREATE TABLE command defined by the
visual tool. You can copy-and-paste this command into a separate text file for fu-
ture reference. However, you will have to sort the command into the correct order
yourself.

Data Volume and Usage
One more step is required when designing a database: estimating the size of the
resulting database. The process is straightforward, but you have to ask a lot of
questions of the users. When you design a database, it is important to estimate the
overall size and usage of the database. These values enable you to estimate the
hardware requirements and cost of the system. The first step is to estimate the size
of the tables. Generally, you should investigate three situations: How big is the

CREATE TABLE Animal
(
	 AnimalID	 INTEGER,
	 Name	 	 VARCHAR2(50),
	 Category	 VARCHAR2(50),
	 Breed	 	 VARCHAR2(50),
	 DateBorn	DATE,
	 Gender	 	 VARCHAR2(50)
	 	 CHECK (Gender=’Male’ Or Gender=’Female’
	 	 	 Or Gender=’Unknown’ Or Gender Is Null)
	 Registered	 VARCHAR2(50),
	 Color	 	 VARCHAR2(50),
	 ListPrice	 NUMBER(38,4)
	 	 DEFAULT 0,
	 Photo	 	 LONG RAW,
	 ImageFile	VARCHAR2(250),
	 ImageHeight	 INTEGER,
	 ImageWidth	 INTEGER,
	 	 CONSTRAINT pk_Animal PRIMARY KEY (AnimalID)
	 	 CONSTRAINT fk_BreedAnimal FOREIGN KEY (Category, Breed)
	 	 REFERENCES Breed(Category, Breed)
	 	 ON DELETE CASCADE
	 CONSTRAINT fk_CategoryAnimal FOREIGN KEY (Category)
	 	 REFERENCES Category(Category)
	 	 ON DELETE CASCADE
);

Figure 3.66
Oracle SQL Statements to create the Animal table. The statements for SQL Server are
similar—just change the data types.

167Chapter 3: Data Normalization

database now? How big will the database be in 2 or 3 years? and How big will the
database be in 10 years?

Begin with the list of normalized tables. The process consists of estimating the
average number of bytes in each row of the table and then estimating the number
of rows in the table. Multiply the two numbers to get an estimate of the size of the
table, and then add the table sizes to estimate the total database size. This number
represents the minimum size of the database. Many databases will be three to five
times larger than this base estimate. Some systems have more complex rules and
estimation procedures. For example, Oracle provides a utility to help you estimate
the storage required for the database. You still begin with the data types for each
column and the approximate number of rows. The utility then uses internal rules
about Oracle’s procedures to help estimate the total storage space needed.

An example of estimating data volume is presented in Figure 3.67. Consider
the Customer table. The database system sets aside a certain amount of storage
space for each column of data. The amount used depends on the particular system,
so consult the documentation for exact values. In the abbreviated Customer table,
the identification number takes 4 bytes as a long integer, and you estimate that
Names take an average of 15 characters. Other averages are displayed in the table.
Better estimates could be obtained from statistical analysis of sample data. In any
case the estimated size of one row of Customer data is 76 bytes. Evaluating the
business provides an estimate of approximately 1,000 customers; hence, the Cus-
tomer table would be approximately 76K bytes.

Estimating the size of the Order table follows a similar process, yielding an
estimate of 16 bytes per row. Managers might know how many orders are placed
in a given year. However, it might be easier to obtain the average number of or-
ders placed by a given customer in 1 year. If that number is 10, then you could

Customer(C#,	Name,	Address,	City,	State,	Zip)

Order(O#,	C#,	Odate)

OrderItem(O#,	P#,	Quantity,	SalePrice)

Row:									4	+		15				+			25					+		20		+	2				+	10			=	76		

Row:			4	+		4		+			8						=	16		

Row:										4	+	4				+			4								+		8												=	20	

Business	rules
• Three	year	retention.
• 1000	customers.
• Average	10	orders	per	

customer	per	year.
• Average	5	items	per	order.

