Gerald V. Post

-
&
E
=

:

Microsoft Access 2007

Designing & Building Business Applications
Fourth Edition

Database
Management
Systems
Designing and Building
Business Applications

With
Microsoft Access Office 2007

Version 4.0.1 Gerald V. Post

University of the Pacific

Database Management Systems
Designing and Building Business Applications
With Microsoft Access

Copyright © 2008 by Gerald V. Post

All rights reserved. No part of this publication may be reproduced or distributed
in any form or stored in any database or retrieval system without the prior written
consent of Gerald V. Post.

Students:

Your honesty is critical to your reputation. No company wants to hire a thief—
particularly for jobs as critical as application development and database adminis-
tration. If someone is willing to steal something as inexpensive as an e-book, how
can that person be trusted with billions of dollars in corporate accounts?

You are not allowed to “share” this book in any form with anyone else. You can-
not give or sell any information from this publication in any form to anyone else.

To purchase this book or other books: http://JerryPost.com/books

http://JerryPost.com

Brief Contents

1 Introduction

ParT ONE: SysTEMS DESIGN
2 Database Design

3 Data Normalization

Part Two: QUERIES
4 Data Queries

5 Advanced Queries and Subqueries

ParT THREE: APPLICATIONS

6 Forms and Reports

7 Database Integrity and Transactions
8 Applications

9 Data Warehouses and Data Mining

ParT Four: DATABASE
ADMINISTRATION

10 Database Administration
11 Distributed Databases
12 Physical Data Storage

Contents

Contents

Introduction, 1
Case: All Powder Board and Ski Shop, 2
Inventory, 2
Bindings and Boots, 3
Sales, 4
Rentals, 5
Lab Exercise, 6
Project Outline, 6
Project Plan, 7
Feasibility, 8
The Database Management System, 10
Exercises, 11
Final Project, 13

Database Design, 14

Database Design, 15

Access Data Types, 15

Case: All Powder Board and Ski Shop, 17
Business Objects: First Guess, 17
Relationships, 18

Lab Exercise, 19
Database Design System, 19
All Powder Design, 20

Exercises, 27

Final Project, 29

Data Normalization, 30

Database Design, 31

Generated Keys: AutoNumber, 31

Case: All Powder Board and Ski Shop, 33
Lab Exercise, 34

All Powder Board and Ski Database
Creation, 34

Relationships, 39
Exercises, 43
Final Project, 44

Database Queries and SQL, 45
Database Queries, 46
Case: All Powder Board and Ski Shop, 46
Lab Exercise, 47
All Powder Board and Ski Data, 47
Computations and Subtotals, 55
Exercises, 61
Final Project, 63

Advanced Queries, 64
Advanced Database Queries, 65
Case: All Powder Board and Ski Shop, 66
Lab Exercise, 66
All Powder Board and Ski Data, 66

SQL Data Definition and Data Manipulation,
77

Exercises, 81
Final Project, 83

Forms and Reports, 84
Applications, 85
Case: All Powder Board and Ski Shop, 85
Lab Exercise, 86
All Powder Board and Ski Shop Forms, 86
All Powder Basic Reports, 101
Exercises, 109
Final Project, 110
Database Integrity and Transactions,
111
Program Code in Microsoft Access, 112
Case: All Powder Board and Ski Shop, 112
Lab Exercise, 113
All Powder Board and Ski Data, 113
Database Cursors, Keys, and Locks, 126
Exercises, 135
Final Project, 137

Applications, 138
Applications, 139
Case: All Powder Board and Ski Shop, 139
Lab Exercise, 140

Building the All Powder Application, 140
Exercises, 150
Final Project, 151

Data Warehouses and Data Mining, 152
Data Warehouse, 153
Case: All Powder Board and Ski Shop, 153
Lab Exercise, 154
All Powder Board and Ski Shop, 154
Introductory Data Analysis, 162
Exercises, 169
Final Project, 171

Contents Vi

Database Administration, 172
Database Administration Tasks in Access, 173
Case: All Powder Board and Ski Shop, 174
Lab Exercise, 174
All Powder Board and Ski Shop, 174
Security and Privacy , 177
Exercises, 187
Final Project, 188

