
520

What You Will Learn in This Chapter
•	 Why do you need a distributed database?
•	 What are distributed databases?
•	 How is data distributed with client/server systems?
•	 Can a Web approach solve the data distribution issues?
•	 How much data can you send to a client form?
•	 What benefits are provided by cloud computing and data storage?
•	 How will Sally’s employees access the database?

Chapter Outline

Distributed Databases
11Chapter

Introduction, 521
Two-Minute Chapter, 522
Distributed Databases, 523

Goals and Rules, 524
Advantages and Applications, 525
Creating a Distributed Database
System, 526
Network Speeds, 527
Query Processing and Data Transfer,
529
Data Replication, 530
Generating Keys with Replicated Data,
532
Concurrency, Locks, and Transactions,
533
Distributed Transaction Managers, 535
Distributed Design Questions, 536

Client/Server Databases, 536
Client/Server versus File Server, 537
Three-Tier Client/Server Model, 539
The Back End: Server Databases, 540
The Front End: Windows Clients, 540
Maintaining Database Independence in
the Client, 541

Centralizing with a Web Server, 542
Web Server Database Fundamentals,
543
Browser and Server Perspectives, 545

Data Transmission Issues in Applications,
546
Cloud Databases, 548

Cloud Computing Basics, 548
Data Storage in the Cloud, 549
Sally’s Pet Store, 550

Summary, 551
Key Terms, 553
Review Questions, 553
Exercises, 554
Web Site References, 557
Additional Reading, 557

521Chapter 11: Distributed Databases

A Developer’s View
	 Ariel:	How is the new job going,

Miranda?

	Miranda:	Great! The other developers are
really fun to work with.

	 Ariel:	So you’re not bored with the job
yet?

	Miranda:	No. I don’t think that will ever
happen—everything keeps
changing. Now they want me to
set up a Web site for the sales
application. They want a site where
customers can check on their order
status and maybe even enter new
orders.

	 Ariel:	That sounds hard. I know a little
about HTML, but I don’t have any
idea of how you access a database
over the Web.

	Miranda:	Well, there are some nice tools out
there now. With SQL and a little
programming, it should not be too
hard.

	 Ariel:	That sounds like a great
opportunity. If you learn how
to build Web sites that access
databases, you can write your ticket
to a job anywhere.

Introduction
Why do you need a distributed database? Today even small businesses have
more than one computer. At a minimum they have several personal computers.
More realistically, most organizations take advantage of networks of computers
by installing portions of their database and applications on more than one com-
puter. As companies open offices in new locations, they need to share data across
a larger distance. Increasingly, companies are finding it useful and necessary to
share data with people around the world. Manufacturing companies need to con-
nect to suppliers, distributors, and customers. Service companies need to share
data among employees or partners. All of these situations are examples of distrib-
uted databases. Many applications can take advantage of the network capabilities
of the Internet and the presentation standards of the World Wide Web. Even ap-
plications that seem simple need to consider some distributed issues. For instance,
a basic transaction-processing system, such as Sally’s Pet Store might need to ac-
cess the data from sales terminals as well as several management computers. If
the company expands to multiple stores, you would need to decide how to han-
dle the data for the individual stores, yet still combine the information for use by
management.

Getting Started
Databases and applications need to be used in multiple locations. You
need to decide where to physically place the DBMS and databases and
which data to transfer to users. Four primary methods are used to distrib-
ute data: (1) Linked databases, (2) Replicated databases, (3) Web appli-
cations, and (3) Cloud computing. You need to understand the strengths
and weaknesses of each to choose the best method for any application.

522Chapter 11: Distributed Databases

Building applications that function over networks and managing distributed da-
tabases can be complicated tasks. The goal is to provide location transparency
to the users. Users should never have to know where data is stored. This fea-
ture requires a good DBMS, a solid network, and considerable database, network,
and security management skills. However, a well-designed distributed database
application also makes it easier for a company to expand its operations. On the
other hand, databases that run on more than one computer significantly complicate
transaction processing.

Increasingly, people are carrying tablets and smart phones to run Web applica-
tions. Although business applications are behind social networks and other com-
mercial Web sites, it is likely that eventually most applications will need at least
some Web-based capabilities. Certainly, most new applications will be built to run
in browsers. With Web-based applications, database content and most application
processing is handled on central servers, while user interaction is handled on the
portable clients using HTML and JavaScript. In a sense, the database becomes
centralized while the user applications are decentralized.

The Internet offers other alternatives for distributed databases. Cloud comput-
ing and data storage can be purchased from third-party providers such as Amazon
and Microsoft. These services offer the ability to store databases online with fast
data transfers and network and computer support provided by experts. But, it can
be expensive, so you need to understand the tradeoffs.

Higher speeds in network connections are simplifying the issues of distributed
databases. When tablets and cell phones have 40 mbps or higher reliable data con-
nections, it becomes easier to store data and applications centrally.

Two-Minute Chapter
Databases and applications become more complex when users need to access
the data from different locations. Locations can be relatively close or they can
be thousands of miles apart. Networks are used to connect users to the database
and application servers. Local networks can be very fast but still create some de-
sign issues for large applications. Wide area networks that require paying for data
transfers across relatively slow public networks cause bigger problems with shar-
ing data. The primary design decision is where to locate the data. Today, the two
main options are (1) store replicated copies locally and synchronize the copies, or
(2) keep the data centralized and use Web servers and applications to connect to
users.

Using centralized Web server applications is tempting in many situations be-
cause it simplifies the management and control of data. But, despite improve-
ments in networks some applications probably need to remain on local systems.
For instance, a checkout systems for retail stores would probably be too slow to
run as Web applications. And checkout speed is a critical factor for many retail
stores. But network and browser technologies continue to improve so developers
have to continue to examine the tradeoffs.

Distributed databases consist of database files stored in different locations, un-
der the control of different copies of a DBMS. Developers need to decide if data
should be shared instantaneously across all sites or if replicas should be used that
periodically synchronize the data changes. The choice depends on whether all
sites need to see exactly the same data. Distributed databases also make it harder
to deal with key generation, concurrent data access, and distributed transactions.

523Chapter 11: Distributed Databases

High-end DBMSs contain mechanisms for handling many of these elements auto-
matically, but they tend to be expensive.

Older client-server systems split applications into the front-end of forms and
reports, connected to a back-end database server. Sometimes middleware applica-
tions are used to provide business logic and data connectivity between the two
layers.

Increasingly, applications are moving to centralized Web servers—perhaps us-
ing cloud computing. The data for these sites is centralized but the applications
are distributed and available on computers, tablets, and mobile devices through
just a Web browser. This approach simplifies the data issues but requires relatively
high-speed, and highly-reliable Internet connections to each user.

Distributed Databases
What are distributed databases? ? A distributed database system consists of
multiple independent databases that operate on two or more computers that are
connected and share data over a network. The databases are usually in different
physical locations. Each database is controlled by an independent DBMS, which
is responsible for maintaining the integrity of its own databases. In extreme situ-
ations, the databases might be installed on different hardware, use different oper-
ating systems, and could even use DBMS software from different vendors. That
last contingency is the hardest one to handle. Most current distributed databases
function better if all of the environments are running DBMS software from the
same vendor.

In the example shown in Figure 11.1, a company could have offices in three
different nations. Each office would have its own computer and database. Much
of the data would stay within the individual offices. For example, workers in the
United States would rarely need to see the daily schedules of workers in France.
On the other hand, workers in France and England could be working on a large
international project. The network and distributed database enable them to share
data and treat the project as if all the information were in one place.

Database
Zeus

Database
Apollo

Database
Athena

United	States

England
France

Figure 11.1
Distributed database. Each office has its own hardware and databases. For
international projects, workers in different offices can easily share data. The workers
do not need to know that the data is stored in different locations.

524Chapter 11: Distributed Databases

Distributed databases do not have to be international. They might even exist
within the same building. The key part of the definition is that the database runs
on different computers—those computers could simply be in different rooms.
However, distributed systems where the machines are physically close to each
other are much easier to configure. The primary issue in distributed databases is
the speed of the network connections. When the machines are physically close,
you can easily install high-speed networks at a relatively low cost. When you can
transfer huge amounts of data between computers for almost no cost, the distrib-
uted issues are easier to solve. On the other hand, you still have to understand the
options and plan for potential problems.

 The main issue with a distributed database is identifying the data that needs to
be shared. Data that is used exclusively within one location, on a single database,
is easy to handle—just keep it on the local computer. Data that needs to be ac-
cessed from multiple locations is more complex. You have to choose how the data
will be shared. For example, you could keep all of the data on one central com-
puter. Or, you could replicate copies to each location. The challenge is to balance
the benefits and costs to achieve the performance needed for each application.

Goals and Rules
It is difficult to create a DBMS that can adequately handle distributed databases.
(The major issues will be addressed in later sections.) In fact, early systems faced
various problems. Consequently, a few writers have created a set of goals or rules
that constitute the useful features of a distributed DBMS. C. J. Date, who worked
with E. F. Codd to define the relational database approach, lists several rules that
he feels are important. This section summarizes Date’s rules.

In anyone’s definition of a distributed database, the most important rule is that
the user should not know or care that the database is distributed. For example, the
user should be able to create and run a simple query just as if the database were
on one computer. Behind the scenes the DBMS might connect to three different
computers, collect data, and format the results. But the user does not know about
these steps.

As part of this rule, the data should be stored independently of location. For
example, if the business changes, it should be straightforward to move data from
one machine and put it in a different office. This move should not crash the en-
tire application, and the applications should run with a few simple changes. The
system should not rely on a central computer to coordinate all the others. Instead,
each computer should contact the others as needed. This separation improves sys-
tem performance and enables the other offices to continue operations even if one
computer or part of the network goes down.

