
395

What You Will Learn in This Chapter
•	 What features need to be included in finished applications?
•	 How do you create a consistent application design?
•	 How are forms and reports integrated and organized?
•	 How can users gain easy access to standard operations across the application?
•	 How can a computer application be modified for people with disabilities?
•	 How do you create custom help files?
•	 What does your application do when something goes wrong?
•	 How do you know your application works correctly?
•	 How will your application be installed?

Chapter Outline

Application Development
8Chapter

Introduction, 396
Two-Minute Chapter, 397
Design Consistency, 398

Page Design Templates, 398
Usability , 399
Fonts and Customization, 400
Mobile Devices, 401

Application Structure, 402
Designing Applications, 403
The Startup Form, 403
Sally’s Pet Store: Application
Organization, 404
Administrative Tasks, 407

Menus and Toolbars, 407
Purpose of the Menu, 408
Toolbars, 409
Creating Menus and Toolbars, 409

Accessibility, 410
Custom Help, 412

Creating a Help File for Windows, 413
Context-Sensitive Help, 415
Windows Help 3/Help Viewer, 417

Handling Errors, 419
Catching Errors, 419

Logging Errors, 420
Debugging, 420

Testing, 420
Form and Module Testing, 421
Integrated Application Testing, 422
Stress or Performance Testing, 422
Usability Testing, 422
Security Testing, 423

Deploying an Application, 424
Packaging Files, 424
Installation Programs, 425
Server and Database Configuration, 425

Summary, 425
Key Terms, 426
Review Questions, 427
Exercises, 427
Web Site References, 429
Additional Reading, 429

396Chapter 8: Application Development

A Developer’s View
	Miranda:	Finally. I think I see the end of this

project.

	 Ariel:	That’s terrific. What’s left?

	Miranda:	Well, everyone is happy with the
forms and reports. All I have to do
now is tie them together into an
application. I have a few details to
add to make the forms a little easier
to use. The salespeople complained
about having to enter customer
numbers twice, and they say the
order lists are too long. They want
to pick from a list of orders just for
the given customer.

	 Ariel:	That’s it? Let’s celebrate!

	Miranda:	Well, not quite yet. I also have to
write some help files. Then I have to
create a set of installation disks so
they can install the system on all the
computers.

	 Ariel:	Sounds like a lot of details. Will it
take long?

	Miranda:	I don’t think so. But it will make
the application more attractive and
easier to use, so I really need to
finish the details.

Introduction
What features need to be included in finished applications? As a database de-
veloper, it is your responsibility to create systems that help users in their jobs. You
accomplish this task by building an application to perform a specific task. The
task is defined by the user, and your application needs to be easy to use. The goal
of the application is to collect data and provide information to help users make
decisions. You define tables to hold the data, but you never want users to see the
underlying tables. Instead, you create forms to collect data and reports to help us-
ers visualize and analyze the data.

An application is more than a collection of forms and reports. It is a set of
forms and reports that work together. More specifically, an application has (1) an
internal consistency to the user interface, (2) a structure or layout that supports
the flow of user tasks, (3) menus to make it easy to find things, (4) a help system
to provide documentation and assistance, (5) error handling to catch anticipated
problems and protect the user, and (6) a method to deploy the application. At this
stage in the design, you also have to perform considerable testing and evaluation
of the application.
The first two items (consistency and structure) are the defining elements of an

application. The others are features that are added at this stage to make the sys-
tem more reliable and easier to use. The look and feel of the forms is the major

Getting Started
Applications are more than just forms and reports. You need to ensure
all forms and reports have the same look and feel. You build an inte-
grated application by linking everything with menus. You also need to
add help files, add error handling, and test the entire application. Part
of the testing includes ensuring that the application is accessible to all
potential users. You also have to build administrative tools and deploy
the application.

397Chapter 8: Application Development

element of consistency and design. Every form in an application should have the
same look and same approach to entering data. Otherwise users will get confused
and become frustrated because your application makes it harder to perform their
jobs. The topic of structure entails connecting forms and reports together. Users
entering data on one form should be able to click a button, or double-click an entry
to see more detail. Figure 8.1 shows a simple example. Users entering data on the
Order form will probably want to open the Customer form to edit the data about
the customer. As a developer, you have to learn what connections are needed on
each form. These connections help create the structure of the application.

Two-Minute Chapter
Applications begin with forms and reports but require consistency, structure, and
supporting details including menus, custom help topics, and the ability to handle
errors. Unless you have been exceedingly careful from the start, be prepared to
spend time to rebuild all forms and reports to ensure they have the same “look and
feel.”
Applications need to have consistent colors, fonts, layouts, menus, and usabil-

ity features. When possible, build templates that serve as the foundation for forms
and reports. These templates usually set the page structure as well as the styles
to be used in each component. Applications might need different templates and
styles for different devices—particularly if mobile phones are going to be used
with smaller screens. To improve accessibility, try to use system fonts and colors
to support user control. Whenever possible, support multiple input methods, in-
cluding keyboards.
The structure of an application is important—particularly where components

are stored and run, as well as how pieces connect together. Most applications re-
quire some type of menu or toolbar along with buttons and links to help connect
forms and reports and make it easier to find various elements and explore the ap-
plication capabilities.
Applications also need custom help pages to answer user questions—particu-

larly by providing the ability to search for keywords. Help topics are usually writ-
ten as individual HTML topic pages. Keywords can be added to those pages along
with using heading levels to indicate the table of contents or structure. Windows
help files are created by compiling the HTML files into a single CHM file using
the HTML help compiler from Microsoft or (expensive) third-party compilers.
Context-sensitive help is provided by assigning a number to every page using the
topics.h file, then entering the help file name and topic number into the application
properties; such as the form properties in Microsoft Access.

Order
Customer:	1592
Jane	Doe

Customer
CID:		1592
First:	Jane
Last:	Doe
Address:	123	Oak

Edit

Figure 8.1
Application structure. Forms are connected so users can click a button or link to get
more detail, open other forms, or display reports.

398Chapter 8: Application Development

Applications also need extensive testing, including module, integration, stress/
performance, usability, and security testing. Special attention should be paid to
check for SQL Injection attacks. At a minimum, all user inputs should be cleaned
and SQL queries should use parameters instead of string concatenation. Even with
extensive testing, errors can still arise, so the application should have error han-
dling code that can automatically recover from errors whenever possible. It should
also have the ability to log errors so developers can examine the log to look for
common issues and find improvements for the next versions.

Applications also need a deployment method. Server-based systems are
straightforward and might be deployed using basic script files. Client-based ap-
plications should be packaged and installable from a simple start command.

Design Consistency
How do you create a consistent application design? This question is particu-
larly important to answer when several developers are working on the same proj-
ect. The application design consists of several levels. Some are easier to configure
and observe. At the most basic level, all forms should use the same color scheme.
Likewise, reports should use the same fonts and follow a similar layout. But, de-
sign also includes usability issues such as the page layout and selecting items
from a list instead of memorizing ID numbers. Consistency in design also applies
to the links between forms and the use of menus and toolbars. The primary issues
discussed in this section are related to design and usability.

Page Design Templates
Look through a book, magazine, or well-designed application or Web site and you
will see that all of the pages have a consistent appearance. Only a few fonts are
used, headings are aligned the same, margins match, and colors blend and match
across all of the pages. This consistency does not happen by accident. Graphics
designers first create a template and then apply the template to all of the pages. A
template defines the style features of a page. The capabilities depend on the sys-
tem and tools available, but you can usually define the overall page layout, fonts,
and colors.
Figure 8.2 illustrates the effect of a form template. Take a look through the

forms you have created for your assignments and projects to this point. Do they
look like the first form? When you look at a collection, do they all look the same,
or are they all different? Eventually, developers learn to pay attention to detail and
consistency. Even so, it is easy to make mistakes. A template makes it easier for
everyone to be consistent and to reduce errors. Ultimately, someone still has to
examine every form and report to double-check consistency, but with templates,
you can come very close on the first pass.
Each development tool has different methods to create and apply templates. A

few systems do not support templates at all, and some have predefined templates
that you cannot change. The most common approach to templates is to apply the
template at design time. If the template is changed later, there is no way to push
the changes onto all of the forms based on the template. In other words: Be sure
your template is complete and accurate before you create the forms and reports.
If you have already created complex forms, it is difficult to apply a template. In
some cases, you can create a new blank form based on the template and copy the
controls from the original form. In extreme cases, you might have to rebuild the
entire form from scratch if you need to apply a template later.

399Chapter 8: Application Development

Application design is something that needs to be established early in the devel-
opment process. Even if your system does not support templates, you can define a
style sheet that defines the overall page layout, the common elements to include,
and the styles of each major element (titles, labels, text, and so on). Each devel-
oper is responsible for following the guidelines on the style sheet. This process is
harder to use than a template, but it works for every system.
Templates are not the final answer to design questions. For instance, some

forms or reports may need to add other features, or change margins to make some-
thing fit on a page. Fortunately, once the template is applied, you can override a
setting and coerce the page to get the layout you want. However, you need to be
careful with this power. As a developer, you have to make decisions. It is best to
maintain consistency, but ultimately, you have to keep the users happy. If a man-
ager insists on squeezing an extra column onto a report, you will have to reduce
the margins or change the font size. On large projects, you should establish a coor-
dinator who can be consulted when you need to override a template specification.