Ordersin yrs Customers
Orders

Customer
yrs3 1000

10
3 30 000= =* * ,

OrderLines Orders
Lines

Order
= =30 000

5
150 000, * ,

• Customer 76	*	1000 76,000
• Order 16	*	30,000 480,000
• OrderItem 20	*	150,000 3,000,000
• Total 3,556,000

Figure 3.67
Estimating data volume. First estimate the size of each row, and then estimate the
number of rows in the table. If there is a concatenated key, you will usually multiply
an average value times the number of rows in a prior table, as in the calculation for
OrderItem.

168Chapter 3: Data Normalization

expect 10,000 orders in a given year. Similarly, to get the number of rows in the
OrderItem table, you need to know the average number of products ordered on
one order form. If that number is 5, then you can expect to see 150,000 rows in the
OrderItem table in 1 year.

The next step is to estimate the length of time data will be stored. Some com-
panies plan to keep their data online for many years, whereas others follow a strict
retention and removal policy. For legal purposes data must be maintained for a
certain number of years, depending on its nature. Keep in mind that agencies such
as the IRS also require that retrieval software (e.g., the DBMS) be available to
reproduce the data.

In addition to the basic data storage, your database will also reserve space for
indexes, log files, forms, programs, and backup data. Experience with a particular
database system will provide a more specific estimate, but the final total will prob-
ably be three to five times the size of the base estimate.

The final number will give you some idea of the hardware needed to support
the database. Although performance and prices continue to change, only small
databases can be run effectively on personal computers. Larger databases can be
moved to a file server on a local area network (LAN). The LAN provides access
to the data by multiple users, but performance depends heavily on the size of the
database, the characteristics of the DBMS, and the speed of the network. As the
database size increases (hundreds or thousands of megabytes), it becomes neces-
sary to move to a dedicated computer to handle the data. Very large databases
(terabytes) need multiple computers and specialized disk drives to minimize ca-
pacity and performance bottlenecks. The data estimates do not have to be perfect,
but they provide basic information that you can give to the planning committee to
help allocate funds for development, hardware, software, and personnel.

While you are talking with the users about each table, you should ask them to
identify some basic security information. You will eventually need to assign secu-
rity access rights to each table. Chapter 10 presents the details, but for now you
should find out which people use the table, and which people should be denied
some privileges. For example, clerks who order merchandise should not be al-
lowed to acknowledge receipt of that merchandise. Otherwise, an unethical clerk
could order merchandise, record it as being received, and then steal it. Four basic
operations can be granted to data: read it, change it, delete it, or add new data. You
should keep a list of who may or may not access each table.

 Summary
Database design relies on normalization, or the process of splitting data into ta-
bles. Ultimately, each table refers to a single entity or concept. Each table must
have a primary key that uniquely identifies each row of data. To create the tables,
you begin with a collection of data—generally derived from a user form or report.
You reach 1NF by finding the repeating groups of data and putting them in a sepa-
rate table. Next, you go through each of the intermediate tables and identify pri-
mary keys. You reach 2NF by checking each nonkey column and asking whether
it depends on the whole key. If not, put the column into a new table along with the
portion of the key that it does depend on. To reach 3NF, you check to see whether
the nonkey column depends on anything that is not in the key. If so, pull out the
column and the dependent column and put them into a new table. BCNF states
that you cannot have hidden dependencies—all dependencies must be part of the
primary key. 4NF looks at problems with keys, and states that you cannot have

169Chapter 3: Data Normalization

two (or more) independent relationships within one table. In all cases, when you
find incorrect dependencies or hidden dependencies, you solve the problem by
splitting the tables and making the dependency explicit with a primary key.

Each form, report, or description that you collect from a user must be analyzed
and a set of 4NF tables defined. For large projects several analysts may be given
different forms, resulting in several lists of normalized tables. These tables must
then be integrated into one standardized set of normalized data tables. Along the
way you must specify the domain, or type of data, for each column. This final list
of tables, with any comments, will be entered into the DMBS to start the database
construction.

You should also collect estimates of data volume in terms of number of rows for
each table. These numbers will enable you to estimate the average and maximum
size of the database so that you can choose the proper hardware and software. You
should also collect information on security conditions: Who owns the data? Who
can have read access? Who can have write access? All of these conditions can be
entered into the DBMS when you create the tables.

At this point, after you review your work, you can enter sample data to test
your tables. When you are certain that the design is complete and accurate, you
can begin building the application by constructing queries and creating forms and
reports.