Some additional goals are more idealistic. The DBMS should be hardware and
operating system independent so that when a newer, faster computer is needed,
the company could simply transfer the software and data to the new machine and
have everything run as it did before. Similarly, it is beneficial if the system runs
independently of its network. Most large networks are built from components and
software from a variety of companies. A good distributed DBMS should be able
to function across different networks. Finally, it is preferable if the distributed
application does not rely on using DBMS software from only one vendor. For ex-
ample, if two companies were to merge, it would be great if they could just install
a network connection and have all the applications continue to function—even if

525Chapter 11: Distributed Databases

the companies have different networks, different hardware, and database software
from different vendors. This idealistic scenario does not yet exist.

These features are desirable because they would make it easier for a company
to expand or alter its databases and applications without discarding the existing
work. By providing for a mix of hardware, software, and network components,
these objectives also enable an organization to choose the individual components
that best support its needs.

Advantages and Applications
The main strength of the distributed database approach is that it matches the way
organizations function. Business operations are often distributed across different
locations. For example, work and data are segmented by departments. Workers
within each department share most data and communications with other work-
ers within that department. Yet some data needs to be shared with the rest of the
company as well. Similarly, larger companies often have offices in different geo-
graphical regions. Again, much of the data collected within a region is used within
that region; however, some of the data needs to be shared by workers in different
regions.

Three basic configurations exist for sharing data: (1) one central computer that
collects and processes all data, (2) independent computer systems in each office
that do not share data with the others, and (3) a distributed database system.

The first option—a single computer—was the earliest approach to the problem.
Interestingly, it is regaining popularity in recent years. Originally, simple termi-
nals were connected to a single, expensive, computer. Today, data can be stored on
central servers and accessed via Web browsers from anywhere in the world. Keep-
ing all of the data in one location greatly simplifies coordination and security. Us-
ing relatively inexpensive computers as browsers makes it easy to replace them if
something breaks.

local
transactions

future
expansion

Figure 11.2
Distributed database strengths. Most data is collected and stored locally. Only data
that needs to be shared is transmitted across the network. The system is flexible
because it can be expanded in sections as the organization grows.

526Chapter 11: Distributed Databases

The second option is a possibility—as long as the offices rarely need to share
data. It is still a common approach in many situations. Data that needs to be shared
is transmitted via paper reports, e-mail messages, or perhaps text files. Of course,
these are ineffective methods for sharing data on a regular basis.

Figure 11.2 illustrates the third option of using a distributed database approach.
The main advantage is that distributed systems provide a significant performance
advantage through better alignment with the needs of the organization. Most up-
dates and queries are performed locally. Each office retains local control and re-
sponsibility for the data in that office. Yet the system enables anyone with the
proper authority to retrieve and integrate data from any portion of the company as
it is needed.

A second advantage to distributed databases is that, compared to centralized
systems, they are easier to expand. Think about what happens if the company is
using one large, centralized computer. If the company expands into a new region,
requiring more processing capacity, the entire computer might have to be re-
placed. With a distributed database approach, expanding into a new area would be
supported by adding another computer with a database to support the new opera-
tions. All existing hardware and applications remain the same. By using smaller
computer systems, it is easier and cheaper to match the changing needs of the
organization.

Because the distributed database approach can be tailored to match the lay-
out of any company, it has many applications. In a transaction processing system,
each region would be responsible for collecting the detailed transaction data that
it uses on a daily basis. For instance, a manufacturing plant would have a database
to collect and store data on purchases, human relations, and production. Most of
this data would be used by the individual plant to manage its operations. Yet as
part of the corporate network, summary data could be collected from each plant
and sent to headquarters for analysis. As another example, consider a consulting
firm with offices in several countries. The workers can store their notes and com-
ments in a local database. If a client in one country needs specialized assistance
or encounters a unique problem, the local partners can use the database to search
for similar problems and solutions at other offices around the world. The distrib-
uted database enables workers within the company to share their knowledge and
experiences.

Creating a Distributed Database System
The basic steps to building a distributed database are similar to those for creating
any database application. Once you identify the user needs, the developers orga-
nize the data through normalization, create queries using SQL, define the user in-
terface, and build the application. However, as shown in Figure 11.3, a distributed
database requires some additional steps. In particular, a network must connect the
computers from all the locations. Even if the network already exists, it might have
to be modified or extended to support the chosen hardware and DBMS software.

Another crucial step is to determine where to store the data. The next section
examines some of the issues you will encounter with processing queries on a dis-
tributed database. For now, remember that the goal is to store the data as close
as possible to the location where it will be used the most. It is also possible to
replicate heavily used data so that it can be stored on more than one computer. Of
course, then you need to choose and implement a strategy to make sure that each
copy is kept up-to-date.

527Chapter 11: Distributed Databases

Backup and recovery plans are even more critical with a distributed database.
Remember that several computers will be operating in different locations. Each
system will probably have a different DBA. Yet the entire database must be pro-
tected from failures, so every system must have consistent backup and security
plans. Developing these plans will probably require negotiation among the admin-
istrators—particularly when the systems cross national boundaries and multiple
time zones. For example, it would be virtually impossible to back up data every-
where at the same time.

Once the individual systems are installed and operational, each location must
create local views, synonyms, and stored procedures that will connect the databas-
es, grant access to the appropriate users, and connect the applications running on
each system. Each individual link must be tested, and the final applications must
be tested both for connections and for stress under heavy loads. It should also be
tested for proper behavior when a network link is broken or a remote computer
fails.

Operating and managing a distributed database system is considerably more
difficult than a handling single database. Identifying the cause of problems is
much more difficult. Basic tasks like backup and recovery require coordination of
all DBAs. Some tools exist to make these jobs easier, but they can be improved.
Do you remember the rule that a distributed database should be transparent to the
user? That same rule does not yet apply to DBAs or to application developers. Co-
ordination among administrators and developers is crucial to making applications
more accessible to users.

Network Speeds
The challenge with distributed databases comes down to physics and econom-
ics. As illustrated in Figure 11.4, data that is stored on a local disk drive can be
transferred to the CPU at transfer rates of 60 to 400 megabytes per second (higher
speeds with SSD and RAID drives). Data that is stored on a server attached to a
local area network (LAN) can be transferred at rates from 10 to 100 megabytes
per second (100 to 1,000 megabits per second). Using public transmission lines
to connect across a wide area network (WAN) provides transfer rates from 0.2
to 300 megabytes per second. To get that 300 megabytes per second (on an OC-

Design administration plan.
Choose hardware, DBMS vendor, and network.
Set up network and DBMS connections.
Choose locations for data.
Choose replication strategy.
Create backup plan and strategy.
Create local views and synonyms.
Perform stress test: loads and failures.

Figure 11.3
Additional steps to creating a distributed database. After the individual systems and
network are installed, you must choose where to store the data. Data can also be
replicated and stored in more than one location. Local views and synonyms are used
to provide transparency and security. Be sure to stress test the applications under
heavy loads and to ensure that they handle failures in the network and in remote
computers.

528Chapter 11: Distributed Databases

48 line at 2488 mbps), your company would probably have to pay over $50,000
a month in network costs. As technology changes these numbers are continually
improving. One of the biggest changes in recent years is the performance gains
of local area networks. With gigabit performance, it is relatively easy to move
data away from the processor and place it on a network attached storage device
on a storage area network (SAN). Separating the data from the processor makes
it easier to upgrade processors and provide backup facilities—both in terms of
backing up the data and replacing servers. Although a SAN offers several benefits
to running servers, it does not solve the distributed database problem because the
distance is still limited.

Note that most DBMS vendors also sell enterprise versions of the software that
can take advantage of a computer cluster. A cluster consists of multiple computers
that effectively work as a single machine. Because the system uses a single copy
of the DBMS, it is not a distributed system. However, it does take advantage of
fast LAN speeds and attached storage. The major strengths of clusters are fault
tolerance and scalability. The system automatically balances the load across the
servers. If one of the processors fails, the system simply ignores it. The DBA can
shut down the failed server and replace it with a new one. Likewise, as the data-
base grows, and you need more processing power, you simply add another ma-
chine to the cluster. The system detects the new capabilities and redirects process-
ing needs to the new server.

The real issues of distributed databases arise when you need to connect ma-
chines using a wide area network (WAN). Although high-speed WANs are becom-
ing more common, they are still relatively expensive. The goal of distributed pro-
cessing is to minimize the transfer of data on slower networks and to reduce the
costs of network transfers. Part of this goal can be accomplished through design—
developers must carefully choose where data should be located. Data should be
stored as close as possible to where it will be used the most. However, trade-offs
always arise when data is used in several locations.

Figure 11.4
Network transfer rates. Network performance is shown here in megabytes per
second. Local disks and networks are considerably faster than wide area networks
and WAN costs are higher.

60 – 400 MB
10-100 MB

0.2 - 300 MB

Disk drive
LAN

WAN

529Chapter 11: Distributed Databases

Query Processing and Data Transfer
Data transfer rates are a key issue in distributed processing. To understand their
importance, consider the issue of responding to queries if data is stored in sepa-
rate locations. If a query needs to retrieve data from several different computers,
the time to transfer the data and process the query depends heavily on how much
data must be transferred and the speed of the transmission lines. Consequently,
the result depends on how the DBMS joins the data from the multiple tables. In
some cases the difference can be extreme. One method could produce a result in
a few seconds. A different approach to the same query might take several days to
process! Ideally, the DBMS should evaluate the query, the databases used, and the
transmission times to determine the most efficient way to answer the query.

Figure 11.5 illustrates the basic problem. Consider tables on three different da-
tabases: (1) a Customer table in New York with 1 million rows, (2) a Production
table in Los Angeles with 10 million rows, and (3) a Sales table in Chicago with
20 million rows. A manager in Chicago wants to run the following query: List
customers who bought blue products on March 1. This query could be processed
in several ways. First, consider a bad idea. Transfer all of the rows to Chicago;
then join the tables and select the rows that match the query. This method results
in 11 million rows of data being transferred to Chicago. Even with a relatively fast
WAN, anything less than 30 minutes for this query would be fast.