Usability
Beyond layout, fonts, and colors, you need to establish a consistent set of usability
standards for an application. For instance, consider the issue of foreign keys such
as using CustomerID in the SalesOrder table. When a clerk is entering data into
the SalesOrder table, it would be painful to require the clerk to memorize the Cus-
tomerID values. Instead, the form will have some type of drop-down list or list-of-
values option that enables the clerk to pick the appropriate customer from a list. In
terms of your application, you need to be sure that all foreign key references use
the same approach to solve the problem. Consider the situation shown in Figure
8.3, where the Sales form uses a drop-down list to pick customers based on phone
numbers. Imagine how annoying it would be to use a pop-up box to search for
customers by name on the Receipts form.
When the same users are going to work with multiple forms, the forms need to

use a consistent data-entry method. In general it is better to be consistent across all
of the forms. In a few cases, one group of users might insist on a unique lookup
approach that more closely matches its needs, but these variations should be dis-
cussed and approved separately.

Menu Main Print Help
Customer

ID 1523

First Mary

Last Jones

Phone 123-4444

Initial	Form

Title
Label Input

Template

Customer
ID 1523
First Mary
Last Jones
Phone 123-4444

Consistent	Form

Figure 8.2
Template. The template defines the structure of the form and the attributes of the
various elements. It can also include common features such as menus and navigation
buttons.

400Chapter 8: Application Development

The idea of consistency also applies to the tab order, choice of related data to
display on a form, subform layout, and similar topics. For example, when the user
selects a customer, you might choose to display additional information, such as
phone number, on the form. As much as possible, this same data should be dis-
played on all forms involving customer lookups.

Fonts and Customization
Selecting fonts and color schemes for an application is always a challenge. You
face conflicting goals. On the one hand, you want to choose a pleasing design that
displays all of the relevant information in one place. On the other hand, you need
to give users control over the displays. Why do users need control? Users often
configure their systems to support the way they work or to compensate for vision
issues.
Users can configure the Windows environment through various settings in the

Control Panel—including font sizes, color schemes, and regional settings such
as date displays. Your application needs to support these settings. You provide
this support by choosing system-defined fonts and colors. Windows development
tools, such as Visual Studio, provide font settings for choosing system fonts. Use
these choices instead of picking a fixed typeface and font size. Likewise, you
should choose the Windows palette colors instead of forcing a fixed color. When
your application runs, it will pick up the currently-defined fonts and colors. If the
user changes those values, your application will adapt and use those colors. Yes,
in some cases, the user might pick strange color combinations, but the decision
belongs to the user—not to you.
Web applications are somewhat trickier—and the capabilities are heavily de-

pendent on the development tools you use. At the moment, most systems do not
provide user control over color schemes. Some default schemes are commonly
used (e.g., white background, black text, and blue highlights), and you should fol-
low these schemes when possible. On the other hand, font sizes are more flexible,
and more interesting. Take a look at your browser options and you will find an
option to control the font size (try Page/Text Size). However, if your Web form
specifies fonts in terms of points, this option will not work for the users. Also, if
you specify page layout sizes (e.g., tables) in terms of fixed measures such as pix-

Sales	Order

209-111-2222 Jones
218-232-3938 Smith
306-335-3048 Jackson
415-209-0398 Sanchez

Customer
Receipts

Jones,	Mary
Jackson Joe 218-232-3938
Jamison Lisa 601-193-4841
Johnson Sam 502-203-8383
Jones Mary 209-111-2222

Customer
Search:	J%	

Figure 8.3
Consistent usability. Both forms require the selection of a customer since you cannot
expect people to memorize ID numbers. It would be annoying to select customer by
phone number in a drop down list on the Sales form but by a pop-up list organized by
name on the Receipts form.

401Chapter 8: Application Development

els, changes in text size will not work very well as the font changes but the con-
tainer remains the same size. Consequently, you have to use font and size settings
based on relative terms instead of absolute point values. A relatively new way to
define sizes is to use ems, where one em is defined as the width of the letter M in
the current font. With relative sizes, the font and layout values will be rescaled
automatically when the user changes the font size.

Mobile Devices
Increasingly, users want to access data from anywhere—using mobile devices
connected to internal applications or Web sites. Providing users with greater ac-
cess to applications and data is good. However, cell phones and other portable
devices generally have smaller screens. Many wireless plans also have limitations
on the data transfer speed or monthly caps (or high prices) on the amount of data
transfer. Figure 8.4 shows approximate sizes and pixel counts for a handful of de-
vices. Keep in mind that technology continues to evolve, so you need to research
current values when you build an application. The main key is that the cell phones
(Apple and Samsung) are considerably smaller and use fewer pixels. Although
starting with the Apple iPhone 4 released in 2010, resolutions have improved—no
one will be able to read the text if it is drawn pixel-for-pixel. Instead, the newer
phones and tablets use those pixels to display better-formed characters—shown at
readable size but with better resolution and clarity. Compare an iPhone screen at 3
x 2 inches with a desktop monitor at about 13 x 8 inches. Physically, the desktop
screen can hold 16 iPhone screens. The pixel count works to about the same ratio
with the 3S, but not the version 5. The point is that even if your application uses
only half of the desktop monitor, only a small fraction of that page could be dis-
played on a mobile screen at one time.
Pages that work on larger screens can become unusable at smaller sizes—either

the fonts are too small to read, or the user has to scroll vertically and horizontally
to see the entire form. Unfortunately, there is no good answer to creating pages
for different sizes of screens. Often, it is necessary to create two versions of the
application—one for “regular” screens and one for smaller mobile screens. Creat-
ing different versions is also useful because mobile devices often have slower (or

Figure 8.4
Sample device resolution. Fewer pixels means less information can be displayed.
Smaller size means text and images might be too small to read, or less information
can be displayed at readable fonts sizes.

Device Size (Diagonal in.) Pixels
Desktop 24 1920 x 1200
Laptop 15 1440 x 800

1920 x 1080
Apple iPad 11 2048 x 1536
Google Nexus 10 10 2560 x 1600
Apple iPhone 3S 3.5 480 x 320
Apple iPhone 5 4 1136 x 640
Samsung S4 5 1920 x 1080

402Chapter 8: Application Development

more expensive) network connections, so you have to be more cautious in using
graphics and limiting the amount of data sent to the page. But developing two
versions of an application takes more time--hopefully less than twice as much—
because you already have the tables, functions, and calculations. And you have to
plan for more people to handle maintenance and upgrades.

Application Structure
How are forms and reports integrated and organized? The overall structure
is an important feature of any application. The structure or layout defines how
the user will deal with the application. Most database applications will use forms
and reports as individual components. The first step in designing the structure or
architecture of the application is to design each form. The objective of application
structure is to organize all of the forms and reports to produce a complete appli-
cation. In some applications, this purpose can be achieved with a central startup
form, which contains buttons to direct users to the appropriate form. More com-
monly, you will also need to add interconnection buttons on individual forms. For
example, a user entering data on an order form might want to look up additional
information on the customer form.
Today, it is common to separate a database application into two or three major

sections. As shown in Figure 8.5, the front end consists of the forms and reports
that the user sees. The back end consists of the database tables. Sometimes a
middle tier is added that consists of program code to define and enforce business
rules. With a network, this separation can be physical, and each component can
run on separate computers. Even if all of the elements will run on a single ma-
chine, it often makes sense to separate them logically. This separation enables you
to change each part independently. It also makes it easier to choose different tools

Oracle
SQL	Server
DB2
Access

Visual	Basic
Internet
Oracle	Forms

Back	end:	
Database

Front	end:	
Forms	and	
Reports

If	QOH	<	100	Then
Else
End	If

Middle	Tier:	
Business	Logic

Optional.
Programming	code

Figure 8.5
Application structure. It is common to use different tools for the back-end database
and front-end forms. The use of the middle tier to handle business rules depends on
the size of the application and the management details of the firm.

403Chapter 8: Application Development

for each purpose. For example, you could write the front end forms and reports
with Visual Studio, store the data in an Oracle database, and write custom code to
evaluate business rules. If the business changes, you could transfer the business
rules to an enterprise resource planning system, or change the back-end DBMS
with only minor changes on the front end.
Choosing the overall architecture of the application is the first step to designing

the application. The choice of tools and structure will depend on the organization’s
needs and capabilities. Some companies have a formal process for designing and
approving applications. This process is important when applications need to work
together and fit into the overall structure of the company’s information system.

Designing Applications
The first step in designing the application structure is to identify the various users
and outline the tasks that will be performed with the application. The application
must reflect the needs and working habits of the user. If several users have differ-
ent needs, the application can be divided into sections for each group. A central
startup form can be used to identify the user and direct him or her to the appropri-
ate section.
This segmentation reduces complexity for the users and simplifies their tasks.