A Developer’s View
Miranda learned that the class diagram is converted into a set of normalized ta-
bles. These tables are the foundation of the database application. Database design
is crucial to developing your application. Engrave the basic normalization rule
onto the back of your eyelids: Each nonkey column depends on the whole key
and nothing but the key. Since the design depends on the business rules, make
certain that you understand the rules. Listen carefully to the users. When in doubt,
opt for flexibility. For your class projects, you should now be able to create the
list of normalized tables. You should also be able to estimate the size of the data-
base.

170Chapter 3: Data Normalization

Key Terms

Review Questions
1.	 What is dependency?
2.	 What are the three main rules for normalization?
3.	 What problems do you encounter if data is not stored in normalized tables?
4.	 How are BCNF and 4NF different from 3NF?
5.	 What are the primary types of data that can be stored in a table?
6.	 Why is referential integrity important?
7.	 What complications are caused by setting referential integrity rules?
8.	 What problems do object-oriented designs cause in a relational database

model and how do you compensate for them?
9.	 What elements do you look for when integrating views?
10.	 How do you estimate the potential size of a database?

atomic
autonumber
Boyce-Codd normal form (BCNF)
cascading delete
composite keys
data dictionary
data integrity
data repository
data volume
default values
deletion anomaly
dependence
domain-key normal form (DKNF)
first normal form (1NF)

foreign key
fourth normal form (4NF)
globally-unique identifier (GUID)
hidden dependency
insertion anomaly
master-detail
metadata
pseudo column
referential integrity
repeating groups
second normal form (2NF)
surrogate keys
third normal form (3NF)

171Chapter 3: Data Normalization

Exercises
1.	 A local family has a large garden and regularly sells produce at the local

Farmer’s Market. Up to now the group has just picked items and sold them
each week—basically tracking just the amount of money received. Now the
family wants to track sales by types of items (potatoes, lettuce, tomatoes,
carrots, and so on); both in terms of quantity sold and the amount of money
received. They want to use the data to determine planting amounts for the
coming year. The crops require about the same level of fertilizer and watering
so profits are mainly determined by the yield and the price received. No one
wants to create individual item receipts for each sale—that would take too
much time, but they will use a tally sheet to record the number of items sold
and the prices. Then enter the sales into a computer (or tablet) at the end of
the day. Some items are sold by the unit (such as melons or lettuce--bunch)
while others, such as carrots, are sold by the pound. The family starts out the
day with a set price, but if items are not selling well and have a limited shelf
life, the price is reduced. So the amount sold needs to be recorded at each
price point.

Market Location
Date
Family member in charge

Weather comments
Crowd comments
Competition

Item Quantity
at Start

Sale
Price

Quantity
Sold

Unit/
Pounds

Comments

Carrots 20 $1.00 5 Pounds Few buyers
Carrots 0.50 10 Pounds
Tomatoes 40 $2.00 20 Pounds
Tomatoes $1.50 10 Pounds
Melons 10 $3.00 10 Units Cantaloupe

172Chapter 3: Data Normalization

 2.	 Your doctor told you that you need to get more exercise—particularly
strength-based. So you decided to start lifting weights at the gym. To make
it more interesting, you created an application to track your progress on each
exercise. To make it easier to enter data, the application is based on the day
and enables you to enter additional information such as health (excellent,
good, tired, weak, sick), and general comments. For most weight-lifting
exercises, you perform multiple lifts (repetitions) within a set, then change
the weight for a new set and do another set of repetitions.

Date:
Weight:
Comments

Health: <pick>
Total time:

Exercise Weight/set # Reps Comments

173Chapter 3: Data Normalization

3.	 You have been hired by the student sports director to build a database for
the intramural basketball leagues. The leagues have several teams each year.
For the most part the teams get to select the level of competition: A, B, or
C. There is more prestige to winning the A (or B) league so the better teams
select into that league. There is also a league for teams composed of players
all under 6 feet, and there is also a co-ed league that requires at least 2
women on the floor for each game. For the most part, players are assigned to
a single team, but they do have the ability to switch to a different team if they
desire. So players sign up for each team game but no one tracks points scored
by each person. Only the total team points and win/loss are tracked.