A better idea would be to tell the database in Los Angeles to find all of the
blue products and send the resulting rows to Chicago. Assuming only some of
the products are blue, this method could significantly cut the number of rows that
need to be transmitted. The performance gain will depend on what percentage of
rows consists of blue products.

Customers(C#,	…)
1,000,000

NY

Products(P#,	Color…)
10,000,000

Sales(S#,	C#,	Sdate)
20,000,000
SaleItem(S#,	P#,…)
50,000,000

Chicago

LA

P#	sold	on
March	1

Blue	P#
sold	on
March	1

C#	list	from
desired	P#

Matching
Customer
data

Figure 11.5
Distributed database query example. List customers who bought blue products on
March 1. A bad idea is to transfer all data to Chicago. The goal is to restrict each set
and transfer the least amount of data.

530Chapter 11: Distributed Databases

An even better idea is to get the list of items sold on March 1 from the Chicago
table, which requires no transmission cost. Send this list to Los Angeles and have
that database determine which of the products are blue. Send the matching Cus-
tomerID to the New York database, which returns the corresponding Customer
data.

Notice that to optimize the query the DBMS needs to know a little about the
data in each table. For example, if there are many blue products in the Los Ange-
les database and not very many sales on March 1, then the database should send
the Sales data from Chicago to Los Angeles. On the other hand, if there are few
blue products, it will be more efficient to send the product data from Los Angeles
to Chicago. In some cases, the network also needs to know the transfer speed of
the network links. A good DBMS contains a query optimizer that checks the data-
base contents and network transfer speeds to choose the best method to answer the
query. You still might have to optimize some queries yourself. The basic rule is to
transfer the least amount of data possible.

Data Replication
Sometimes there is no good way to optimize a query; or there might be many que-
ries and each requires conflicting optimization methods. When large data sets are
needed in several different places, it can be more efficient to replicate the tables
and store copies in each location. The problem is that the databases involved have
to know about each of the copies. If a user updates data in one location, the chang-
es have to be replicated to all the other copies. Two common methods are used
to hanlde synchronization: (a) replication mangement, and (2) subscribe/publish
connections.

Developers and database administrators can tune the performance by specify-
ing how the database should be replicated. You can control how often the changes

Main Replica
subscribe

Changed
data

Published
changes

Figure 11.6
Replication with subscribe/publish. The databases are linked by subscribing a replica
to the main database. When changes are made on the main, they are published to all
of the subscribers.

531Chapter 11: Distributed Databases

are distributed and whether they are sent in pieces or as a bulk transfer of the entire
table. The biggest difficulty is that sometimes a network link might be unavailable
or a server might be down. Then the DBMS has to coordinate the databases to
make sure they get the current version of the table and do not lose any changes.
Figure 11.6 shows the basic concept of publish/subscribe. Once the subscription
connection is established, any changes made to the main database are published
to all of the subscribers. In many cases, the changes are sent immediately, which
results in a continuous flow of changed data across the network.

With bulk synchronization, most of the database is transferred to a second loca-
tion, the changes are exchanged, and the new database is returned to the original
location. With subscribe/publish, databases that want to be informed of changes
create a subscription to a main database. When changes are made on the main
copy, they are published and sent to the subscribing databases. In both cases, a
replication manager in the DBMS determines which changes should be sent and
to handle the updates at each location. Replications can be sent automatically at
certain times of the day, sent continuously, or triggered manually when someone
feels it is necessary to synchronize the data.

Figure 11.7 illustrates the basic concepts of replication. Marketing offices in
each location have copies of Customer and Sales data from Britain, France, and
Spain. Managers probably do not need up-to-the-minute data from the other coun-
tries, so the tables can be replicated as batch updates during the night. The data
will be available to managers in all locations without the managers worrying about
transfer time, and the company can minimize international transmission costs by
performing transfers at off-peak times.

Figure 11.7
Replicated databases. If managers do not need immediate data from other nations, the
tables can be replicated and updates can be transferred at night when costs are lower.

Britain: Customers
& Sales

France: Customers
& Sales

Spain: Customers
& Sales

Britain

Britain: Customers
& Sales

France: Customers
& Sales

Spain: Customers
& Sales

Spain

Update data.

Market research &
data corrections.

Periodic
updates

532Chapter 11: Distributed Databases

Transaction processing databases generally record many changes—sometimes
hundreds of changes per minute. These applications require fast response times at
the point of the transaction. It is generally best to run these systems as distributed
databases to improve the performance within the local region. On the other hand,
managers from different locations often need to analyze the transaction data. If
you give them direct access to the distributed transaction databases, the analysis
queries might slow the performance of the transaction system. A popular solution
is to replicate the transaction data into a data warehouse. Routines extract data
from the transaction processing system and store it in the data warehouse. Manag-
ers run applications and build queries to retrieve the data from the warehouse and
analyze it to make tactical and strategic decisions. Because the managers rarely
make changes to the underlying data, the data warehouse is a good candidate for
replication. The underlying transaction processing system retains its speed, and
the raw data is not shared. Managers have shared access to the warehouse data.

Generating Keys with Replicated Data
Replication seems like an easy solution—each location has a complete copy of
the database; performance of local updates and queries is unaffected by the other
copies; transactions are completed locally; and data backups are made automati-
cally. In practice, several problems can arise. One problem is the need to generate
unique primary key values. A second is the issue of concurrent changes—which is
described in the next section.

Automatic key generation is a challenge with replicated databases. What hap-
pens if two people in different locations create a new customer? If the key genera-
tor is not synchronized, then it is highly likely that both locations will generate the
same key, and when the data is updated from the two locations, a collision will
occur that must be resolved by hand. Two common methods can be used in dis-

DBMS	#1
Accounts

Jones 8898

DBMS	#2
Accounts

Jones 3561

Transaction	A
Locked
Waiting

Transaction	B
Waiting
Locked

Figure 11.8
Concurrency and deadlock are more complicated in a distributed database. The
deadlock can arise across many different databases, making it hard to identify and
resolve.

533Chapter 11: Distributed Databases

tributed databases to generate keys safely: (1) randomly generated keys, and (2)
location-specific keys. Randomly generated keys work if the generator chooses
from a sufficiently large number of possible keys. Then there is only a small prob-
ability that two keys would ever be generated the same at the same time. To be
safe, the generator immediately checks to see if the key just created already exists.
The second approach can use either sequential keys or random keys, but it relies
on each location being allocated a certain range of values. For instance, one region
might be given the range from 1 to 1 million, the next from 1 million to 2 million,
and so on. With location-specific generators, you must be careful to isolate the key
generation data tables. For example, your key tables would contain the location
identifier and the starting or current value of the key. This problem is relatively
easy to solve—but you must remember to configure it in your application.

The globally-unique identifier (GUID) is often used in distributed databases
when a unique value needs to be created. A GUID is essentially a large random
number. Microsoft tools use them extensively, and the mechanism for creating
them is accessible to most programming tools. The Microsoft algorithm uses the
unique ID from the computers’ network interface card as part of the GUID, and
then adds random digits—for a total of 128 digits. This process ensures that dif-
ferent machines always create different numbers.

Concurrency, Locks, and Transactions
Concurrency and deadlock become complex problems in a distributed database.
Remember that concurrency problems arise when two people try to alter the same
data at the same time. The situation is prevented by locking a row that is about to
be changed. As shown in Figure 11.8, the problem with a distributed database is
that the application could create a deadlock that involves different databases on
separate computers. One user could hold a lock on a table on one computer and be
waiting for a resource on a different computer. Now imagine what happens when
there are five databases in five locations. It can be difficult to identify the deadlock

Database	1
Initiate	Transaction

Database	2
Database	3

1.	Prepare	to	commit.
All	agree?

2.	Commit

Lock	tables.
Save	log.
Update	all	tables.

Figure 11.9
Two-phase commit. Each database must agree to save all changes—even if the
system crashes. When all systems are prepared, they are asked to commit the
changes.

534Chapter 11: Distributed Databases

problem. When the locks are on one computer, the DBMS can use a lock graph to
catch deadlock problems as they arise. With distributed databases, the DBMS has
to monitor the delay while waiting for a resource. If the delay is too long, the sys-
tem assumes a deadlock has arisen and rolls back the transaction. Of course, the
delay might simply be due to a slow network link, so the method is not foolproof.
Worse, the time spent waiting is wasted. In a busy system, the DBMS could spend
more time waiting than it does processing transactions.

Handling transactions across several databases is also a more complex prob-
lem. When changes have to be written to several computers, you still have to be
certain that all changes succeed or fail together. To date, the most common mecha-
nism for verifying transactions utilizes a two-phase commit process. Figure 11.9
illustrates the process. The database that initiates the transaction becomes a co-
ordinator. In the first phase it sends the updates to the other databases and asks
them to prepare the transaction. Each database must then send a reply about its
status. Each database must agree to perform the entire transaction or to roll back
changes if needed. The local database must agree to make the changes even if a
failure occurs. In other words, it writes the changes to a transaction log. Once
the log is successfully created, the remote database agrees that it can handle the
update. If a database encounters a problem and cannot perform the transaction
(perhaps it cannot lock a table), it sends a failure message and the coordinator
tells all the databases to roll back their changes. A good DBMS handles the two-
phase commit automatically. As a developer, you write standard SQL statements,
and the DBMS handles the communication to ensure the transaction is completed
successfully. With weaker systems you will have to embed the two-phase commit
commands within your program code. If you know that you are building an appli-
cation that will use many distributed updates, it is generally better to budget for a
better DBMS that can handle the two-phase-commit process automatically.

Transaction
Processing
Monitor

Transaction Manager

Resource
Manager

Transaction Manager

Resource
Manager

Transaction Manager

Resource
Manager

DBMS
DBMS

DBMS

Figure 11.10
Distributed transaction processing monitor. This software handles the transaction
decisions and coordinates across the participating systems by communicating with
the local transaction managers.