However, it has two potential drawbacks. First, if the application has too many
layers, users will have trouble finding the forms and reports they need. Second,
poor organization confuses users and requires additional support and training. In
other words, you must find an application structure that provides the functionality
each user needs but is still easy to understand. The inherent conflict in these goals
is what makes it so difficult to design a good application structure.
Even experienced programmers rarely design a “perfect” application the first

time. In most cases you need to develop several ideas and test them. You can build
prototypes by creating sample forms and including command buttons to tie them
together. These prototypes can be given to users to test. You then incorporate user
suggestions and modify the prototypes. By testing different structures, you can
quickly learn which technique will work best.
In building a complex application structure, it is best to start with the core con-

cepts. Once you have tested them with users, you can add features. Each revision
constitutes a new application version. Keep track of the version number; record
the date, the reason for the change, and the changes that were made. Most com-
mercial software vendors follow this development process. No one tries to visual-
ize a complete, massive application and create it up front. Instead, developers start
with a basic concept and build a system that works and implements the fundamen-
tal concepts. Then developers expand the capabilities by adding new features.
The two most important aspects in this type of development are (1) getting

the overall structure correct up front and (2) using a flexible design that is easy
to modify later. For example, it is critical that your data tables be normalized,
because normalized tables can be easily expanded later to provide new features.

The Startup Form
Designing an overall structure and appearance often requires artistic sensibility as
well as logic and research. Each application is different and can require a unique
approach. Yet, over time, designers have learned that some common elements can
be used in many applications. The main menu or startup form is an element that
many developers like to use. However, it is not really the ultimate answer to every
problem.

404Chapter 8: Application Development

The main purposes of the startup form are shown in Figure 8.6. The startup
form is generally the first form of the application. It provides a centralized direc-
tory to the rest of the application. It often contains an image or picture and usually
consists entirely of command buttons. Clicking a button brings the user to another
menu form or to a specific form or report.
Because the startup form is the starting point for the application, it is a good

place to identify the user. If possible, you should identify the user from the net-
work login data. Otherwise, you will have to maintain a separate login for each
user. The two primary reasons for identifying each user are (1) to maintain appro-
priate security controls and (2) to customize the application for each user group.
The startup form can be customized through layout and the use of color. For

example, options primarily intended for different managers (marketing, finance,
etc.) can be displayed in different colors. If additional customization is needed,
individual options can be made invisible and disabled so that users see only but-
tons that are designed for their use. This approach simplifies the screen layout and
reduces confusion. However, it is less useful if managers need to share their tasks.
Keep in mind that some applications will work better without a startup form.

Think about the applications you use on a daily basis: word processing, spread-
sheets, and so on. None of these require startup forms. Instead, they jump right to
the primary user task and rely on menus to provide access to the functions. You
could use this same approach for users who have a limited view of the applica-
tion—such as front line clerks. Once a clerk logs in, the application jumps imme-
diately to the primary data-entry form. The point is that you should not try to force
a startup form into every application. Look at the jobs and talk with the users to
find the best way to organize the forms and reports for each task.

Sally’s Pet Store: Application Organization
In many ways the startup form is a table of contents into the application. It pres-
ents the organization of the application. Before building the startup form, you
must decide how the application will be organized. That is, you must learn which
forms are most important to users, how they will switch between forms, and how
often they use each form.
Although there are many useful ways to organize any application, consider two

different approaches to the Pet Store application. The first approach is shown in
Figure 8.7. At first glance this approach seems reasonable. Items are ordered, then
received and then sold to customers. Hence the store managers might want to start
with orders and enter data by following each item from purchase through sale.

•	Directory for the application.
•	Identify users.
•	Startup and shutdown code.

○○Preload forms in background.
○○Initiate transaction and security logs.
○○Establish network connections.

•	Copyright and usage notes.

Figure 8.6
Uses of startup forms. As the initial form for an application, the main menu can be
used to control tasks that apply to the complete session.

405Chapter 8: Application Development

Although this approach might sound reasonable at first, it has several flaws.
First, managers rarely want to track individual items. Perhaps they want to follow
individual animals, but rarely merchandise. Second, when an order is placed, the
item has not been received yet, so there is no point in linking an order to the re-
ceipt of the shipment. More important, there is no way to connect individual items
to a sale. For example, you might know that a customer bought three cans of a
particular dog food, but there is no way to tell exactly which cans. Hence, manag-
ers rarely need a link from receipt of shipments to individual sales.
An improved approach appears in Figure 8.8. First, notice that it has more

links—including bidirectional links. For example, when a shipment arrives, work-
ers need to pull up the matching order to see whether the proper items were deliv-
ered. Hence an Orders button is placed on the Shipping Receipt form. Once in a
while, a manager might want to check on the shipment of a particular order, so the
link is bidirectional. Notice that Sales are connected to Orders and Receipts—but
only through the Inventory items. Inventory QOH can be displayed directly on
the Sale form. The Sale form also has a connection to Orders—to create special

Order
Merchandise

Item

Receive
Merchandise

Item

Sell
Merchandise

Item

Get
Customer

Data

Figure 8.7
Poor organization of the Pet Store application. The links are at the wrong level (item
instead of order). Managers rarely need to track individual items from order to receipt
to sale.

Orders Receipt

Sale

Supplier
Customer

Inventory
Items

special
orders

Figure 8.8
Improved organization for the Pet Store. The lines represent links from one form to a
second form. The links are usually created through buttons placed on the form.

406Chapter 8: Application Development

orders. If an item is out of stock, a salesperson might want to check on recent or-
ders to see when the item might arrive. The designer should talk with users to de-
termine how often this situation arises and how it should be handled on the form.
Eventually the Pet Store application will contain many forms and reports. Most

of them are linked to a startup form. Many of them are linked to each other. But-
tons or events on one form lead the user to a related form. Some of the forms
are simple and affect one table, but most display data from several related tables.
Each individual form represents specific business events and tasks. Figure 8.9
shows the primary forms used by the sales clerk role. This diagram is a simplified
version of a UML collaboration diagram. The main point here is that it identifies
the initial forms needed by this group of users. Consequently, you should put links
to Sales, Animals, and Customers on the startup for this user. You will need to cre-
ate a similar diagram for the other roles at the Pet Store, such as purchasing and
management.
Figure 8.10 shows one version of a startup form for Sally’s Pet Store. The but-

tons on this form match the primary tasks identified for the groups of users. The
buttons are color coded to highlight the three groups. You could go further and set
the visibility of the buttons based on the category of the user. When each person
logs in, the form displays the buttons or forms most relevant to that person’s tasks.
With some additional coding, you could write the form so each user could select
a set of buttons to personalize the main screen. However, customization is usually
easier on tool bars instead of the main menu. In general, you should avoid putting
too many buttons on the main menu. An old rule of thumb states that the average
person can handle seven, plus or minus three, items at a time, so four to ten but-
tons on a form is a good target. Obviously, a complex application ultimately has
many more than 10 forms and reports. With large applications, you can extend the
startup form to additional forms or submenus. You can also add drop-down menus
to make it easier to find commonly used items.
Remember that you also need to connect forms to other forms. Depending on

the user interface you choose, you might add buttons to forms or use double-clicks
to trigger the second form to open. These links are commonly created with foreign
key relationships, such as adding an Edit button to the SalesOrder form to open

Sales

Customers

Animals

Sales	Clerk

Animal	Health

Genealogy

Receipts

Merchandise

Figure 8.9
Collaboration diagram for sales clerk section. Diagramming the forms and reports
used by an actor (employee) makes it easier to identify the overall structure and menu
for this role.

407Chapter 8: Application Development

the Customer form. Similarly, you can add links to print or preview reports from
various forms, such as printing a sales receipt from the SalesOrder form. The spe-
cific links depend on the needs of the users.

Administrative Tasks
When you build the application, you also need to think about the administrative
tasks that will need to be performed. Administrative tasks consist of jobs that
need to be performed to keep the application running, such as updating data in
lookup tables, backing up the database, and assigning users to groups. Depending
on the DBMS, some of these tasks are handled outside of your application. If your
system needs routine maintenance or tasks performed on a specified schedule, you
should incorporate a set of administrative forms to automate the tasks. If nothing
else, collecting the tasks into one location makes them easier to handle and in-
creases the probability that they will actually be done. Tasks that require external
steps could at least be documented within the application. Ultimately, you can
hide the administrative tasks from the common users and use the security system
to make them accessible to a few administrators
Administrative forms are particularly important for Web-based applications.

You will find that it is convenient to handle administrative tasks using a Web
browser so the administrators can support the application from almost any loca-
tion. This step is particularly critical when the application will be hosted by an ex-
ternal Internet service provider. On the other hand, it sometimes takes more work
to create the administrative pages than it does to build the original application.

Menus and Toolbars
How can users gain easy access to standard operations across the application?
Contemporary applications have several features that are designed to standardize
the look and feel of applications and to make your applications relatively easy to
use. Menus or toolbars and the Help system are common elements in most ap-
plications. Menus and toolbars are similar to each other and often created using
the same techniques. A toolbar is a collection of items that perform some action

Figure 8.10
Sample startup form. The buttons match the user’s tasks.