Team Name	 	 	 	 	 	 League

Game Date, Time, Court	 	 playoff y/n
Referee, phone

Player Student/faculty/staff Height

Opponent

Points	 	 Opponent Points
Won/Loss

174Chapter 3: Data Normalization

4.	 You recently added the twentieth device to your wireless network. Well, it
feels like 20, but it might be 10 or even 30; you no longer remember which
devices have wireless and when they were last updated. Partly to gain faster
speeds (to handle all of the devices), you are planning to replace your main
wireless router. Which means you will have to update all of the wireless
devices. And then you will have to deal with all of your friends’ wireless
devices when they come by. You considered buying a commercial network
management tool but that seems too expensive. Instead, you want to build
a small database application to record basic information about the wireless
devices and the IP addresses they are assigned so that you can quickly
identify each device when you need it. All devices have a unique MAC
(media access control) address which the network uses to identify the item.
Sometimes you have to change the MAC address, such as with routers so
the upstream device can recognize it (common with cable modems). A big
problem with wireless is that older devices do not support newer standards
and you have to decide if you want to lower your overall standards to support
older devices, or run two or three different wireless systems. You also need
to track the owner of the device to decide if you want to remove support for
it. Most devices use dynamic assignment (DHCP) to obtain a local IP address
so it can change over time. But sometimes you need to set a static address to
a device to make it accessible (such as older printers). You only need the IP
address once in a while but when you need it you want to record it in case
you might need it again. The values you need the most often can eventually
be made static.

Device	 	 Name	 	 MAC Address
Category (router, cable modem, bridge, PC, phone, …)

Year	
Highest wireless standard (b, g, n, ac, …)
Max bit rate (56, 100, 150, 300, 600, 900, 1000, …)
Highest encryption (DES, AES, WPA2, …)

Upstream network device:

Owner

Date updated
Source of update

Date IP Address DHCP/Static Comments

175Chapter 3: Data Normalization

5.	 A friend of yours is starting a business to build semi-customized cases for
cell phones and laptops. The focus of the case is in the design—colors,
logos, artwork and so on. She plans to buy relatively plain cases and then
paint them with various designs. She can even take photographs from
customers and incorporate those into the artwork. Existing stores and Web
sites focus on finding a case to fit a particular device, but she thinks the
process should work the other direction. Customers will pick the design
and artwork and then specify the device. Cases for popular devices will be
supported automatically and kept in stock, but other devices will take time
to customize. The device aspect ratio is a particular problem because the
artwork is relatively easy to scale up or down in size but not if the ratio of
width to height changes too far. Then it has to be redrawn. And Apple devices
tend to use the older 4:3 aspect ratio compared to other companies that use
the newer HD 16:9 ratio.

Design Name	 	 Basic colors	 	 File
Description
Category
Aspect Ratio

Base price

Standard Stock Devices

Date created
Date modified
Date stopped

Artist
Phone
Commission rate

Device Name Price Quantity on Hand Device type Height Width

Customer name
Phone
Address
City, State, ZIP

Sale Date
Shipment date

Item Phone/Device Sale Price Quantity Stock/Custom

Payment Method
Subtotal
Tax
Shipping
Total

176Chapter 3: Data Normalization

6.	 A friend of yours is starting a “vintage” clothing shop. She will buy older
clothes (lightly used) from people, clean and mend them if necessary, and
then sell them in her store. Some older fashion items often become popular
years later and “fashionistas” mix and match items to achieve their own style.
But as the inventory grows, your friend needs a better way to track which
items are popular to help figure out what price she should pay for clothing
and when prices on existing items should be changed. Occasionally, a good
customer will ask her to keep an eye out for a special item—particularly in
terms of sizes. So she also needs to keep a list of search items. Currently, she
tracks items by placing a tag on them when she buys them. The tag includes
a basic description of the item, where and when she bought it, and eventually,
she adds data to the tag that says when it was sold, the sale price and then the
price/cost she paid for the item.