Distributed Databases, 189

Location, Location, Location, 190

Case: All Powder Board and Ski Shop, 190

Lab Exercise, 191
All Powder Board and Ski Shop, 191
The Internet, 197

Exercises, 200

Final Project, 201

Physical Database Design, 202
Storing Data, 203

Case: All Powder Board and Ski Shop, 203
Lab Exercise, 203

Exercises, 207

Final Project, 208

Chapter

Introduction

Chapter Outline

Case: All Powder Board and Ski Shop, 2
Inventory, 2
Bindings and Boots, 3
Sales, 4
Rentals, 5
Lab Exercise, 6
Project Outline, 6
Project Plan, 7
Feasibility, 8
The Database Management System, 10
Exercises, 11
Final Project, 13

Objectives

+ Identify the main elements of the case.
+ Structure the work needed for the case.
« Create a feasibility analysis of the case.
+ Create a new database.

Chapter 1: Introduction 2

Case: All Powder Board and Ski Shop

The ski industry has been through many changes in the 50 years since Bill Shimek
founded the ski shop that is now run by his grandson. One of the biggest changes
is reflected in the prominence of “Board” in the shop name. Snowboards revolu-
tionized the industry in several respects. They revived youth interest in the sport,
brought new designs to equipment and resorts, and increased sales dramatically.
On the other hand, the increased changes in ski and snowboard equipment make
it more difficult for shops to stock the hundreds of options and combinations that
enthusiasts might want. Shops have become larger, forcing small firms out of
business. Even large ski shops have had to identify their customers and forecast
customer demands carefully to make sure the high-demand equipment is in stock.
Tracking sales, trends, and buyer needs has become critical to survival.

Another factor in the industry is that the firms increasingly rely on rentals.
Partly because of the rapid changes in the industry, many people prefer to rent
equipment so they can avoid having to buy new boards and skis every year. Con-
sequently, the shop buys several relatively standard boards and skis every year
and rents them out. At the end of the year, the used equipment is sold at a discount
to make room for next year’s models.

Inventory

Monitoring inventory is a first critical step in the process of providing the selec-
tion demanded by customers. Figure 1.1 shows some of the detailed information
needed, as well as the diversity of equipment available. Note that because of the
variety of uses, many different types of snowboards and skis exist. Figure 1.1
also shows the importance of the skill categories. Manufacturers produce special
boards and skis for each of these categories. Of course, it would be impossible
to stock all of the required sizes for rental purposes. Rental boards and skis tend
to be as generic as possible. Even for sales, some sizes of the high-end skis and
boards have to be special ordered.

Within a category, manufacturers tend to sell boards and skis targeted for dif-
ferent levels of skiers—from beginner to intermediate to expert (Type I, Type II,

Figure 1.1

Inventory

Snowboards
Manufacturer Mfg ID Size Description Graphics List Price QOH
Freestyle
Pipe
Standard
Extreme

Skis
Manufacturer Mfg ID Size Description Graphics List Price QOH
Cross country-skate
Cross country-trad.
Telemark
Jumping
Freestyle
Downhill/race

Chapter 1: Introduction 3

and Type III skier). Even within the type classifications, All Powder salespeople
evaluate customers on the basis of their aggressiveness on the slope. Because of
the size of snowboards, along with the youthful image of the sport, manufacturers
place a high value on the graphics (images and colors) displayed on both sides of
the boards. Customers have often been known to choose a board because of the
graphics. Some of this emphasis has filtered over to skis as well.

Listing the sizes of boards and skis is somewhat tricky, and definitely presents
a challenge to keeping adequate inventory. The length of the ski or board is a
critical number, but the customer’s choice is also based on several other ski mea-
surements. Snowboards revolutionized board and ski design by adding a narrower
waist to aid in turning. This concept migrated to most varieties of skis as well, so
customers often want to know the waist width, sideout depth, and effective edge
length of skis. Generally, boards and skis with narrower waists are targeted for
more advanced skiers. Additionally, the construction of the board or ski, in terms
of materials and thickness, significantly affects its flexibility and handling. Cus-
tomers generally want to feel the ski to evaluate and compare its flexibility, but
measures of stance location (for boards) and the rider weight range provide some
prediction of the handling characteristics. Most skis and boards are also designed
for a particular riding weight. With cross-country skis it is particularly important
to get the proper length for the weight of the skier.