408Chapter 8: Application Development

when clicked. The items can be icons or text. Text items can be opened to provide
drop-down lists of additional items. This submenu makes it easier to organize the
many choices. A toolbar that primarily consists of text items is often referred to as
a menu, but the distinction is minor. Most systems enable you to create multiple
toolbars or menus. Generally, you can modify them on the fly in response to user
actions. With some systems, it is relatively easy to enable the toolbars so users can
configure their own icons and selections on a custom toolbar.
A main menu is generally the same across the application. Hence, the menu

centralizes choices that can be activated at any time. Menus are also useful for
visually challenged workers and those who prefer to use the keyboard instead of
a pointing device (mouse), because choices can be activated with the keyboard.
Toolbars usually consist of a set of icons or buttons that perform common tasks.
Some applications enable users to customize the toolbar with specific buttons and
users often reposition toolbars.
Most menus are hierarchical: that is, detailed choices are presented under a

few keywords. The Windows interface standard specifies that menus should be
displayed at the top of the application. However, users may want to move menus
to a different location. Most applications use similar commands on their menus.
For example, the menu in Figure 8.11 contains top-level links for the main startup
form, customer information, and help. Ultimately, entries would be added to cover
the other main objects such as suppliers and animals. Whenever you create text
items on a menu, you should define an access key so that users can select the entry
directly from the keyboard. In a Windows environment, items are activated with
the Alt key combination, such as Alt+C to open the main customers menu.

Purpose of the Menu
You might consider using the basic DBMS menu within your application. Then
users will have full control over the database. In most cases, however, you will be
better off building a custom menu for your application. A custom menu has sev-
eral benefits. First, it can limit user actions. For instnace, if users do not need to
delete data, the menu should not have the delete commands. You still have to set
the appropriate security conditions to prevent them from using other methods to
delete data, but removing a command from the menu helps to restrict user choices.
A second advantage of a custom menu is that it simplifies the user interface. If en-

Figure 8.11
Sample menu. Note the hierarchical structure. Also, the underlined letter represents
the access key, which can be activated from the keyboard. You can add shortcut keys
(e.g., Ctrl+D), to activate a choice without going through the menu.

409Chapter 8: Application Development

try-level users need only four or five commands, display only those options on the
menu to make them easier to find. Third, you can add special functions to a cus-
tom menu. For example, you might add a special Help command to send e-mail
to your support desk. Fourth, menu choices can be activated by keystrokes. Hence
touch typists and visually challenged workers can use your application without
looking at the screen.

Toolbars
Custom menus are usually implemented on toolbars. A toolbar contains a collec-
tion of buttons and menu items. When the user clicks a toolbar button, a pre-
defined operation is executed. A toolbar can contain traditional buttons and textual
menus. Most toolbars are dockable, which means that users can drag them to any
place on the application window. Web-based forms rarely support dockable tool-
bars, but you can put menu options in a separate browser window or frame.
The purpose of a toolbar is to provide single-click access to complex actions

or to commands that are used frequently. For example, many toolbars have an
icon to immediately save the current work. As shown in Figure 8.12, you can put
virtually any icon and any command on a toolbar. You can set different toolbars
and menus for each form. You can even have multiple toolbars. For example, one
toolbar might contain commands that apply to the entire application. Then special
toolbars can be added as each form is opened.

Creating Menus and Toolbars
To support standardization and to simplify creating menus, most application de-
velopment environments have a menu-generation feature. The exact steps depend
on the system you are using; however, three basic procedures are used to create a
menu: (1) Choose the layout or structure, (2) Give each option a name and an ac-
cess key, and (3) Define the action to be taken when each option is selected. The
main steps for creating a toolbar are similar except that you often create small
graphical icons instead of text (step 2). When you create an icon, never assume

Figure 8.12
Sample toolbar. Toolbars can contain buttons and menus. Buttons generally display
icons. When the pointer moves over them, a tooltip is displayed that briefly describes
the button. When the button is clicked, an action is performed or a menu is displayed.

Print

·Identify report

·Ask for single or
multiple pages.

·Preview or print.Startup

Weekly Sales Analysis
Build graphs
Print reports
Export data to spreadsheet

410Chapter 8: Application Development

that users will recognize an icon or understand what it represents. Most systems
enable you to define a tooltip for each option. When the user moves the pointer
over the icon, the tooltip, or short comment, is displayed. Every toolbar button
must have a tooltip.
Creating toolbars and menus is straightforward with recent application devel-

opment systems. You can customize an existing toolbar by adding or deleting op-
tions. Similarly, you can create a new toolbar. Button icons and menus can be
dragged to the toolbar. The main step is to set the properties of each item. Menu
names should be short and descriptive. You should also try to follow the standard
names used in commercial software. To specify the access key, precede the key
letter with an ampersand. For example, the &File text will appear as File, and
the Alt plus F keys will activate that option. Shortcut keys (e.g., Ctrl + D) can be
specified in the property settings of the detail menu item or the button command.
Most systems enable you to create multiple toolbars and then activate or deac-

tivate toolbars for different users or in different areas within the application. You
generally have to create a couple lines of code to activate or deactivate a specific
toolbar.

Accessibility
How can a computer application be modified for people with disabilities? Ac-
cessibility is an important question, and it is also required for any application
purchased by the U.S. Federal government. With the widespread adoption of
graphical user interfaces in the 1990s, many people with disabilities encountered
problems using the new applications. People with good vision might see value in
dragging an object from one location to another, but many operations that rely
on vision are unusable by other users. Certainly users with vision challenges will
have problems, but it can also be difficult for other people to control a mouse or
touch screen with enough detail to select and move items on a screen.
The most common methods to improving accessibility are:
1.	 Support multiple input methods (keyboard as well as mouse).
2.	 Do not put text into graphics, and use the Alt text tag to describe all images.
3.	 Use default and scalable fonts, do not use fixed sizes.
4.	 Select user-chosen colors instead of picking your own. In Windows,use de-

fined values such as System.ControlText.
5.	 If you must pick your own colors on Web sites, use a style sheet and stick

with high-contrast colors.
The goal is to ensure that your forms and applications accept multiple input

methods. In particular, users should be able to navigate the application by using
just the keyboard. Menu and toolbar selections should include keystroke options.
Typically, these selections are made by using the Alt key along with other mne-
monic keys. Short-cuts to specific actions are usually defined by Ctrl key combi-
nations. The Tab key should move the selection point within a form to different
fields with Back-Tab (Shift-Tab) moving in reverse. Of course, all of these keys
need to be defined—preferably in one location with a list that can be read and
memorized by users.
Along the same lines, use system-defined fonts and colors within your appli-

cation. Avoid hard-coding a font size (such as 11 points) or color. With existing
operating systems, users can define font sizes and colors that work best for them.
When you hard-code sizes and colors in your application, your choices override
those of the user. They might look good to you, but they could be invisible or

411Chapter 8: Application Development

highly annoying to the users. Remember that many people (as much as ten per-
cent of the U.S. male population) can be red-green color blind. Most systems en-
able you to select colors based on the system-defined palette. For example, choose
System.Text instead of “Black” and your application will pick up the values de-
fined by the user.
In addition to input issues, your application needs to be conservative with

graphics and images. Vision-impaired users often rely on screen readers to pick
up the text from the page and read it aloud. In general, the screen readers cannot
read text or interpret figures or directions written into images. When images are
needed, be sure to enter text in the ALT tag that specifies in text what the image
represents or critical information that it contains.
Most development systems today include tools to provide these standard fea-

tures. However, typically you need to activate them and assign the keystrokes to
them. As shown in Figure 8.13, menu and toolbars are often activated by adding
an ampersand (&) in front of the hot key for that item. For instance an entry of
&Help would generally be displayed with an underscore under the H as Help. The
inclusion of the ampersand tells the menu system to watch for the Alt-H combina-
tion to trigger that selection. All of the necessary tools are built into the platform,
but as a developer, you must enter the ampersand every time you define a menu,
button, or toolbar option.
These secondary input methods are also useful for people without vision prob-

lems. Because they are triggered from the keyboard, they can improve data en-
try speed for almost everyone. For example, practice with Word and Excel, using
keyboard combinations to select menu items and you will find that many tasks
become easier and faster because you do not have to move your hands from the
keyboard to move the mouse.
One of the more interesting sources of ideas for accessibility is the U.S. gov-

ernment. The U.S. government has been required to implement accessibility op-
tions for several years. The ruling is known as “Section508” from the number of

Figure 8.13
Specify Alt-letter combination with ampersand. Every button, menu, and toolbar
option should have a keyboard definition. Many systems use the ampersand (&)
method before the key letter.

Ampersand (&) Adds underline and Alt-letter trigger

412Chapter 8: Application Development

the original statement. Government agencies have built an official Web site to dis-
cuss the topic: http://www.section508.gov/. A commercial site has similar notes:
http://www.ada508.com.
In 2013, some discussion in the Federal government suggested that Congress

might apply the same rules to commercial Web sites. The Americans with Dis-
abilities Act (ADA) was written to require physical stores to provide access to
everyone. So a few people have suggested that those with disabilities should also
have equal access to any online site. It is not clear if the legislation has enough
support to pass. It is also not clear that such a requirement is necessary. Presum-
ably, some sites will find it useful to provide accessibility features. Is it truly nec-
essary that all sites provide the same features? At the cost of opening up all Web
sites to potential lawsuits. (The ADA has resulted in several nuisance lawsuits in
the physical world.) But, some of the basic tenets of accessibility are straightfor-
ward and can be helpful to many users. Many of the suggestions for Web-based
forms can be implemented on each page, such as including text descriptions of all
functional images.