Item Description
Category
Men/Women/Child
Base color
Size

Designer/Manufacturer
Mfg. Original Price
History if known

Purchase Location
Purchase Date
Amount (coded on tag)
Condition

Repairs made:

Sale Date
Customer Name
E-mail
Phone

Sale Price

Search Item Description
Designer
Color	 	 	 Desired Size
Category
Estimated Price
Substitutions (such as color)

Date Start
Date Needed
Date Found

Location
Price Paid
Condition

Customer Name
Phone
E-mail

Sale Date
Sale Price

177Chapter 3: Data Normalization

7.	 You have volunteered to work for a local politician who is a friend of the
family. She wants a system to track information about contacts with voters.
Most voters in the district do not contact the office, but she wants to be
sure to track information on those who do make contact. It is particularly
important to track those who have strong opinions on various legislation.
It is also important to track those who need rides to the polls each year or
help with absentee ballots. And it is absolutely critical to track the requests
for money sent to each person and the amount received each time. Note
that houses are assigned to districts and regions; but those designations can
change over time. Donors are often organized into groups where one person
(a consolidator) collects money from other donors. Over time, voters and
donors are assigned various tags (such as whale, whiner, or various issues)
which are used to target future letters to each person.

Voter Last Name, First Name, Gender
Phone
Address, City, State, ZIP
District #, Region

Party (repub/democ/ind)
Probability of voting way we
want:

Contact from voter

Date/Time Method Reason Importance Staff member
Phone
Vol/Paid

Fund-raising campaign
Campaign year

Event/Mailing/Request

Date Event/Mailing Primary topic Location Target

Donor Name
E-mail
Consolidator
Labels/Tags

Amount Date Event Comments

178Chapter 3: Data Normalization

Sally’s Pet Store
8.	 Define the tables needed to extend the Pet Store database to handle genealogy

records for the animals.
9.	 Define the tables needed to extend the Pet Store database to handle health

and veterinary records for the animals.
10.	 Sally wants to add payroll and monthly employee evaluation information to

the database. Define the tables needed.
11.	 Sally wants to add pet grooming services. Define the tables necessary to

schedule appointments, assuming two workers will be dedicated to this area.
Rolling Thunder Bicycles
12.	 Using the class diagram, identify five business rules that are described by

the table definitions and table relationships (similar to the ListPrice rules
described by the Sale example).

13.	 The company wishes to add more data for human resources, such as tax
withholding, benefits selected, and benefit payments by the employees and
by the company. Research common methods of handling this type of data and
define the required tables.

Corner Med
14.	 Physicians and medical administrators are often interested in a hierarchical

classification of illnesses and diagnoses. Some of the hierarchy is built into
the ICD codes, but the managers and physicians want to be able to create
reports that roll up the weekly diagnoses into specific categories. They
also want the ability to define new categories. Essentially, the physician
administrators will create a medical category and list the various conditions
that apply to the category. For example, Broken Bones could be a general
category, and specific fractures (e.g., S62.2 Fracture of first metacarpal bone
using ICD10) would comprise the list of conditions. Define the table(s)
needed to handle this summarization data. Optional: What if the physicians
what to create multiple levels within the summary data? For example, Family
Practice could be a parent category to Childhood Diseases, Accidents, Minor
Illnesses, and Checkups. Each of these could have subcategories.

15.	 The physicians would like to add another step in the patient examination
process. They want more complete records and the ability to handle cases
where the diagnosis is not immediately available. Specifically, the physicians
want to record the symptoms described by the patient at each visit. This
record would also include the severity of the symptom and whether it was
observed by the physician (or nurse). At each visit the patient’s weight,
blood pressure, and heart rate are also recorded (children are also measured
for height). Along the same lines, they want to record any tests taken and
the results of the tests. The tests can include simple physical tests such as
reflexes as well as chemical tests. Define the tables and modify the class
diagram to handle this additional data.

Corner
Med

Corner
Med

179Chapter 3: Data Normalization

16.	 In 2006, Benjamin Brewer, M.D., a practicing physician, listed common
statistics for a medical office [“A Doctor Faces Tough Decision to Stop
Taking New Patients,” The Wall Street Journal, February 7, 2006]. Read the
article and use the numbers to estimate the size of the database after 1 year
and 5 years of operation. Some basic data from the article: 3 physicians,
2,500 patients, 90 patients per week in office visits per physician. But, read
the article to gain perspective on the situation. It is available in your library.