535Chapter 11: Distributed Databases

Notice that the two-phase commit system relies on pessimistic locking. Be-
cause of transmission delays, it could significantly slow down all of the systems
involved in the transaction—as it waits for each machine to lock records. Al-
though optimistic locking might help with some aspects of the transaction, it does
not help when a system or communication link fails.

Distributed Transaction Managers
The problem of distributed systems—particularly when database systems are
from diverse vendors—is difficult to solve efficiently. One common approach,
shown in Figure 11.10, is to use an independent transaction processing monitor
or distributed transaction coordinator. This system is a separate piece of software
that coordinates all transactions and makes the decision to commit or abort based
on interactions with the local transaction managers. This approach is generally
provided by the operating system vendor, and the DBMS vendors need to develop
interfaces that communicate with the transaction manager. The main transaction
manager could run on a separate system, or one of the local transaction managers
might be promoted to be the coordinator. For example, Microsoft provides the
Distributed Transaction Coordinator, IBM supports Java transactions within its
WebSphere Application server, and JBoss Transactions is available independently
for UNIX platforms.

Independence is the main strength of the transaction manager. As long as mul-
tiple vendors provide support (with the local resource manager software), the
system can support diverse products. It is also useful for program-level transac-
tions, where a substantial amount of code is written outside of the databases (e.g.,
in C++). By relying on the transaction manager, the database system could be
changed later if desired—without having to rewrite all of the transaction-process-
ing elements.

Question Concurrent Replication
What level of data consistency is needed? High Low – Medium
How expensive is storage? Medium – High Low
What are the shared access requirements? Global Local
How often are the tables updated? Often Seldom
Required speed of updates (transactions)? Fast Slow
How important are predictable transaction times? High Low
DBMS support for concurrency and locking? Good – Excellent Poor
Can shared access be avoided? No Yes

Figure 11.11
Design questions. Use these questions to determine whether you should replicate
the database, or provide concurrent access to data across the network. Transaction
operations are generally run with concurrent access. Decision support systems often
use replicated databases. However, the exact choice depends on the use of the data
and the needs of the users.

536Chapter 11: Distributed Databases

Distributed Design Questions
Because of the issues with transmission costs, replication, and concurrency, dis-
tributed databases require careful design. As networks gain better transfer rates,
database design will eventually become less of a problem. In the meantime you
need to analyze your applications to determine how they should be distributed.
Figure 11.11 lists some of the questions you need to ask when designing a dis-
tributed database. The main point is to determine what portions of the databases
should be replicated. If users at all locations require absolute consistency in the
database, then replication is probably a bad idea. On the other hand, you might
have a weak DBMS that poorly handles locking and concurrency. In this situation
it is better to replicate the data, rather than risk destroying the data through incom-
plete transaction updates.

Client/Server Databases
How is data distributed with client/server systems? Many applications run on
local area networks using some version of a client/server configuration. This ap-
proach is particularly common within retail stores, where checkout registers are
based on simple client computers. With this system, the bulk of the data is stored
on a centralized server, while the applications run on personal computers. How-
ever, some of the data might also be stored on the personal computers, and por-
tions of the application logic might run on middle-tier servers. The client/server
approach was driven largely by the limited capabilities of personal computer oper-
ating systems. Early operating systems could not support multiple users and pro-
vided no security controls. Hence powerful operating systems were installed on
servers that handled all the tasks that required sharing data and hardware. The
client/server approach is also somewhat easier to manage and control than moni-
toring hundreds of PCs. Any hardware, software, or data that needs to be shared
is stored in a centralized location and controlled by an MIS staff. With the client/
server approach, all data that will be shared is first transferred to a server.

As indicated by Figure 11.12, the actual database resides on a server computer.
Individual components can be run from client machines, but they store and re-
trieve data on the servers. The client component is usually a front-end application

ServerServer

ClientsClients

Shared
Database

Front-end
User Interface

Figure 11.12
Client/server system. The client computers run front-end, user interface applications.
These applications retrieve and store data in shared databases that are run on the
server computers. The network enables clients to access data on any server where
they have appropriate permissions.

537Chapter 11: Distributed Databases

that interacts with the user. For example, a common approach is to store the data
tables on a server but run the forms on personal computers. The forms handle
user events with a graphical interface, but all data is transferred to the server. You
need to understand a few important concepts to design and manage client/server
databases. Like any distributed database, where you store the data and how you
access it can make a substantial difference in performance. This section also dem-
onstrates some of the tools available to build a client/server database application.

Client/Server versus File Server
To understand the features and power of a client/server database, it is first useful
to examine a database application that is not a true client/server database. Initial
local area networks were based on file servers. A file server is a centralized com-
puter that can share files with personal computers. However, it does not contain a
DBMS. The file server stores files, but to the personal computers it appears as a
giant, passive disk drive. The sole purpose of the server is to provide secure shared
access to files. The client personal computers do all of the application processing.

Microsoft Access is often used in file server applications. It is relatively easy
to split the database and store the data as a file on the server that is accessed by
the forms and reports running on personal computers. The file server approach
enables you to share a single copy of the data so all users see the same data. How-
ever, the file server approach faces some important drawbacks.

Figure 11.13 illustrates the basic problem. The database file is stored on the
file server but the DBMS itself runs on the client. Security permissions are set so
that each user has read and write permission on the file. The problem arises when
your application runs a query. The processing of the query is done on the client
computer. That means that the personal computer has to retrieve every row of
data from the server, examine it, and decide whether to use it in the computation
or display. If the database is small, if the network connection is fast, and if users

Figure 11.13
File server problems. The file server acts as a large, passive disk drive. The personal
computer does all the database processing, so it must retrieve and examine every row
of data. For large tables, this process is slow and wastes network bandwidth.

File Server

CustID Name …
115 Jenkins…
125 Juarez ...

Order ...

MyFile.mdb

Forms

SELECT *
FROM Customer
WHERE City = “Sandy”

DBMS
software
transferred.

Application
and query
transferred.

One row at a time
transferred, until
all rows are examined.

538Chapter 11: Distributed Databases

often want to see the entire table, then this process does not matter. But if the table
is large and users need to see only a small portion, then it is a waste of time and
network bandwidth to transfer the entire table to the client computer.

The problem is that the file server approach relies on transferring huge amounts
of data when the application needs only some of the data. The client/server data-
base approach was designed to solve this problem. With a client/server database,
the binary code for the database actually runs on the server. As shown in Figure
11.14, the server database receives SQL statements, processes them, and returns
only the results of the query. Notice the reduction in network transfers. The ini-
tial SQL statement is small, and only the data needed by the application is trans-
ferred over the network. This result is particularly important for decision support
systems. The server database might contain millions of rows of data. The man-
ager is analyzing the data and may want summary statistics, such as an average.
The server database optimizes the query, computes the result, and transfers a few
simple numbers back to the client. Without the server database millions of rows
of data would be transferred across the network. Remember that even fast LAN
transfer rates are substantially slower than disk drive transfers.

Of course, the drawback to the server database approach is that the server
spends more time processing data. Consequently, the server computer has to be
configured so that it can efficiently run processes for many users at the same time.
Fortunately, processor speeds have historically increased much more rapidly than
disk drive and network transfer speeds. The other drawback is that this approach
requires the purchase of a powerful DBMS that runs on the server. However, you
rarely have a choice. Only small applications used by a few users can be run with-
out a database server.

Figure 11.14
Database server. The client computer sends a SQL statement that is processed on the
server. Only the result is returned to the client, reducing network traffic.

File Server

DBMS

SQL Server
Shared
Data

application

Send SQL
statement.

Return
matching
data.

539Chapter 11: Distributed Databases

Three-Tier Client/Server Model
The three-tier client/server model has been suggested as an approach that has
some advantages over the two-tier model. The three-tier approach adds a layer
between the clients and the servers. The three-tier approach is particularly useful
for systems having several database servers with many different applications. The
method is useful when some of the servers are running legacy applications.

As shown in Figure 11.15, one role of the middle layer is to create links to
the databases. If necessary, the middle layer translates SQL requests and retrieves
data from legacy COBOL applications. By placing the access links in one loca-
tion, the server databases can be moved or altered without affecting the client
front-end applications. Developers simply change the location pointers, or alter
the middleware routines. Some people refer to this approach as n-tier because you
can have any number of middle-level computers—each specializing in a particu-
lar aspect of the business rules.

Another important role of the middle layer is to host the business rules. For ex-
ample, creating identification numbers for customers and products should follow
a standard process. The routine that generates these numbers should be stored in
one location, and all the applications that need it will call that function. Similarly,
common application functions can be written once and stored on the middle-layer
servers.

This middleware system is well suited to an object-oriented development ap-
proach. Common objects that are used for multiple business applications can be
written once and stored on the middle servers. Any application can use those ob-
jects as needed. As the business rules change or as systems are updated, develop-
ers can alter or improve the base objects without interfering with the operations of
the applications on the client side. The three-tier approach separates the business
rules and program code from the databases and from the applications. The inde-
pendence makes the system more flexible and easier to expand. Several middle-
ware development tools exist to create and manage objects, but many are propri-
etary to specific platforms, such as those by Oracle and IBM.

Figure 11.15
Three-tier client/server model. The middle layer separates the business rules and
program code from the databases and applications. Independence makes it easier to
alter each component without interfering with the other elements.

Client

Middleware

Database
Servers

Application.
Front-end.
User Interface.

Databases.
Transactions.
Legacy applications.

Database links.
Business rules.
Program code.

540Chapter 11: Distributed Databases

The Back End: Server Databases
Server database systems tend to be considerably more complex and require more
administrative tasks than personal computer-based systems. The server environ-
ment also provides more options, which makes administration and development
more complicated. The DBA must work closely with the system administrator to
set up the software, define user accounts, and monitor performance.

Server databases also use trigger procedures to define and enforce business
rules. One of the more difficult design questions you must address is whether to
store these rules on the back-end database as database triggers and procedures, or
move them to a middle-level server using lower-level languages such as C++ or
Java. Sometimes you are constrained by the tools and time available. But when
possible, you should consider the various alternatives in terms of cost, perfor-
mance, and expandability.