Custom Help
How do you create custom Help files? Online Help systems have grown to re-
place paper manuals. The goal is to provide the background information and the
specific instructions that a user might need to effectively use the application sys-
tem. Help files can contain text-based descriptions, figures, and hypertext links to
related topics. As much as possible, the help messages should be context sensi-
tive. The users should be presented with information that is designed to help with
the specific task they are working on at the time. For instance, a user might want
a definition of some term or more details about what actions can be performed on
a specific page. Yet the Help system must also have an extensive search engine so
that users can find information on any topic. Figure 8.14 illustrates a sample page
from a Help system.
Microsoft has embedded a Help system within Windows for several years. This

product has progressed through several versions. Most software developers use
this system so users get a consistent Help system across all products. The Win-
dows Help system displays the files, handles the links, table of contents, indexes,
and searches almost automatically. As a developer, you can concentrate on creat-
ing the files that contain the basic information and the necessary links. Then the
help compiler converts your data into a special file that the Windows Help system
can display and search. Once you learn the basic elements of creating a page, the
hard part is writing the hundreds of pages needed for a complete Help system.
Most directors of large development projects hire workers just to write the Help
files.
Help files built for the Windows system can be used with any application that

runs on the Windows operating system. However, these compiled files do not
work on the Web. If you are building an Internet-based application, you generally
need to create a separate set of Help pages. The Oracle system provides its own
Help compiler that you can use instead of the Windows system.
Most help systems today use HTML-based pages to display the text. Conse-

quently, the help pages can also be used as support files for Web-based applica-
tions. However, the Windows-based systems always require some form of cus-
tomization, so it is never as simple as just copying files.

413Chapter 8: Application Development

Creating a Help File for Windows
The first and most important step in creating a Help file is to understand what
information a user will need. Then you must write individual pages that explain
the purpose of the system and how to use it. As with any communication project,
you must first understand your audience. What types of people will use the ap-
plication? What is their reading level? How much experience and training do they
have with computers in general? Do they understand the business operations?
The goal is to provide concise help information in a format that users can quickly
understand. Usability studies show that most users do not want to use the Help
system—they prefer systems that are easy to use. When users turn to the Help sys-
tem, they are generally in a hurry and want a simple answer to a specific question.
Once you understand the needs of the users, you can write the individual Help

pages. Five basic components are used to create a Help system: (1) text messages,
(2) images, (3) hypertext links between topics, (4) keywords that describe each
page, and (5) a topic name and a number for each page.
Microsoft currently supports two Help systems and is developing a third. But

the company has experimented with several versions and it is not clear if newer
versions are going to be carried forward. The original system generated HLP files.
The second and most common one generates CHM files. A new system was de-
signed for use with Visual Studio 2010. Its files are ZIP archives with a suffix of
mshc. It is an improvement over Microsoft Help 2, which was used for Visual Stu-
dio 2003/2005 and Office 2007 (and 2010); but has been discontinued. The newer
Microsoft Help Viewer (mshc) version has some useful features, but it might be a
while before it is more widely implemented.

Figure 8.14
Sample help screen. The Windows help system handles all of the display and
searches. You just have to write the HTML topic pages and specify keywords.

414Chapter 8: Application Development

The discussion in this section focuses on the CHM approach because it uses
hypertext markup language (HTML) files—which are relatively easy to con-
vert to Web based help. The newer Help Viewer system also relies on HTML files
(technically well-formed XHTML pages), so the base concept is the same. Writ-
ing help files in HTML is relatively easy and many good tools exist for creating
Web pages. However, be careful with the tools: Some of them, such as Microsoft
Word, create complex code that might not work well with the Help compiler. You
want to use an HTML editor that produces basic HTML code without relying on
XML or JavaScript.
From a design perspective, it is crucial that you first design a style for your

Help system and define that style using a cascading style sheet. A style sheet sets
the typeface, font size, colors, and margins. The power of a style sheet is that you
define all of the layout options in one place. Each page linked to the style sheet
picks up those styles. So when you want to change the entire layout of your Help
file, you make a few changes to the style sheet and every page uses that style.
Every topic is created as a separate HTML page. Users will be shown one page

of material at a time. Try to keep topics short so they fit on one screen. Each Help
page will contain links to other topics. Figure 8.15 shows part of a basic Help
topic. Each page should have a title (marked with the <title> tag). Pages generally
have links to other topics (using the HTML standard <a href> tag). Images can

<object type=”application/x-oleobject”
classid=”clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e”>
 <param name=”Keyword” value=”Contents”>
 < param name=”Keyword” value=”Introduction”>
 < param name=”Keyword” value=”Sally’s Pet Store”>
 < param name=”Keyword” value=”Management”>
</object>
<html><head>
<title>Sally’s Pet Store Introduction</title>
<link rel=”stylesheet” type=”text/css” href=”PetHelpStyle.css” />
</head><body>
<h1>Introduction to Sally’s Pet Store</h1>
<table><tr>
<td></td>
<td>Sally’s Pet Store is a sample database project for use with the
Database Management Systems textbook by Jerry Post. The database
is designed to be a work in progress to highlight specific elements.</td>
</tr></table>
<h2>The Pet Store</h2>

Introduction to the Firm
Processes

</body></html>

Figure 8.15
Partial sample Help page. Create each topic as a separate Web page using HTML.
The anchor <a> tag links to other pages. The tag loads images. Use style
sheets to set fonts and design. Use a table or a style to control layout. Place keywords
for the page in the <object> tag.

415Chapter 8: Application Development

be in one of two formats: joint photographic experts group (JPEG) and graphics
interchange file (GIF). Most Help images will be line-art drawings and should
be in the GIF format. Most graphics packages can create and store files in these
formats. When you save the file, use only letters and numbers in the filename—do
not include spaces. Because you will eventually have hundreds of pages, it is a
good idea to keep a separate list of the pages along with a short description of the
topic and when it was last modified.
Keywords are an important part of every Help page. They are used to create

an index for the user. An index lists the keywords alphabetically, when a user
double-clicks a word, the corresponding Help page is displayed. The best way to
create keywords is to enter them on each topic page. The easiest method is to copy
the code from Figure 8.15 with the <object> tags and then change the keywords
within that list for each page. Each keyword is listed with a separate <param> tag.
If you want multiple levels, you can use a comma to list the hierarchy. For ex-
ample, the three entries: (1) Sales; (2) Sales, Merchandise; and (3) Sales, Animal
will create an index entry of Sales, followed by two indented lines for Animal and
Merchandise.

Context-Sensitive Help
Consider an example of using help. Users working on the Sales form in your ap-
plication do not want to wade through several Help pages or try to think of search
terms. Instead, when they press the Help key, they expect to see information on
that particular form. At a minimum, you need to create different Help pages for
each form in your application. But now you need some method in your database

Figure 8.16
Setting context-sensitive help. In every form, enter the name of the Help file in the
Help File property. Then enter the topic number for that form in the Help Context ID
property. Every control or subform can also have a different Help topic—just enter
the corresponding topic number.

Set the help file name in the form properties.

Set the topic number (Context Id) for each form or control.

416Chapter 8: Application Development

application to specify which Help page should be displayed for each form. As
shown in Figure 8.16, each form has properties for Help File and Help Context
ID. Oracle and Visual Basic forms have similar properties. You enter the name
of the file (e.g., PetStore.chm) in the Help File property. The Help Context ID re-
quires a number. This number is a long integer and can range from 1 to more than
2 billion.
It is crucial to note that applications require a topic number, but your Help file

refers to pages by their filename—not by numbers. To get these two systems to
match, you must assign a unique number to every topic page. With HTML Help,
you create a separate text file (usually called Topics.h) that maps this relationship.
A sample file is shown in Figure 8.17. You can choose any number, but it is easier
to remember them if you assign the numbers in groups. Also, with 2 billion num-
bers available, you can leave large gaps between the group numbers. For example,
it is better to number by hundred thousands or millions instead of by ones (1, 2,
3, and so on). A useful technique is to assign numbers by business object (e.g., all
Customer Help files might be numbered from 1,000,000 to 2,000,000). Once you
have created the file, use the HtmlHelp API Information button (left side, fourth
from the top) to tell the Help Workshop to include the file. Now, go through every
form in your application and specify the file name and topic number for that form.
Avoid changing the topic numbers in the Help file; they are hard to find in your
application.
After you have created all of the files, you need to run the HTML Help com-

piler to combine everything into a single CHM file. A version of this tool can be
downloaded free from Microsoft. Search for the htmlhelp.exe file. However, it is
a relatively limited tool that can be cumbersome to use. Most development teams
purchase a commercial product to gain more features including support for mul-
tiple writers. Several commercial tools exist at varying prices, and they generally
include features such as support for multiple file types and version control.

#define PetStoreIntro	 100
#define Accounting	 10000
#define Animal	 20000
#define AnimalDonation	 30000
#define ClassDiagram	 40000
#define Copyright	 50000
#define Customer	 60000
#define DatabaseDesign	 70000
#define Employee	 80000
#define FirmIntroduction	 90000
#define FirmProcesses	 100000
#define Inventory	 110000
#define Marketing	 120000
#define MerchandisePurchases	 130000
#define MerchandiseReceipt	 140000
#define Sale	 150000

Figure 8.17
Map file. Applications refer to topics by number, but the help system uses the
filename. The map file (Topics.h) is a simple text file that assigns a number to each
page.