Web Site References

http://ibmdatamag.com/ IBM Data Magazine
http://www.for.gov.bc.ca/his/datadmin/ Canadian Ministry of Forests data

administration site, with useful
information on data administration and
design. Start with the development
standards.

http://support.microsoft.com/kb/100139/en-us Introduction to normalization.
http://www.phpbuilder.com/columns/barry20000731.
php3

Normalization examples.

Additional Reading
Date, C. J., An Introduction to Database Systems, 8th ed. Reading: Addison-

Wesley, 2003. [A classic higher-level textbook that covers many details of
normalization and databases.]

Fagin, R. “Multivalued dependencies and a new normal form for relational
databases,” ACM Transactions on Database Systems, 2 no. 3 (September
1977), pp. 262-278. [A classic paper in the development of normal forms.]

Fagin, R. “A Normal Form for Relational Databases That Is Based on Domains
and Keys,” ACM Transactions on Database Systems, 6 no. 3 (September
1981), pp 387-415. [The paper that initially described domain-key normal
form.]

Kent, W. “A simple guide to five normal forms in relational database theory,”
Communications of the ACM, 26 no. 2 (February 1983), 120-125. [A nice
presentation of normalization with examples.]

Rivero, L., J. Doorn, and V. Ferraggine, “Elicitation and Conversion of Hidden
Objects and Restrictions in a Database Schema, Proceedings of the 2002
ACM Symposium on Applied Computing, 2002, 463-469. [Good discussion
of referential integrity issues and problems with weak designs heavily
dependent on surrogate ID columns.]

Wu, M.S., “The Practical Need for Fourth Normal Form,” Proceedings of the
Twenty-third SIGCSE Technical Symposium on Computer Science Education,
1992, 19-23. [A small study showing that fourth normal form violations are
common in business applications.]

180Chapter 3: Data Normalization

Appendix: Formal Definitions of Normalization
One of the strengths of the relational database model is that it was developed from
the mathematical foundations of set theory. Although it is not necessary to know
the formal definitions, sometimes they make it easier to understand the process.
For a more detailed description of the normal forms and the complications, you
should read C. J. Date’s advanced textbook. Keep in mind that the formal defi-
nitions use specific terms. Figure 3.1A lists the major terms and their common
interpretation. Although the formal terms are more accurate, few people have a
common understanding of the terms, so in most conversations, it is easier to use
the informal terms.

Initial Definitions
A relation is a set of attributes with data that changes over time. Each attribute has
a corresponding domain and refers to some real-world characteristic. The formal
definitions refer to subsets of attributes, which are collections of the columns. The
data value returned within tuples for a specified subset of attributes X is denoted
t[X].

The essence of normalization is to recognize that a set of attributes has some
real-world relationships. The goal is to accurately portray these relationship con-
straints. These semantic constraints are known as functional dependencies (FD).
Definition: Functional Dependency and Determinant
Where X and Y are subsets of attributes, a functional dependency is denoted as X
→ Y, read as (X implies Y or X determines Y) and holds when any rows of data
that have identical values for the X attributes always have identical values for the
Y attributes. That is, for tuples t1 and t2 of R, if t1[X] = t2[X], then t1[Y] = t2[Y].
In an FD, X is also known as a determinant, because given the dependency, once
you are given the values for the X attributes, it determines the resulting values for
the Y attributes.

Formal Definition Informal
Relation A set of attributes with data that

changes over time. Often denoted R.
Table

Attribute Characteristic with a real-world domain.
Subsets of attributes are multiple
columns, often denoted X or Y.

Column

Tuple The data values returned for specific
attribute sets are often denoted as t[X].

Row of data

Schema Collection of tables and constraints and
relationships.

Functional
dependency

X → Y Business rule
dependency

Figure 3.1A
Terminology. The formal terms are more accurate and defined mathematically, but
difficult for developers and users to understand.

181Chapter 3: Data Normalization

Definition: Keys
A key is a set of attributes K such that, where U is the set of all attributes in the
relation,

1.	There is a functional dependency K → U.
2.	If K' is a subset of K, then there is no FD K' → U.

That is, a set of key attributes K functionally determines all other attributes in the
relation, and it is the smallest set of attributes that will do so (there is no smaller
subset of K that determines the other attributes).