Placing procedures in the back-end database ensures that all rules are enforced
by the DBMS, regardless of how the data is accessed. But, this approach ties you
in to a particular DBMS vendor. Because most systems contain proprietary ele-
ments, it is difficult to switch to a different DBMS in the future. Placing rules in
a middle tier also makes it easier to physically move the database. Generally, the
systems are built with reference links to the databases. To move the database, you
simply change the reference pointers.

One rule of thumb is to write user-interface code for the client computers and
to write data manipulation and control programs to run on the server. Middle-
layer programs are used to encode business rules and provide data translation and
database independence. The primary objective is to minimize the transfer of data
across the network. However, if some computers are substantially slower than
others, you will have to accept more data transfers in order to execute the code on
faster machines.

The Front End: Windows Clients
Windows-based computers are commonly used as client machines, so Microsoft
has created several technologies to provide database connections from the PCs to
back-end databases. Various tools and many vendors support the technologies, so
they are relatively standardized. The tools have evolved over time as hardware
and networks have improved and applications became more complex. Visual Stu-
dio is often used as a front-end tool to create the forms and reports. The applica-
tion is compiled and distributed to user machines, which connect through the Mi-
crosoft data components to a back-end server. The PC has a network connection
and a database connection that enables it to find the central database on the server.
The application code simply selects the appropriate database connection. From
that point, your application no longer cares where the data is located—it simply
passes SQL requests to the server.

The current Microsoft technology to connect programs to databases is active
data objects (ADO). Most DBMS vendors have written ADO connectors, so your
application code can retrieve and save data to the most common DBMSs. When-
ever you build an application in Visual Studio, you will use ADO to connect to the
DBMS. All of the commonly-used commands are embedded in the objects, so you
can retrieve data to display it in a form and save changes back to the database with
a couple of calls to the object methods. ADO is also used in Microsoft’s Web-
based applications and the underlying concepts are the same. Java (now supported
by Oracle) uses JDBC to connect the language to backend databases.

541Chapter 11: Distributed Databases

Maintaining Database Independence in the Client
One of the trickiest aspects of distributed databases is the issue of maintaining
database independence. When you first build an application, it is often created to
run with a single, specified database on the back end. Consequently, it is tempting
to simply build the application assuming that the same database will always be
there, and use the tools and shortcuts available for that particular system. But what
happens later when someone wants to change the back-end database? In extreme
cases, the entire application will have to be rewritten. As a developer pressed for
time, you might ask why it matters. If someone wants to change the database at a
later date, then should they be willing to pay the costs at that time? Yet, with only
a little extra effort up front, the application can support most common database
systems on the back end; making it easy to change later.

The database connection is one issue in building a generic application. Us-
ing a standard such as ADO makes it easier to change databases. Figure 11.16
shows that by changing the connection, your application can connect to a dif-
ferent DBMS. Of course, it is never quite that simple, but the ADO buffer is an
important element. In many cases, you can specify the ADO connection string
dynamically, making it easy for the application to connect to a different DBMS
without rewriting the code. If you are careful, you can build the application so that
it can switch DBMS connections at any time. You can build the system using one
DBMS and run the production system against a different one.

It is important that you understand that the connection is only one element in
making an application DBMS independent. In most situations, the actual SQL
commands are a much bigger issue. DBMS vendors tend to provide different lev-
els of support for the SQL standard. They also add proprietary options and com-
mands that are enticing. In particular, vendors offer many variations within the
SELECT command. For example, string and date operations are notoriously non-

New	DBMSOriginal	DBMS

Application

ADO ADO

Figure 11.16
Database independence. ADO is a useful buffer between the application and the
DBMS. Changing the connection makes it relatively easy to switch the back-end
DBMS.

542Chapter 11: Distributed Databases

standardized across vendors. And, if you are using an older version of Oracle or
SQL Server, you will not be able to use the INNER JOIN syntax. Because of these
differences, a key step in making an application DBMS independent is to move all
queries to the DBMS and save them as views. Then your application only contains
simple SELECT (or INSERT/UPDATE/DELETE) queries that pull data from the
saved view. These simple queries should use only basic standard SQL elements.
All of the vendor-specific functions are coded into the query that is saved in the
DBMS. To transfer to a new DBMS, you just recreate the queries on the new
DBMS using that vendor’s specific tools and syntax. This technique is particu-
larly important for applications that might begin small and grow. At a small size,
you might be able to use a small, inexpensive DBMS, but as the number of users
grows and demand on the system increases, you will have to scale up to a larger
DBMS. If the application queries were carefully built to remain independent, it
will be relatively easy to transfer to a new DBMS. Figure 11.17 shows an example
of using simple queries to maintain DBMS vendor independence.

Trigger functions are a more complex issue. Some systems do not support trig-
gers at all, and those that do generally provide different functionality. At this point
in time, the only method to guarantee compatibility across vendors is to avoid
database triggers. Instead, write the same functionality into middleware code that
also relies on generic queries.

Centralizing with a Web Server
Can a Web approach solve the data distribution issues? The World Wide Web
was designed to enable people (initially physicists and researchers) to share infor-
mation with their colleagues. The fundamental problem was that everyone used
different hardware and software. The solution was to define a set of standards.
These evolving standards are the heart of the Web. They define how computers
can connect, how data can be transferred, and how data can be found. Additional
standards define how data should be stored and how it can be displayed. As long

Generic application query:
SELECT SaleID, SaleDate, CustomerID, CustomerName
FROM SaleCustomer

Saved Oracle query:
SELECT SaleID, SaleDate, CustomerID,
	 LastName || ‘, ‘ || FirstName AS CustomerName
FROM Sale, Customer
WHERE Sale.CustomerID=Customer.CustomerID

Saved SQL Server query:
SELECT SaleID, SaleDate, CustomerID,
	 LastName + ‘, ‘ + FirstName AS CustomerName
FROM Sale INNER JOIN Customer
ON Sale.CustomerID = Customer.CustomerID

Figure 11.17
Database query independence. The application contains only simple queries that do
not use vendor-specific functions. All detail queries are created and saved within the
DBMS.

543Chapter 11: Distributed Databases

as a computer runs browser software that receives and displays data files, it can
access and interact with data stored on Web servers. The servers run Web server
software that can do almost anything—as long as it formats the data for standard
browsers. Both the servers and browsers are becoming more sophisticated, but the
essence of the method is presented in Figure 11.18.

An interesting consequence of the rapid acceptance of the Web approach is that
it encourages a return to a centralized database. All of the data and applications
are stored in one location. Users can be located anywhere in the world—as long
as they have a Web browser and an Internet connection. The issues of concurrency
and security are simplified again, since everything is handled by one DBMS. The
issues of distributed data are minimized, since the data is now stored in one place,
and all users share the same data. Placing the data in one location does not remove
the issue of data transfer speeds. Users with slow Internet connections might
complain about sluggish performance. However, most of the bulk data transfers
should take place at the server itself on high-speed lines. The majority of the com-
munication with users can be reduced to simple pages consisting of input screens
or simple data results.

The Web-based approach does not yet solve all distributed problems. For in-
stance, a retail chain that has stores in multiple locations will probably want to
keep most data locally. Each store would use a server to handle local transactions.
This data can be transferred in bulk to the headquarters server a couple of times
a day, where it can be made available for analysis over the Web. Even though the
data eventually winds up on a central Web server, local server are still needed to
improve transaction performance and reliability at each store.

Web Server Database Fundamentals
There is no standard mechanism for connecting databases to the Web server. Con-
sequently, the method you use depends on the specific software (Web server and
DBMS) that you install. Most of the methods follow a similar structure but vary
in the details. Several tools exist to help you build forms in a graphical designer,
supported by a programming language to process the data. These tools then gen-

Client
Browser

Server

Web	Server

Router Router
Internet

HTML	
formshttp://server.location/page

request

Database	Server

SQL

result	page

Data

Figure 11.18
Web servers and client browsers. Browsers are standardized display platforms.
Servers are accessible from any browser.

544Chapter 11: Distributed Databases

erate the HTML files that are sent to the client browsers. One issue to watch for
when selecting tools is that some of them require users to download special add-
in software for the browsers. Most users are wary of downloading nonstandard
components. When you are dealing with users outside of the main company, it is
best to stick with tools that use only standard browser features. At the moment,
the three leading tools are: (1) Microsoft ASP .NET, (2) Java, such as Oracle’s
JDeveloper and IBM’s WebSphere, (3) UNIX-based scripting, particularly LAMP
(Linux, Apache Web Server, MySql, and PHP or Python).

Figure 11.19 shows the basic process of connecting a DBMS to a Web server.
As the developer, you create a code file on the server. The file contains data ob-
jects that pass SQL commands to the DBMS and receive results (and error codes).
The page code can contain complex SQL statements and conditions. Ultimately,
it generates the HTML code and browser script that is sent to the client’s Web
browser. Most systems also use a cascading style sheet (CSS) to establish the
overall page design elements. The syntax of the code varies enormously, depend-
ing on the server. Pages written for one server system generally cannot be trans-
lated to run on a different system. Consequently, the choice of server and tools is a
critical first step in building data-driven Web applications.

Systems that separate the code from the HTML and the styles have a substan-
tial advantage. In particular, most organizations hire Web graphics designers and
usability experts to design the final Web page that is seen by users. These people

Web	Server

DBMS

<body>
<form	id="form1"	runat="server">
<asp:Label ID="PageTitleLabel"	runat="server"	…
<asp:SqlDataSource ID="CustomerSqlDataSource“
DeleteCommand="DELETE	FROM	[Customer]	…
SelectCommand="SELECT	[CustomerID],	…
UpdateCommand="UPDATE	[Customer]	SET…
<DeleteParameters>
<asp:Parameter Name="CustomerID"	Type="Int32"	/>

</DeleteParameters>
<asp:FormView ID="CustomersFormView"	runat="server“…
DataSourceID="CustomerSqlDataSource">
…

</asp:FormView>
</form>
</body>

Server	Code
SQL

Data

Data	Object

Customers

CustomerID 1653
LastName
FirstName
…

Jones
Mary

Save

Web	Browser

.PageTitle
{

font-weight:	bold;
font-size:	larger;
text-align:	center;

}

CSS	Style	Sheet

Figure 11.19
Web server database fundamentals. The server executes a script or code page that
utilizes a data object to pass SQL commands to the DBMS and receive data and
results. The page generates HTML and browser script that is sent to the browser
along with a style sheet to establish the page data and layout.