417Chapter 8: Application Development

Windows Help 3/Help Viewer
Microsoft might be changing the Windows Help system. Keep in mind that the
company has tried at least at least two other times to create a new help system.
The current version, loosely known as Help Viewer or Help 3 is an improvement
over Help 2. Currently, the tool is only used to create help files that work within
the Microsoft Visual Studio tool. However, there is a chance that the tool could be
applied to other products in the future.
In terms of writing Help files for Help Viewer, the process is similar to the

existing HTML Help: Begin by writing each topic in a separate HTML file. One
important catch is that the HTML file actually needs to be XHTML—which is
a more precise version of HTML that is compatible with XML. The headers are
slightly different, and all tags must be complete. For example, a paragraph must
have both a beginning and ending tag: <p>My paragraph</p>.
The other big difference is that all metadata is stored in the same file. There are

no separate files for topics, keywords, table of content lists, or keywords. Every-
thing is marked in the page using special tags. Figure 8.18 shows the basic format
of a simple XHMTL help page. Note the use of meta tags to specify the items

Figure 8.18
Sample HTML Help 3. Meta tags within the file are used to define the basic features
such as title, ID, table of contents location, and key words. Links use an ms-xhelp
format to specify the ID of the link page.

<?xml version=”1.0” encoding=”utf-8”?>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>My Page Title</title>
 <meta name=”Microsoft.Help.TopicLocale” content=”en-us” />
 <meta name=”Microsoft.Help.TopicVersion” content=”100” />
 <meta name=”Microsoft.Help.Id” content=”fadf1f04-77dd-43fb-81f6-72e5ae0bfc3d” />
 <meta name=“SelfBranded content=“true” />
 <meta name=“Microsoft.Help.Locale” content=“en-us” />
 <meta name=“Microsoft.Help.Package” content=“My_Help_Package_Pets_en-us_1” />
 <meta name=“Microsoft.Help.F1” content=“PetStore” />
 <meta name=“Microsoft.TocParent” content=“-1” />
 <meta name=“Microsoft.Help.Category” content=“Petstore::Introduction” />
 <meta name=“Microsoft.Help.ContentType” content=“Concepts” />
 <meta name=“Microsoft.Help.Keywords” content=“Introduction” />
 <meta name=“Microsoft.Help.Keywords” content=“Pet Store” />
 <meta name=“Description” content=“Basic description goes here…” />
 <meta name=“Microsoft.Help.tocOrder” content=“1” />
</head>
<body class=“primary-mtps-offline-document”>
 <div class=“topic”>
 <div class=“majorTitle”>This is the Page Title</div>
 <p>Sally’s Pet Store …. </p>
 <p>My Link

 </div>
</body>
</html>

418Chapter 8: Application Development

needed to create the help file—notably the TOC specification and the key words.
Entering a TOC value of -1 indicates that the entry (title) will be placed at the top
of the hierarchy. To place an item lower in the hierarchy, simply enter the Help.ID
value specified in the parent.
The nice thing about the new format is that you no longer need a help compiler

to create the final help file. Simply create a new ZIP archive and place all of the
text and image files in that compressed folder. Add a manifest file (helpcontentset-
up.msha) and rename the archive from .ZIP to .MSHC. Figure 8.19 shows a sam-
ple manifest file with links for two “packages” or mshc files. Be sure to specify
the names and locations correctly. For instance, the sample file refers to the pages
stored within a “packages” subfolder.
At this point in time, your file will probably not open because Windows (and

Office) are not set up for the new format. You might be able to use the HelpLib-
Manager.exe program to install your new file and test it. Eventually, either the
new help system will be adopted and integrated into Windows, or discarded for
something newer (again). Either way, the hard part of creating Help files is identi-
fying the topics and writing text that will actually benefit the users. These HTML
files can be used for either of the current versions of HTML Help as well as stand-
alone help files on Web sites.

Figure 8.19
Sample manifest file. A package is a single mshc help file. Name the entire manifest
to: helpcontentsetup.msha and place it into the help archive folder.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>An optional title.</title>
</head>
<body class=”vendor-book”>
 <div class=”details”>
 Pet Store
 en-us
 Pet Store Sales
 Pet Store
 </div>
 <div class=”package-list”>
 <div class=”package”>
 package1
 <a class=”current-link”
 href=”packages\package1.mshc”>package1.mshc
 </div>
 <div class=”package”>
 package2
 <a class=”current-link”
 href=”packages\package2.mshc”>package2.mshc
 </div>
 </div>
</body>
</html>

419Chapter 8: Application Development

Handling Errors
What does your application do when something goes wrong? Error handling
is a task that is often relegated to coding on individual forms. However, it is a crit-
ical step—particularly in terms of security—so you need to review it at this stage
of development. Also, error handling should be consistent across the application
to avoid confusing users. At the same time, you need to create a logging facility
so that runtime errors in the application are recorded and reviewed periodically so
the application can be improved.
In terms of security, it is critical that your application catch all errors. Without

special handling error messages can crash the entire application. Worse, they can
lead to overwritten code providing an opportunity for criminals to take control
of a machine. Even relying on the system error handling is dangerous, because
default error messages often provide information that can be used to attack your
application.

Catching Errors
Most development languages provide commands to trap runtime errors. Most of
them use a variation of the try/catch syntax. The code to be protected is run within
a try section. If an error occurs, execution is transferred to the catch section. Your
error-handling code can look at different types of errors and handle them separate-
ly, or simply treat all errors the same. You ultimate mission is to devise error han-
dling code that can automatically deal with common problems. The intelligence
built into error-handling code is one way to tell the difference between amateurs
and professional developers. Usually, you need users to help create errors so you
know what to expect and the best way to handle them. The need for user testing is
one of the reasons complex error handling is added at this stage of the application
development.
Figure 8.20 shows the basic syntax for several programming systems. Most

use a try/catch approach but the syntax varies. Note that Visual Basic is the same
as C# but Basic does not use the braces. The basic structure includes a section

Figure 8.20
Common error-handling structure. Most systems use a try/catch structure but use
different syntax to define the sections. The SQL 2003 standard supports various
conditions (SQLEXCEPTION) and can EXIT the existing code or return to it
(CONTINUE) after processing the handler code.

Oracle SQL Server C# Access
BEGIN
 {code}
EXCEPTION
WHEN OTHERS THEN
 {code}
END

BEGIN TRY
 {code}
END TRY
BEGIN CATCH
 {code}
END CATCH

try
{
 {code}
}
catch (exception e)
{
 {code}
}

ON ERROR GOTO errX
 {code}
exitX:
 Exit Sub
errX:
 {code}
End Sub

SQL 2003 Standard DECLARE EXIT HANDLER FOR SQLEXCEPTION
 Sql_procedure_name
{code}

420Chapter 8: Application Development

or routine that is executed when an error arises. You have to make sure that each
procedural code section is covered by at least one statement that directs errors to
a handler. Then you can write code to identify the specific error and find ways to
solve the problem or send a message to the user and exit gracefully.
One of the challenges of database programming is that procedural code can ex-

ist in two places: (1) Within procedures on the server, and (2) In routines such as
C# that run on the client computer. You need to examine the application to be sure
that both types of code are protected by error-handling routines. Errors that are
trapped within database procedure code need to be returned to the client system to
perform additional error handling, including displaying warnings to the user.

Logging Errors
An important step in trapping errors is to record them. Yes, it is helpful to display
problems to the users; but users generally cannot do anything to solve the prob-
lem. You need to create a routine that inserts the error message, location, and date
into a special table. Each error-handling routine should include a line of code to
call this logging procedure. You might want to include additional data, such as
values of key local variables, for complex procedures.
When the system has been running in production for a while, you can retrieve

the values from the error-logging table. A simply query will show you which code
sections cause the most problems and help identify the types of mistakes encoun-
tered by users. You use this information to fix code errors and write more intelli-
gent error-handling code. The ultimate goal is to prevent users from having to deal
with run-time errors. Your code should be able to identify and handle the main
issues automatically. Of course, you cannot solve every problem—such as hard-
ware or network failures—but you can identify them and give advice to the user.

Debugging
Once you know the approximate location of an error, you need to track down the
cause. Fortunately, most contemporary systems have interactive debugging tools
that enable you to set break points and step through the application code line by
line. You can examine the values of local variables and even test queries.
The debugging process is more complicated when you have code running on a

server, and considerably more difficult when code runs on multiple tiers includ-
ing servers, clients, and middle-tier systems. Adding multiple levels requires you
to track down the true location of an error. Depending on your tools and the final
configuration, it is more difficult to run debuggers on multiple levels.
In many cases, you will have to resort to older debugging methods, such as

adding debugging print lines to your procedures that report the current values of
key local variables. In multi-tier systems, pay particular attention to the timing of
events including the code and when variables are initialized and assigned values.