Primary keys are important in relational databases because they are used to
identify rows of data. Sometimes multiple attribute sets could be used to form dif-
ferent keys, so they are sometimes referred to as candidate keys.

Normal Form Definitions
The definition of first normal form is closely tied to the definition of an atomic at-
tribute, so both need to be defined at the same time.
Definition: First Normal Form (1NF)

A relation is in first normal form if and only if all of its attributes are atomic.

Definition: Atomic Attributes

Atomic attributes are single valued, which means they cannot be composite,
multi-valued, or nested relations.

Essentially, a 1NF relation is a table with simple cells under each attribute col-
umn. You are not allowed to play tricks and try to squeeze extra data, other rela-
tionships, or multiple columns into one column. Figure 3.2A provides an example
of a table that is not in first normal form because it has two attributes that are not
atomic.

Second normal form is defined in terms of primary keys and functional
dependency.
Definition: Second Normal Form (2NF)

A relation is in second normal form if it is in first normal form and each nonkey
attribute is fully functionally dependent on the primary key. That is, K → Ai for
each nonkey attribute Ai. Consequently, there is no subset K' such that K' → Ai
for any attribute.

Customer(CID,	Name:	First	+	Last,	Phones,	Address)

123 Main111-2223
111-3393
112-4582

Joe Jones111
AddressPhonesName: First + LastCID
123 Main111-2223

111-3393
112-4582

Joe Jones111
AddressPhonesName: First + LastCID

Figure 3.2A
Nonatomic attributes. This table is not in first normal form because the Name
attribute is a composite of two elementary attributes, and the phone attribute is being
used to handle multiple values.

182Chapter 3: Data Normalization

This definition corresponds closely to the simpler version presented in the chap-
ter that each nonkey column depends on the entire key, not just a portion of the
key. Figure 3.3A shows an example of a relation that is not in second normal form.

The formal definition of third normal form is a little harder to comprehend be-
cause it relies on a new concept: transitive dependency.
Definition: Transitive Dependency

Given functional dependencies X → Y and Y → Z, the transitive dependency X
→ Z must also hold.

The concept of transitivity should be familiar from basic algebra. The fact that
it holds true arises from the set-theory foundations. To understand the definition,
remember that functional dependency represents business semantic relationships.
Consider the relationship between OrderID, CustomerID, and customer Name at-
tributes. The business rule that there is only one customer per order translates to
a functional dependency OrderID → CustomerID. Once you know the OrderID
value you always know the CustomerID value. Likewise, the key relationship be-
tween CustomerID and other attributes such as Name means there is a functional
dependency CustomerID → Name. Applying transitivity, once you know the Or-
derID value, you can obtain the CustomerID value, and in turn learn the value of
the customer Name.

OrderProduct(OrderID,	ProductID,	Quantity,	Description)

Blue Hose11533
Pliers21632
Blue Hose11532

DescriptionQuantityProductIDOrderID

Blue Hose11533
Pliers21632
Blue Hose11532

DescriptionQuantityProductIDOrderID

Figure 3.3A
Not full dependency. The product description depends on just the ProductID and not
the full key {OrderID, ProductID}, so this relation is not in second normal form.

Order(OrderID,	OrderDate,	CustomerID,	Name,	Phone)

222-3333Jones15/6/200434
444-8888Hong25/5/200433
222-3333Jones15/5/200432

PhoneNameCustomerIDOrderDateOrderID

222-3333Jones15/6/200434
444-8888Hong25/5/200433
222-3333Jones15/5/200432

PhoneNameCustomerIDOrderDateOrderID

Figure 3.4A
Transitive dependency. The customer Name and Phone attributes transitively depend
on the CustomerID, so this relation is not in third normal form.

183Chapter 3: Data Normalization

Definition: Third Normal Form (3NF)

A relation is in third normal form if and only if it is in second normal form and
no nonkey attributes are transitively dependent on the primary key. That is, given
second normal form: K → Ai for each attribute Ai, there is no subset of attributes
X such that K → X → Ai.

In simpler terms, each non-key attribute depends on the entire key (K), and
not on some intermediate attribute (X). Figure 3.4A shows a common business
example of a relation that is not in third normal form, because customer attributes
depend transitively on the CustomerID.