545Chapter 11: Distributed Databases

rarely know how to write database code. If the system mixes code with layout and
design elements, it is difficult for the designers to alter the server files. By separat-
ing the three elements (code, layout, and style), the designers can fine tune their
work without affecting any of the underlying procedural code. Similarly, the style
sheet is easily modified by designers. If the style sheet is used for every page item,
it is possible to change the overall look and feel of a Web site simply by editing
this one file.

Browser and Server Perspectives
On the client browser the user will see a simple sequence like the forms shown in
Figure 11.19. Once someone chooses a Search option, the AnimalSearch form is
displayed on his or her browser. The user chooses a category and enters a color.
When the Search button is clicked, the choices are sent to a new page on the
server. This page retrieves the data and formats a new page. The data is generally
stored in a table, similar to the one shown in Figure 11.20. The user never needs to
know anything about the DBMS: Users see only forms and new pages. Each new
page should provide additional choices and links to other pages.

Vendors are busy creating and refining tools to create Web-based forms that can
interact easily with the database. The details vary enormously depending on which
tool you use. However, the basic process remains similar. The server takes the
values from the client form, validates them for rules you specify, and writes SQL
queries to insert them or update existing rows in the database. You should review
all of the issues discussed in Chapter 6 for building forms and reports. The main
difference with the Web is that today’s tools generally require more programming
and individualized attention. On the other hand, Web-based applications create
some potentially difficult problems that must be addressed. Data transmission,

0 Request	Server/Form.html

1

2

Server

3 Results
Call	

ASP
	pag

e

Initial	form

Figure 11.20
Client perspective. The client enters data into a form. Clicking the Search button
sends the data to a server page. The server page retrieves the matching data from the
DBMS and formats a new HTML page. This table is returned to the user, along with
additional choices.

546Chapter 11: Distributed Databases

concurrency, and server loads are significant issues that arise in Web-based ap-
plications. In fact, some of the most important differences in vendor tools can be
found in how these problems are solved.

Data Transmission Issues in Applications
How much data can you send to a client form? At first glance, it seems straight-
forward to build a client/server or Web-based application. You simply move the
database to a central server and use the network connections to handle the data
transfer. However, these applications can present some challenging issues for data
transfer and usability of forms. One of the most difficult issues is the use of drop
down list boxes on a form.

Consider the main section of a standard order form shown in Figure 11.21.
If you build this form in Access or Visual Studio and run it locally over a fast
network, it will run fine. But what happens if there are 10,000 customers or the
form runs at a remote location with a slow network? For simplicity, assume those
names and identification numbers average 20 Unicode characters for each cus-
tomer. So the selection box needs 10,000 times 20 times 2 or 400,000 bytes of
data. At 8 bits per byte that is 3.2 million bits of data to transfer. Even at 3 mbps
it would take a little over 3 seconds just to transfer the data for that one lookup
box. If the network is slower, such as 300 kbps on a cell hone, it would take 30
seconds. Anytime you need to refresh the form or reload the drop down list box, it
takes another 30 seconds. If your form has several selection boxes, the form takes
even longer to load. Most users will be unhappy with the performance if forms
take more than a couple seconds to load.

So why not just remove the drop down list box? To understand the issues, you
need to remember why the selection box is useful. In a relational database, data is
stored in separate tables that are joined through key data. In this case, the Order
table contains the CustomerID. Theoretically, to place an order you simply need
the customer’s ID. (Eventually you will also need individual identification num-
bers for products as well.) You cannot expect your customers or clerks to memo-
rize ID numbers, so the order form uses the drop down list box to look up custom-
ers alphabetically and return the matching ID number for the selected customer. If
you remove the list box, you need to rethink the usability and find another method
for customers and clerks to enter data.

Even without the data transfer issue, a selection box might not be the best so-
lution when it has thousands of entries. Some boxes try to automatically find a

Order	Form

Order	Date

Customer

12-Aug

Jones,	Martha

Order	ID 1015

Figure 11.21
Data transfer in forms. What if there are 10,000 customers? How long will it take to
load the selection box? How long will it take to refresh a page with several selection
boxes? How can a user possibly read and scroll all 10,000 entries?

547Chapter 11: Distributed Databases

matching entry as a user enters the first few characters of a name or product, but
this method still requires the user to know the first few characters. Hence, a po-
tentially better solution is to create a more detailed search mechanism. Instead of
a selection box containing all customers, the user could enter the first few charac-
ters of a customer’s last name, click a button, and receive a small list of matching
names.

ItemIDs present similar problems. Two common solutions exist: (1) For in-
store sales, attach the product ID numbers to the individual items (e.g., bar codes);
or (2) for Web sales, let the customer search for items and keep a collection of the
selected ID numbers in a shopping cart.

For situations where you still want to use selection boxes, you need to be more
creative with programming. For example, Oracle recommends that you do not use
selection boxes for lists with more than 30 items. Instead, Oracle suggests the use
of a standard text box, along with a list of values (LOV). A list of values can be
defined as a query. When the user enters the text box, the item can be selected
from the list of values. How is this approach different from a selection box? The
main difference lies beneath the surface. The LOV retrieves data in chunks in-
stead of trying to transfer the entire set at one time. To the user, the list appears
continuous, but by transferring only the currently displayed section of the list,
the LOV reduces transmission time. It also transfers data while the user is read-
ing, so the delay is less noticeable. This approach can be used, even if your tool
or vendor does not support it directly. In Web forms, simply create a second form
that holds the list of items on multiple pages with a search function. When users
find the specific item, you can write a function to transfer the selected item to the
main form. On the Web, this approach requires some slightly tricky Javascript (or
ECMA script) coding.

For similar data transmission reasons, concurrency is also a problem with Web
forms. In engineering terms, latency is a time delay in a system. In the context of
forms, latency is the time between generating the form and receiving a response
from the user. With a long latency, there is a greater opportunity for someone else
to modify the same data elements, so concurrency is a greater problem. As shown
in Figure 11.22, latency is typically longer on Web forms because of slow trans-

Figure 11.22
Latency. Transmission delays and user delays can create long latency for Web forms.
Avoid pessimistic locking and carefully test for changes in the underlying database.

time

Server

Client

Generate form

Form received

User delay

Receive form data

Transmission
delay

Transmission
delay

548Chapter 11: Distributed Databases

mission lines and because users may be casual browsers who wander off and do
other tasks before submitting the form. Consequently, Web-based applications
should avoid pessimistic locking so that the data is available to more people at the
same time. As a result, your application has to test and handle optimistic concur-
rency issues when the data has been changed by another process.

Cloud Databases
What benefits are provided by cloud computing and data storage? As the In-
ternet has expanded, some of the structures have changed. In particular, a few
large companies have become leaders in developing tools and in establishing mul-
tiple high-speed connections. These companies are led by Amazon, Microsoft,
and possibly Google. All of them have huge data centers with very high-capacity
Internet connections. Beyond their underlying businesses, they offer other firms
the ability to use their computing and network facilities—for a fee of course.

Think about Web-based servers for a second. Typically, you think about one
big server and its Internet connection. An expensive Internet connection might
be capable of handling 155 megabits per second, which sounds like a lot of ca-
pacity. But, what happens if your server (and database) needs to deliver content
to a million users—at the same time? The network becomes congested and you
are averaging only 155 bits per second per user—way too slow for transferring
large amounts of data. OK, perhaps a million simultaneous hits is high, but similar
problems quickly arise with a smaller number of users when the Web server is
delivering complex content such as images or video. As shown in Figure 11.23,
some companies—notably Akamai—help reduce this problem by creating hun-
dreds of data centers around the globe. Your data gets duplicated and distributed.
Users interacting with your server might actually receive data from a nearby data
center—reducing the overall processing and transmission load on any one server.

Cloud Computing Basics
Cloud computing arises by locating multiple servers and databases on the Inter-
net. You can purchase time, space, and network data transfers by renting a vir-
tual machine and virtual storage space on these distributed servers. At the sim-
plest level, you can store files on a virtual Web folder (e.g., Amazon S3). You are

Figure 11.23
Cloud computing. Data is replicated to multiple, connected servers in the Internet
cloud. Client requests are filled from the nearest available server, spreading the
bandwidth and processor demands across the network.

Data

549Chapter 11: Distributed Databases

charged a monthly storage fee along with monthly fees based on the amount of
data transferred. This approach is typically used to store large files (books, music,
videos, and so on) that need to be downloaded by people around the world. The
service provider has high-speed data connections that can support a huge number
of users, but you only pay for the actual usage rates.

In more complex scenarios, you can rent SQL Server data storage and query
processing (e.g., Microsoft). The data is actually stored in Microsoft’s cloud, and
that company runs the network, hardware, and backup facilities. Your Web site
issues queries and stores data, but the data is stored on these distributed servers.

It is even possible to rent virtual machine servers (e.g., Amazon EC2). These
computers can be configured in a variety of sizes and with almost any operating
system or software you can find. You pay a monthly fee based on the relative size/
performance needed. Again, the service provider ensures that the computers keep
running and provides network access. One of the key features of these virtual ma-
chines and cloud databases is that they can be expanded (or contracted) at almost
any time. Also, initial fixed costs are low.

Think about the problem from the perspective of an Internet entrepreneur with
a new idea. You could build your own data center, hire a staff, and buy hardware,
software, and network access for hundreds of thousands of dollars. But you really
do not know how much capacity you need. Alternatively, you can rent all of the
initial capacity you need from a cloud provider for a monthly fee with little or no
startup cost. If your company takes off and you get a huge increase in customers,
you simply scale up the processing and storage with the cloud vendor.