Testing
How do you know your application works correctly? Every application needs
to be tested before it is turned over to users in a production environment. As in-
dicated in Figure 8.21, many levels of tests can be performed, but ultimately, you
can never catch all of the errors. Your goal is to find as many of the errors as pos-
sible with the time and money available. Keep in mind that errors caught earlier
are easier and less expensive to fix, and it is better to catch errors before they
cause expensive problems for users. Larger systems with multiple developers will

421Chapter 8: Application Development

require special groups of testers dedicated to finding problems. In smaller sys-
tems, you might have to test your own work. In either case, you should enlist the
assistance of actual users who will always try things that never occurred to you. In
a twist, test-based development is a modern approach to development where test
cases are created first. Then whenever code is written or changed, the test cases
are automatically rerun to ensure the code still works correctly. Several tools have
been developed to help automate the testing process, but it still requires consider-
able time to develop all of the test cases.

Form and Module Testing
The most basic level of testing occurs when you create modules and forms. Any
query, report, procedure, or section of code that you create should be tested as
it is written. When you first create an object, you should understand its primary
purpose and have sample test data to ensure that it works correctly. In particular,
if you need to perform complex calculations or logic, you need to work with users
to develop suitable test cases. These test cases should be stored and reevaluated at
each testing point. Some organizations use pairs of developers, where one person
is responsible for collecting test cases and continually testing sections of the proj-
ect as it is being built.
You should also integrate the testing with form validation. Forms should re-

strict the data that users can enter to reduce the possibility of bad data, or even in-
tentional attacks on your application. Where possible, you should use drop down
lists and option choices so users do not have to type in values. When users do
enter values by hand, you should include validation rules on the form to provide
immediate feedback to the users so the data can be correct as close to the source
as possible.

If	(Sales	>	50)
bonus=10000

Else
bonus=5000

End	If

Modules

Sales Customers

Receipt
Item		Qty			Price
112 2					10.50
178				1					27.85
251				4					21.17

Inventory

Company	X

Integrated	
Application

Forms
Stress

Usability Security

Figure 8.21
Application testing. Testing usually begins at the detailed level of forms and
modules. When the application is built, the integrated features are tested. You also
test for usability and performance under stress. Security testing should occur at every
level.

422Chapter 8: Application Development

Integrated Application Testing
Once the overall structure of the application has been created, it needs to be tested
as a complete unit. In particular, you need to ensure that data is passed correctly
across forms, modules, and reports. Any forms that contain links need to be tested.
For instance, linking a Sales Order form to the Customer form should result in
displaying the details for the customer currently selected on the Sales form. But
you also need to test extreme conditions. What happens if no customer has been
selected yet and a user clicks the link button? Likewise, what happens if the user
tries to print a blank receipt report? Be sure that the application continues to run
even if absurd choices are made. Verify that data is being stored properly, and that
security conditions are being maintained.

Stress or Performance Testing
Many developers and companies have encountered problems when an application
hits the real world. Forms and reports that run fine on the developer’s server die a
slow death when pushed out to thousands of users with millions of rows of data.
Unfortunately, systems performance is not always linear. For example, a task with
10 users might require 2 seconds to run; but you cannot claim that moving to 100
users will result in 20 seconds. More likely, instead of increasing by ten times, the
time will increase exponentially, requiring 40, 50, or even 60 seconds. Some sys-
tems are more scalable than others—meaning that performance can be improved
by adding hardware capacity and the process is close to linear. Other systems are
more complex, but either way, you need to stress test the application to find out
what will happen.
The challenge is that it is difficult to test big applications with thousands of us-

ers—without actually implementing the system. Where are you going to find the
hardware and the thousands of users to test the system with sample data? Some
companies sell tools that help stress test an application. The tools automatically
generate transactions and send them through your application. You can increase
the load on the servers by using only a few automated client computers. You can
also test the servers and networks on a smaller scale by throttling down the hard-
ware and networks. Instead of pushing 1,000 transactions through a 100 mbps net-
work, you could test with 100 transactions across a 10 mbps network. It will not
give exact results, but it will help you see what happens if a key connection gets
overloaded. This test is particularly useful for connections from the Web server to
the database server.

Usability Testing
In addition to testing for accuracy, errors, and performance, you also need to en-
sure that the system performs the tasks that users need. As part of the process, you
need to have actual users work with the system. You need to be sure that users
understand the forms and the process. The system needs to be easy enough to use
so that it does not require huge amounts of training. It also needs to be efficient so
that users do not waste time entering unnecessary data or searching for informa-
tion. A developer can spend hundreds of hours building forms and applications. At
some point, everything seems easy. You need the fresh perspective of actual users
to identify bottlenecks and other issues. At one level, development is much like
artistic design. Developers make dozens of choices when building applications.
How do you make the best choice? The answer is that usability needs to become
a key component right from the start. And the application specifically needs to be
tested for usability.

423Chapter 8: Application Development

Usability testing also needs to include testing the accessibility features. First,
someone needs to go through the entire application and ensure all of the features
are activated. It is too easy for a developer to forget to tag a button, menu, or
toolbar so it is accessible with a keyboard. So someone needs to go through every
item on every page and verify that accessibility is activated. Also, whenever pos-
sible, it would be useful to have someone with accessibility issues to actually use
the application. A real-world test can provide valuable insight into the application
flow, terminology issues, or other potential problems.

Security Testing
Security concepts are explored in other chapters, but companies have learned that
security also needs to be addressed throughout the development process. It is not
something that is added on at the end of the design. Testing for security issues
includes some of the basic tests—particularly validation and module testing. It
includes checking user input for common SQL injection attacks. A SQL injection
attack consists of an attacker entering malicious SQL code into a text box in your
application that replaces your intended SQL statement. The classic example is cre-
ating your own login screen and allowing users to enter any text as a username
and password. The problem is compounded when you use string concatenation
to build the SQL query. You should always use parameterized queries instead of
string concatenation. More importantly, you should never trust anything entered
by a user—and always restrict or validate what they are allowed to enter.
 Consider the simple login example, where your application retrieves a User-

nameText and PasswordText variable from the input screen. It is tempting to write
the simple lookup query: “SELECT UserID FROM UserList WHERE User-

Customers Inventory

Receipt
Item		Qty			Price
112 2					10.50
178				1					27.85
251				4					21.17

Forms

Reports

Help

Compiling	and	Packaging Installation

Server	and	Database	
Configuration

Tables	and	
Modules

Data

Figure 8.22
Deployment. The forms, reports, and help files are compiled and packaged into an
installation file that is run on client computers. The DBMS is installed on a server
and the tables and modules are installed and configured. Initial data is loaded and
network connections are established.

424Chapter 8: Application Development

name=΄ ” + UsernameText + “ ΄ AND Password=΄ ” + PasswordText + “ ΄ ”. Ig-
noring the fact that the password should be encrypted, this query will work fine
as long as users enter legitimate values. However, what happens when an attacker
enters a special SQL string for the UsernameText: ΄ OR 1=1 --. Plug this value in
and write out the SELECT statement. The quotation mark closes the first one, the
OR statement is always true, and the two dashes comment out the rest of the SQL
command. As a result, the query will always return valid UserID and the attacker
will be logged into your system. Worse, it is possible to write more complex SQL
statements that do nastier things, such as retrieving all of the data from the UserL-
ist table, or even deleting tables in your database. However, all of the SQL injec-
tion attacks have a common element. They include the single quotation mark to
close the required opening quote, and they use the double hyphen comment mark.
The simplest solution is to test all input code and remove or change quotation
marks and double hyphens to spaces. Whenever possible, you should restrict the
length of data entered by users to prevent someone from writing long, dangerous
code. Of course, restricting inputs can impact normal data entry, such as handling
the name O’Brian which contains an apostrophe or single quote character.
Security testing also involves testing the entire application—including steps

that might not be computerized. For example, how are passwords generated?
What happens if a user loses a password—how is it reset? Is this process secure
and logged? When the integrated application is being tested, you should also in-
clude basic security tests—particularly bad data that includes excessively long
values and SQL injection elements. For large projects, at least one person should
be assigned to attack the application, listing potential threats and methods that
might be used to obtain unauthorized access.

Deploying an Application
How will your application be installed? As shown in Figure 8.22, once you have
developed an application, you must collect all of the associated files (e.g., data-
base, system, forms, reports, and help) and distribute them to users or install them
on servers. You must also implement security precautions and assign user access
rights. The details depend on the type of application system, whether the users are
employees, and the size of the application. It is usually easiest to install applica-
tions on a server in one location. Even if you need a separate application (Web)
server, installation and maintenance are relatively easy when the files and data-
bases are in one location. If your application needs to install elements on client
computers, several additional steps are needed.

Packaging Files
One of the first steps is to identify and collect all of the files. These primarily
consist of the forms, reports, and help files. With a small application, built by one
or two developers, it is relatively easy to identify and collect all of the files. With
large applications that include hundreds of forms and reports, you need a version
control system to name each file and track the versions and changes.
Some systems store forms and reports internally, some treat them as separate

files, and a few compile them into a set of executable files. The method of packag-
ing the files varies in each case, but it must still be done. You also need to test the
resulting system to ensure all of the files are included and have the correct names.
As much as possible, you need to automate the build process. Some systems in-
clude an automatic build, in other cases you will have to write script files. Either

425Chapter 8: Application Development

way, it is important to automate the steps because you will have to rebuild the
application many times, and it is too easy to forget something. Scripts are easy to
modify to avoid mistakes.