As discussed in Chapter 3, Boyce-Codd normal form is a little harder to follow.
It represents the same basic issue: removing a hidden dependency as seen by the
formal definition.
Definition: Boyce-Codd Normal Form (BCNF)

A relation is in Boyce-Codd normal form if and only if it is in third normal form
and every determinant is a candidate key. That is, if there is an FD X → Y, then
X must be the primary key (or equivalent to the primary key). In simpler terms:
there cannot be a hidden dependency, where hidden means it is not part of the
primary key.
 As shown in the example in Figure 3.5A, consider the situation where employees
can have many specialties, there are many employees for each specialty, and an
employee can have many managers, but each manager is manager for only one spe-
cialty. This functional dependency (MangerID → Specialty) is not a key within the
relation EmpSpecMgr(EID, Specialty, ManagerID), so the relation is not in BCNF.
It has to be decomposed to create new relations ManagerSpecialty(ManagerID,
Specialty), and EmployeeManager(EmployeeID, ManagerID) that explicitly have
each functional dependency as keys.

Fourth normal form is slightly tricky but easy to apply once you understand it.
The definition is closely tied to the definition of a multi-valued dependency.

1Drill34

2Weld33

1Drill32

ManagerIDSpecialityEID

1Drill34

2Weld33

1Drill32

ManagerIDSpecialityEID

Employees	can	have	many	specialties,	and	many	employees	can	be	
within	a	specialty.	Employees	can	have	many	managers,	but	a	
manager	can	have	only	one	specialty:		Mgr	 Specialty

EmpSpecMgr(EID,	Specialty,	ManagerID)

FD	ManagerID Specialty	is	
not	currently	a	key.

Figure 3.5A
Boyce-Codd normal form. Notice that there is a functional dependency from
ManagerID to Specialty. Because this FD is not a candidate key in the relation, it is
hidden, and this relation is not in BCNF.

184Chapter 3: Data Normalization

Definition: Multi-Valued Dependency (MVD)

A multi-valued dependency (MVD) exists when there are at least three attributes
in a relation (A, B, and C; which could be sets of attributes), and one attribute A
determines the other two (B and C), but the two dependencies are independent
of each other. That is, A → B and A → C, but B and C are not functionally
dependent on each other.

 For example, employees can have many specialties and be assigned many
tools, but tools and specialties are not directly related to each other.
Definition: Fourth Normal Form (4NF)

A relation is in fourth normal form if and only if it is in Boyce-Codd normal form
and there are no multi-valued dependencies. That is, all attributes of the relation
are functionally dependent on A.

In the multi-valued dependency example for employee specialties and tools,
the relation EmpSpecTools(EID, Specialty, ToolID) is not in fourth normal form,
because of the two functional dependencies: EID → Specialty; and EID → Tool-
ID. Solving the problem results in two simpler relations: EmployeeSpecialty(EID,
Specialty) and EmployeeTools(EID, ToolID).

	Chapter 3: Data Normalization
	Introduction
	Two-Minute Chapter
	Tables, Classes, and Keys
	Composite Keys
	Surrogate Keys
	Notation

	Database Normalization: Atomic Values and Dependency
	Atomic Data Values
	Dependency

	Sample Database for Typical Sales
	Initial Objects
	Initial Form Evaluation
	Problems with Repeating Sections

	First Normal Form
	Repeating Groups
	Multiple Repeating Groups
	Nested Repeating Groups

	Second Normal Form
	Problems with First Normal Form
	Second Normal Form Definition

	Third Normal Form
	Problems with Second Normal Form
	Third Normal Form Definition
	Checking Your Work

	Beyond Third Normal Form
	Boyce-Codd Normal Form
	Fourth Normal Form
	Domain-Key Normal Form
	Summary

	Data Rules and Integrity
	The Effects of Business Rules
	Converting a Class Diagram to Normalized Tables
	One-to-Many Relationships
	Many-to-Many Relationships
	N-ary Associations
	Generalization or Subtypes
	Composition
	Recursive (Reflexive) Associations

	The Pet Store Example
	View Integration
	The Pet Store Example
	Rolling Thunder Sample Integration Problem

	Data Dictionary
	DBMS Table Definition
	Data Volume and Usage

	 Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading
	Appendix: Formal Definitions of Normalization