However, you must continually re-evaluate your costs. The monthly rates
charged by the cloud providers will ultimately be higher than those that you might
achieve on your own. Once a company reaches a relatively steady-state, it might
be cheaper to install your own computers or lease servers directly from a hosting
company. But the decision depends on how much your demand fluctuates, and
whether you want to hire people to configure and run your own servers.

Data Storage in the Cloud
Web-based data is interesting. It might or might not resemble traditional transac-
tion data. For example, images, files, audio, and video are common on the Web.
These items could be stored in a relational DBMS, but it is generally easier to
store them as separate files—perhaps storing the file location in a relational table.
Cloud vendors have initially concentrated on tools to handle these types of object
data. For example, Amazon’s S3 and Google’s Bigtable are designed to store large
chunks of object data. They are not relational databases and support only rudi-
mentary query operations. However, they are distributed and have the ability to
deliver data quickly—to anywhere in the world. For the most part, think of them
as keyed storage—you provide a key value and the database returns the matching
item stored at that location. (The systems, particularly Bigtable, are more flexible
than that but it is a good starting point.)

When you need more traditional relational database services, you can also rent
those—such as Microsoft’s SQL Server offerings through its Azure platform.

In all cases, the data storage is most commonly used in combination with Web
applications. But, Web applications are often used for in-house systems as well as
public data, so this usage is not a limitation. Essentially, you treat the cloud server
as a basic database server. The Web server (which could also be in the cloud),
sends key values or queries to the cloud database, then formats and displays the
returned data to place it into an HTML page.

550Chapter 11: Distributed Databases

  Figure 11.24 shows the basic process for the Amazon S3 service. Developers
define buckets in Amazon, which are similar to file folders. Objects are uploaded
to a bucket and assigned a key value. The developer creates pages on the Web
server (which does not have to be at Amazon), and includes the bucket and key
names to tell the browser to insert objects from the S3 service. The bucket and
key names might actually be stored in a relational database and assigned based on
some actions or choices by the user. For example, a page request might retrieve the
bucket name and ID value to display a photo of an item being purchased. The Web
server encodes the bucket name and key into a URL such as http://s3.amazonaws.
com/mybucket/mykey. When the browser sees that link, it retrieves the specified
object from the nearest available S3 server. Objects are generally uploaded to the
S3 service using a simple transfer tool such as the add-in for the Fire Fox browser.

Microsoft’s Azure SQL service is even easier. You interact with the service by
writing SQL statements and upload data into tables. Then you write the Web page
code using a database connection that specifies the Azure SQL service as the da-
tabase provider. Your Web server runs the SQL statements and sends them to the
Azure server which returns the values, and you insert the results into the Web
page. The details are straightforward with most current Web programming plat-
forms including Microsoft .NET and Java’s JDBC.

Sally’s Pet Store
How will Sally’s employees access the database? Even with relatively simple
applications, you need to think about how employees and managers will access
the database. As a retail store, Sally’s employees will need access to terminals or
personal computers to record sales transactions and purchases or lookup customer
or item data. Managers will have to print reports and browse for trends over time.
You still need to determine where these computers will be located, how they will

Figure 11.24
Amazon S3 process. Developer uploads object to an Amazon S3 account into a
named bucket and gives the object a key value. The Web server code includes the
HTML and the link to the S3 service with the bucket name and key. The Web.server
delivers the HTML page and the nearest S3 server delivers the referenced content.

Web server

HTML
Page

Developer User

Amazon S3
Bucket Name

Key, ObjectHTML,
Code,
Bucket+
Key

551Chapter 11: Distributed Databases

be connected, and where the data will be stored. Some of the answers depend on
which DBMS you are using and the physical layout of the store. For example, will
Sally’s have a single checkout counter near the entrance with one terminal, or will
there be multiple terminals scattered throughout the store? If you use Microsoft
Access as the DBMS with multiple transaction computers, you will need to split
the database to store the shared data tables on a file server. Or, you might transfer
the tables to SQL Server and just use Access for the front-end forms and reports.
With Oracle, a single server would hold all of the data, and the front-end tools
would run on basic Web browsers. Since the machines are all contained within the
store, you can install a relatively high-speed network and not worry about transfer
speeds. If Sally wants access to the database from home, you will have to experi-
ment with options.

If Sally wants to expand and add a second store, the decisions become more
complex. She is also pushing for creation of a Web site, so that customers can
order products, check on adopting animals, and get some help in caring for their
pets.

Sally’s request to expand the database to a second store raises many questions.
Does she need “instant” access to the sales data from both stores all the time?
Do the stores need to share data with each other? For example, if a product is
out of stock at one store, does Sally want the system to automatically check the
other store? Will the stores operate somewhat independently—so that sales and
financial data are maintained separately for each store—or will the data always be
merged into one entity? How up-to-date does data need to be? Is it acceptable to
have inventory data from yesterday, or does it need to be up-to-the-minute?

The answers to these questions determine some crucial design aspects. In par-
ticular, the primary design question to answer is whether one central database
should handle all sales or separate, distributed databases should handle each store.
The answer depends on how the stores are managed, the type of data needed, the
network capabilities and costs, and the capabilities of the DBMS.

In many ways, initially the cheapest solution is to keep the second store com-
pletely independent. Then there is no need to share data except for some basic
financial information at the end of each accounting period. A second advantage
of this approach is that it is easy to expand since each new store is independent.
Similarly, if something goes wrong with the computer system at one store, it will
not affect the other stores.

However, at some point Sally will probably want a tighter integration of the
data. For example, the ability to check inventory at other local stores can be a
useful feature to customers, which means that the application will need to re-
trieve data from several databases, located in different stores. These distributed
databases must be networked through a telecommunications channel. There are
many ways to physically link computers, and you should take a telecommunica-
tions course to understand the various options. Once the computers are physically
linked, you need to deal with some additional issues in terms of creating and man-
aging the distributed databases.

Summary
As organizations grow, distributed databases become useful. Distributed databases
enable the company to expand individual departments without directly affecting
everyone else. Distributed databases also give individual departments increased
control and responsibility for their data. However, distributed databases, with in-

552Chapter 11: Distributed Databases

dependent database engines running in different locations, increase the complex-
ity of developing and managing applications. One of the primary goals is to make
the location of the data transparent to the user. To accomplish this goal, developers
and DBAs need to carefully define the databases, networks, and applications.

Some of the major complications generated by distributed databases are query
optimization; data replication questions; and support for transactions, concurren-
cy controls, and deadlock resolution. These issues become even more complex
when multiple databases are involved. Network transfers of data are substantially
slower than transfers from local disk drives. Transfers over wide area networks
can be slow and costly. These factors imply that developers must carefully design
the applications and the data distribution strategy. The applications also have to be
tested and monitored for performance and cost.

One of the major strategies in designing and controlling distributed databases
is to replicate data. Instead of maintaining one source, it is often more efficient to
replicate data that is heavily used in multiple locations. Of course, replication re-
quires additional disk space, along with periodic updates and transfers of the data
changes to each copy. Replication saves time by providing local access to data. It
reduces costs by reducing the need for a full-time high-speed connection. Instead,
bulk data is transferred at regular intervals—preferably at off-peak communica-
tion rates.

Client/server networks and client/server databases are a common means to de-
sign applications and distribute databases. Clients usually run applications on per-
sonal computers, and most of their power is devoted to the user interface. The data
is maintained on a limited number of database servers, which are more efficient
than simple file-server transfers. With a server database, the client sends an SQL
query, and the server processes the request and returns only the desired data. With
a file server, the client computer performs all the processing and must retrieve and
examine all the data.

Larger, object-oriented applications are being built using a three-tier client/
server architecture. The additional layer is in the middle and consists of business
rules and program code (business objects) that execute on servers. The middle
layer is also responsible for pulling data from the database servers and reformat-
ting it for use by the client applications. Separating the three layers makes it easier
to modify each component without interfering with the other elements.

The World Wide Web is becoming a popular mechanism to centralize applica-
tions and solve some of the distributed database issues. Web browsers have lim-
ited capabilities, but standards make it easier for everyone to get access to the ap-
plications and data. Keeping the data in one location simplifies security and con-
currency issues. You still have to think about reducing the data transferred to cli-
ent computers, such as avoiding huge drop down lists. You also have to deal with
transferring data to external suppliers and customers. XML is a standard method
of transferring bulk data. XML stores data in hierarchical files and XQuery pro-
vides searches of those files.

553Chapter 11: Distributed Databases

Key Terms

Review Questions
1.	 What are the strengths and weaknesses of distributed databases?
2.	 Why might a query on a distributed database take a long time to run?
3.	 When would you want to replicate data in a distributed database?
4.	 Why is concurrency a bigger problem with distributed databases than with

stand-alone databases?
5.	 How does the two-phase commit process work?
6.	 Why is a client/server database more efficient than a database on a simple file

server?
7.	 What are the advantages of the three-tier client/server approach?
8.	 How does a central Web site reduce problems with distributed databases?
9.	 How do you reduce transmission delays within data-driven Web sites?
10.	 What benefits are provided by databases run on the Internet as cloud

computing?