Installation Programs
If you are going to put any portion of the application on client computers, you
need to use an installation program to automate the installation. Several tools ex-
ist, some versions are included with the DBMS and other versions are sold by
independent vendors. Installation programs bundle the various files, check the
target system for prerequisite files, and handle all configuration changes. Most
of the installation tools support packages delivered on CD or downloads from a
Web server. Some of the newer tools, including the one with Visual Studio, can be
installed directly from a Web site and check for updates. The installation system
also has to configure the database connections so the client component can attach
to the database server.
Microsoft Access adds more complications to the installation process. In its

most common form, the client computers will each need a licensed copy of the
Microsoft Access software. You will also want to encrypt the database forms and
reports to prevent users from changing them. In most cases, you will want to split
the database into two pieces. Details are provided in the Access Workbook. Mi-
crosoft provides another alternative if you do not want to install the full copy of
Access on each client computer. You can purchase the Access Developer kit which
includes a runtime module. The installation system can install the runtime module
so that you application will run without requiring a full copy of Microsoft Access.

Server and Database Configuration
An application also needs the servers and databases configured. The best way to
handle the database configuration and base data loading is to write SQL scripts.
You can create the scripts as the application is developed and tested. The scripts
make it easy to load a new copy onto a test server. More importantly, they can be
used to create a backup server or to reinstall the application is something goes
seriously wrong. The applications associated with these books use script files, and
you can use them as a template for your own applications. Even if you believe
an application will only be installed one time, you should create the server script
files. You will be surprised at how many times you will need to delete and reinstall
an application while it is being tested.

Summary
An application is a collection of forms and reports designed to function as a sys-
tem for a specific user task. Applications must be easy to use and designed to
match the tasks of the users. Application design begins with the overall structure,
which is often held together with startup forms. Menus and toolbars add structure
to the application by providing commands that are common to the entire applica-
tion. Toolbars can also be created for specific tasks and individual forms. A con-
text-sensitive Help system with both general descriptions and detailed help notes
is crucial to creating a useful application. Most applications also need to define
individual transactions so that related changes will succeed or fail together.
You need to add error handling to all forms and modules and perform sev-

eral levels of tests, including performance and security testing. You need to create
a relatively automated approach to deploying the application—particularly if it

426Chapter 8: Application Development

needs to be installed on client computers. Several installation tools exist to pack-
age the files and support automated installation. For the database and server-based
code, forms, and reports, you need to create SQL scripts that will create tables and
load the basic data.

Key Terms

accessibility
administrative tasks
application
back end
cascading style sheet
context sensitive help
dockable
error handling
front end
help system

hypertext markup language (HTML)
menu
middle tier
prototype
SQL injection attack
style sheet
startup form
template
toolbars
tooltip

A Developer’s View
Miranda is learning that applications are useful only if they make the user’s job
easier. A good application is more than just a collection of tables and forms. That
means you have to organize the application by the tasks of the user. You also
need to add help files and toolbars. You need to add error-handling code to your
application. Once the application is fully tested, you need to create an installation
package. For your class project, you should create the overall application struc-
ture (switchboard forms, interlocking forms, toolbars, help files, and so on). You
should build and test the scripts and installation setup.

427Chapter 8: Application Development

Review Questions
1.	 What are the fundamental principles to follow when designing an

application’s structure?
2.	 How does the purpose of an application (transaction processing, decision

support, or expert system) affect the design?
3.	 How are startup forms commonly used?
4.	 What are the potential problems with startup forms?
5.	 What is the purpose of menus and toolbars in an application?
6.	 What features are needed to make an application more accessible?
7.	 What are the primary steps involved in creating a context-sensitive help file?
8.	 What are the major methods for handling runtime errors in an application?
9.	 What are the primary forms of testing?
10.	What are the main steps in deploying an application?

Exercises
1.	 Find examples of two input forms—such as Web applications or business

forms. Compare the applications on design and functionality. Explain the
similarities and differences.

2.	 Find a Web site that has a separate mobile-based application. Explain the
similarities and differences between the two types of forms. What features
had to be sacrificed to make the mobile form? What choices would you have
made differently?

3.	 HTML5 supports graphical actions, although the built-in capabilities are
somewhat primitive. Assuming you have programmers to create them, design
a new Web-based process to purchase items and handle shopping carts that
use graphics and drag-and-drop elements. Just sketch the concepts—it is not
necessary to create them.

4.	 Create a custom toolbar menu with at least two icons and two drop-down
menus that include at least three options each.

5.	 Briefly explain how a touch-based menu would be different from a mouse-
based menu.

6.	 Application menus can have many options. Briefly explain how you would
solve the question of identifying the structure and items on menus.

7.	 Create a small custom help file that contains three pages of help. Create a
form and assign the help key to open one of the help topics.

8.	 Examine at least three Web sites and explore their help sections. Briefly
compare similarities and differences among the three sites. Explain which
features you would use in your own applications.

428Chapter 8: Application Development

9.	 Write a function to log runtime errors to a special database table or a file.
Create a form with a button that contains error-handling code. When the
button is pressed, it should trigger a runtime error (e.g., divide-by-zero), and
call the logging function to save the error message.

10.	Research and briefly describe the test-based development methodology and
explain how it could be used in database applications.

Sally’s Pet Store
11.	 Find at least two Web sites for pet stores and compare them. Select the

primary features that you would want to use for a site for the Pet Store.
Briefly explain how you would improve and differentiate your site.

12.	Design and create a menu system and toolbars for the Pet Store database that
would be used by clerks and managers in the store.

13.	Design a template for the input forms. At a minimum, specify colors, fonts,
and page layout. Rebuild at least two of the forms in the new template to test
the styles.

14.	Create and write initial help files for the Pet Store. Include at least three new
pages of help, the table of contents, and keywords.

15.	 Find a user (non-CS and non-IS) who can test the application. Observe the
user’s progress and identify any problems or issues that arise. Describe
changes you would make to improve the application.

16.	Assuming the store is going to use the finished application, outline a plan to
install and deploy it in the store on a single computer.

Rolling Thunder Bicycles
17.	Examine the Rolling Thunder Bicycles application and outline the menu

structure by checking the forms and reading the help file.
18.	Explain how the list box is used to handle receipt of merchandise from

suppliers. Outline the process that is used to tie the receipt to the purchase
order.

19.	Outline a plan for stress testing the application. Begin by identifying where
the application will be used and how many people will likely use it at one
time.

20.	Design a new toolbar or menu that supports operations by categories of users:
Managers, Order-clerks, Production, and Finance/Accounting. You can just
sketch the toolbars/ribbons instead of actually building them.

21.	Work through the application and test it for accessibility. Identify any
changes that need to be made.

429Chapter 8: Application Development

Corner Med
22.	Design a menu or toolbar for Corner Med to make it easy to use within the

clinics.
23.	 Identify potential application problems and failures that might arise and

outline a plan to handle them. (Focus on software, not hardware or networks.)
24.	Write the deployment plan for the application, assuming there will be one

workstation at the central check-in desk and one in each physician office.
Typically, there are three to five offices per location.

25.	Design the Patient Visit form so it can be used on a mobile tablet with a 10-
inch screen.

Web Site References

http://www.microsoft.com/enable/ Microsoft site for accessibility issues.
http://msdn.microsoft.com/windowsvista/uxguide Microsoft design guide for Windows Vista.
http://www.sigapp.org/ Association for Computing Machinery:

Special Interest Group on Applied
Computing.

http://oraclea2z.blogspot.com/ Oracle application tips.
http://www.useit.com Web site run by Jakob Nielson (a

researcher in usability).
http://www.helpwaregroup.com/ Help authoring utilities
http://www.section508.gov Federal government accessibility guidelines

and blog.
http://www.w3.org/WAI W3C (Web governance group) on the Web

Accessibility Initiative.

Additional Reading
Cooper, A. About Face: The Essentials of User Interface Design. Foster City,

CA: IDG Books, 1997. [A good discussion of various design issues.]
Ivory, M. and M. Hearst, The State of the Art in Automating Usability,

Communications of the ACM, 33(4), December 2001, 470-516. [General
discussion on evaluating system usability.]

Raskin, J. Humane Interface, The: New Directions for Designing Interactive
Systems, Reading, MA: Addison-Wesley, 2000. [The need for a new interface
as explained by the creator of the Apple Macintosh project.]

Corner
Med

Corner
Med

http://www.microsoft.com/enable/
http://msdn.microsoft.com/windowsvista/uxguide
http://www.useit.com

	Chapter 8: Application Development
	Introduction
	Two-Minute Chapter
	Design Consistency
	Page Design Templates
	Usability
	Fonts and Customization
	Mobile Devices

	Application Structure
	Designing Applications
	The Startup Form
	Sally’s Pet Store: Application Organization
	Administrative Tasks

	Menus and Toolbars
	Purpose of the Menu
	Toolbars
	Creating Menus and Toolbars

	Accessibility
	Custom Help
	Creating a Help File for Windows
	Context-Sensitive Help
	Windows Help 3/Help Viewer

	Handling Errors
	Catching Errors
	Logging Errors
	Debugging

	Testing
	Form and Module Testing
	Integrated Application Testing
	Stress or Performance Testing
	Usability Testing
	Security Testing

	Deploying an Application
	Packaging Files
	Installation Programs
	Server and Database Configuration

	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