A Developer’s View
Like Miranda, most developers understand the importance of the Web. The cli-
ent standards make it easier to distribute data and connect with users around the
world. Additionally, as applications expand, it becomes necessary to create dis-
tributed databases to improve performance and to support different regions. Dis-
tributed databases can significantly complicate application development. First be
sure the application runs on one computer. Then get the best software you can
afford. As much as possible, let the server databases perform the data manipula-
tion and computation tasks. Use the client computers to display the results. Learn
as much as you can about the Internet: It changes constantly, but will become
increasingly important in your applications. For your class project, you should
identify where the company might expand and where you would position distrib-
uted computers to support it. Explain how the database design would change in a
distributed environment.

active data objects (ADO)
browser
cascading style sheet (CSS)
cloud computing
cluster
distributed database
fault tolerance
globally-unique identifier (GUID)
latency
list of values (LOV)

local area network (LAN)
replicate
replication manager
scalability
three-tier client/server
two-phase commit
wide area network (WAN)
World Wide Web

554Chapter 11: Distributed Databases

Exercises
1.	 In each of the following situations, identify the best method of structuring the

databases.
A.	 A single retail store with 7 checkout lanes, a manager’s office, and an

owner who wants to review reports from home.
B.	 Three retail stores with the same owner located in different cities about

50 miles apart. Each with 5 checkout lanes.
C.	 An engineering firm with computers used for design work where

engineers spend considerable time at production sites.
D.	 A large marketing firm with major offices in Los Angeles and New York,

where each office mostly works with local clients, but some work is
shared.

E.	 A large agricultural firm with a custom application used to collect and
analyze production data with headquarters in one state and farms located
in at least three other states.

2.	 Assuming your DBMS cannot generate distributed safe keys automatically
write a procedure to generate key values based on a location.

3.	 Compare the cost of using Amazon RDS versus Microsoft SQL Server cloud
services. Assume the database content is about 10 GB with monthly data
transfer rates around 1 GB per month.

4.	 You have the following distributed databases:

Location Link Speed Tables Sizes
London 53 kbps Contact(ContactID, Name, ClientID, Title, Phone)

Employee(EmployeeID, Name, Phone, Title)
WorkHours(WorkID, EmployeeID, ClientID, Date, Hours)

5,000 rows
2,300 rows
3,000,000 rows

Paris 1.544 mbps Contact(ContactID, Name, ClientID, Title, Phone)
Employee(EmployeeID, Name, Phone, Title)
WorkHours(WorkID, EmployeeID, ClientID, Date, Hours)

10,000 rows
1,000 rows
20,000,000 rows

Frankfort 128 kbps Contact(ContactID, Name, ClientID, Title, Phone)
Employee(EmployeeID, Name, Phone, Title)
WorkHours(WorkID, EmployeeID, ClientID, Date, Hours)

7,000 rows
3,500 rows
30,000,000 rows

Madrid
(HQ)

local Client(ClientID, Name, Lead contact, Main city)
Employee(EmployeeID, Name, Phone, Title)
Project(ProjectID, ClientID, StartDate, Topic)

20,000 rows
10,000 rows
1,000,000 rows

	 You are working for an accounting firm with headquarters in Madrid and
major offices in London, Paris, and Frankfort. Many of the client companies
have offices in three or four of these cities. Some clients are smaller and
work with a single office. The accounting teams in the various offices need
to share documents with teams in the other offices when they are working
for the same client. Each office maintains a database of working papers,
spreadsheets, questions, answers, and workflow data for the team. It also
tracks billable hours for each employee and client. You need to get a list
of all employees who have worked for a particular client in the last month;
along with hours worked. Based on the communication speeds and table
sizes, design the best performing query to answer this question. Could the
database and query performance be improved by changing the distributed
design?

555Chapter 11: Distributed Databases

5.	 A company has a database and an application where managers often generate
and read a report that consists of 5 pages of dense text and numbers plus a
chart on each page. If 100 people routinely view this report (with different
data) each hour, and if the company wants to run the report on a central
Web server, how much bandwidth capacity is needed? If the application is
converted to tablets using cell-phone connections, how much will it cost in
monthly cell phone bills?

6.	 You are working for a company that has two offices and is using a replicated
database approach. Both offices have copies of the database of about 100 GB.
Assuming that the entire database has to be transferred (both ways) between
the two offices to handle synchronization, estimate the time required to
handle the updates using at least three common network speeds.

7.	 A company wants managers to use mobile devices (phones, tablets, laptops)
to access its database-driven applications. Briefly explain the different ways
there are to develop the client (tablet/phone) applications. Which method
would you select?

8.	 Find a development tool that can be used to create database-driven
application on a Web server. Briefly describe the commands used to connect
a server page to a database and explain what needs to be changed if the
underlying DBMS is changed.

9.	 A company is building a Web-based application with SQL Server (or
Oracle) as the backend DBMS. The middle tier uses a server-based
programming language to generate HTML pages and insert data retrieved
from the DBMS. The project manager wants on section of the application to
implement pessimistic locking but does not think the application software
can adequately handle it. Over half of the large application has already been
written. What can you do to address the issue?

Sally’s Pet Store
10.	 Sally is planning to add a second store. Write a plan that describes how the

data will be shared. How will you control and monitor the new system?
Which tools will you add?

11.	 Sally wants to connect to suppliers so that she can get information on orders
and shipments electronically. The data needs to be imported into her database
and matched to the orders. Describe a system that can handle these tasks.

12.	 Sally is thinking about implementing a Web site to sell pet products. Estimate
the costs of storing the data for the site on Microsoft Azure SQL servers. The
database would need to store the tables for Customer, Merchandise, Sale,
and SaleItem. As an initial estimate, assume there will be 3,000 merchandise
items, 10,000 customers with each customer placing an average of one
purchase a month consisting of an average of three items on each order.

13.	 Use the tables for a different DBMS, or create them if necessary. Try to
connect your primary DBMS to the new tables. Write a query that pulls data
from both DBMSs.

556Chapter 11: Distributed Databases

14.	 Build a front-end application that handles the Sales form and connects to a
database server.

15.	 Briefly explain the steps required (and estimate the time) to build an
application so that store clerks could carry tablets on the floor to look up
inventory or take special orders from customers.

Rolling Thunder Bicycles
16.	 Rolling Thunder is planning to expand to a second location across the

country. How should the database be distributed? Where should each table be
stored? Which tables should be replicated, and how should the data changes
be reconciled?

17.	 Rolling Thunder is planning to expand by sending sales representatives
around the country to various bike shops. They will use portable devices
and a Web interface to configure bicycles and take new orders. The system
should at least be able to run on an Apple iPad browser, and perhaps even
a cell-phone browser. Describe how this system will work. What security
provisions will be needed?

18.	 Describe a method to create a Web application that enables customers to
check on the progress of their bicycle orders.

19.	 Create a second copy of your database running on a second computer. Create
a link from the first database to the copy. Write a query that combines data
from at least one table in each database.

20.	 Assume the owners want to convert the entire application to the cloud (such
as Amazon RDS or Microsoft SQL Server/cloud). In the process, they want
to increase marketing to increase sales and production to ten times the level
in 2012. Estimate the new database size. Assuming customers place their
own orders over the Web, estimate the cloud hosting costs.

21.	 Using the DBMS tools available to you, create a replica of the database;
make changes to data in both copies and then synchronize the database to
see the changes. Test what happens if you change the same data (such as
customer phone number) in both copies before synchronizing.

22.	 Assume the managers want to temporarily connect a SQL Server of the
database to an Oracle database with other tables. How can you build a link
between SQL Server and Oracle that lets you run Oracle queries inside SQL
Server?

Corner Med
23.	 The company owners basically want to franchise the operations. The

headquarters will run database operations for all of the local clinics. Describe
how you will configure the database to support this operational process. List
any potential problems you might encounter.

24.	 Using one DBMS, research the capabilities for replicating data. Build at least
one replica of a table, make changes to both copies, and synchronize the
copies. Describe how the system handles generated keys.

Corner
Med

Corner
Med

557Chapter 11: Distributed Databases

25.	 If Corner Med decides to franchise and move the database to cloud
computing, what security and privacy problems might arise and how could
they be managed?

26.	 Assume the company has several offices, but physicians (and sometimes
patients) move among the offices during the month. So the company builds
the application on a centralized server with access through Web-based forms
and reports. Would you add pessimistic locking to any of the tables or forms?

27.	 Related to distributed databases, assume that insurance companies send you
payment data by downloading data files. The CSV files contain a line for
each payment and list: Customer SSN, LastName, FirstName, VisitDate,
PaymentAmount, and AmountDenied (not paid). Create an application to
read this data and update the insurance company payment data. You might
need to add more columns to existing tables, and you should create a sample
file to test your application.

28.	 Create a second copy of your database running on a second computer. Create
a link from the first database to the copy. Write a query that combines data
from at least one table in each database.

Web Site References

http://www.w3.org/ Web standards body.
http://msdn.microsoft.com Search for Microsoft’s .NET framework

and documentation.
http://www.oracle.com/technetwork/java/index.html Java and JDBC documentation and

references.

Additional Reading
R. Burns, D. Long, and R. Rees, Consistency and Locking For Distributing

Updates to Web Servers using a File System, ACM SIGMETRICS
Performance Evaluation Review, 28(2) September 2000, 15-21.
[Performance issues in replicated databases.]

Date, C. J., An Introduction to Database Systems, 8th ed. Reading, MA: Addison-
Wesley, 2003. [In-depth discussion of distributed databases.]

Fisher, M., J. Ellis, and J. Bruce, JDBC API Tutorial and Reference/3e, Boston:
Addison-Wesley, 2003. [Using JDBC and Java to connect to database.]

http://www.w3.org/
http://msdn.microsoft.com

	Chapter 11: Distributed Databases
	Introduction
	Two-Minute Chapter
	Distributed Databases
	Goals and Rules
	Advantages and Applications
	Creating a Distributed Database System
	Network Speeds
	Query Processing and Data Transfer
	Data Replication
	Generating Keys with Replicated Data
	Concurrency, Locks, and Transactions
	Distributed Transaction Managers
	Distributed Design Questions

	Client/Server Databases
	Client/Server versus File Server
	Three-Tier Client/Server Model
	The Back End: Server Databases
	The Front End: Windows Clients
	Maintaining Database Independence in the Client

	Centralizing with a Web Server
	Web Server Database Fundamentals
	Browser and Server Perspectives

	Data Transmission Issues in Applications
	Cloud Databases
	Cloud Computing Basics
	Data Storage in the Cloud
	Sally’s Pet Store

	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