Bindings and Boots

Bindings and boots represent another common problem for All Powder and other
ski shops. Each ski and each board can technically be fitted with several types of
bindings. Each binding type generally requires a matching style of boot and some
of the boots can work only with some bindings. For example, snowboards can
use clincher, strap, or plate bindings. Cross-country skis can use pin, strap, or rod
bindings. Most modern skis use the rod binding, but customers sometimes want
boots that fit the older pin bindings. Downbhill, freestyle, and slalom skis use simi-
lar bindings. Because they are the most popular, the store usually stocks several
models—focusing on skill levels.

Figure 1.2

Boot-Binding Compatibility

Manuf. Mfg.ID Board/Ski Binding/Style Color Price Cost

Size QOH
34
35
36

Chapter 1: Introduction 4

Figure 1.2 shows an example of the card system that All Powder uses to help
salespeople select bindings and boots. Currently, the salespeople are supposed to
change the quantity on hand whenever a boot or binding is sold. Of course, the
cards are rarely kept up-to-date and the salespeople often have to go search the
physical inventory to see if a size needed by a customer is in stock. Note that
boots and bindings are specifically matched, and a boot for one purpose can rarely
be used for a different application. For example, it would not be possible to use a
cross-country boot in a downhill binding. The binding is usually listed as a type
(rod, step-in, telemark/cable, etc.). On the other hand, it is possible to mount bind-
ings on different types of skis. For instance, you could mount a telemark binding
to a downhill ski. Some of the combinations should be avoided, but this knowl-
edge will not be needed in the database.

Sales

The sales form shown in Figure 1.3 is fairly standard. All of the hard work in
terms of configuration was done by the salesperson. In some cases, the salesper-
son might ask the customer to initial some items that might present compatibility
issues to make sure the customer is aware of the potential problems. The descrip-
tion generally includes the manufacturer’s name and style. The SKU (stock keep-
ing unit) is a special number created within the store to code each item.

Returns are usually accepted on most items as long as they have not been used
outside (e.g., scratched or worn boots cannot be returned). It is important for sales-
people to identify the type of boarding/skiing and the customer’s skill level. This
information is used to send customers mailings about special sales. The owner
also has started thinking about keeping customer sizes in a database. This infor-
mation would be particularly helpful in clearing out the previous year’s inventory
of special sizes (very small or very large), because it would help pinpoint custom-

Figure 1.3
Sales
Customer Sale Date
First Name Last Name Salesperson
Phone E-Mail Department
Address Shipping Address
City, State ZIP City, State ZIP
Male/Female Ski/Board
Age/Date of Birth Style Skill Level
Item | Description | New/Used | Size | Quantity | Price | Subtotal

tem Total

Tax

Total Due Method of Payment

Chapter 1: Introduction 5

ers who could use those special sizes. The catch is that the owner is concerned
about privacy issues and fears that customers may not want to have their sizes on
file at the store. However, if a customer has already purchased items in a specific
category and size, that data will be available. The difficulty emerges when sales-
people ask customers for their sizes when they are not purchasing these products.
For instance, it may appear rude to ask a customer who came in to buy ski wax for
his or her jacket size.

The store evaluates salespeople on the level of sales they make, so it is im-
portant to track sales by each employee. Of course, the database should contain
additional information about each employee, such as phone number, address, and
his or her primary department assignment. Of course, clerks rarely write down the
department names properly, so it makes sense to have a separate lookup table for
the department names.

Also, note that some of the best customers participate in several styles, even
crossing between using skis and boards. A customer who is an expert at downbhill
skiing might be a beginner with snowboards.

Rentals

The form to handle rentals is similar to the sales form. But notice in Figure 1.4
that columns have been added for return date, condition, and additional charges.
The additional charges are imposed if an item is returned late or if it is returned
damaged. Additionally, customers are required to sign the form to indicate their
agreement with the skill level, rental conditions, and the release printed on the
back of the form. Katy, the current manager, has talked about capturing the signa-
tures digitally and storing them online, but it is not a high priority.

Observe that the current form requires that each rented item be checked off sep-
arately when it is returned. Although the store clerks often complain about having

Figure 1.4

Rentals
Customer Rental Date
First Name Last Name Expected Return
Phone E-Mail
Address Shipping Address
City, State ZIP City, State ZIP
Male/Female Ski/Board
Age/Date of Birth Style Skill Level

Item | Description | Size | Fee | Return Date | Condition | Charges

Item Total
Tax
Total Due Added Charges

Method of Payment Signature

Chapter 1: Introduction 6

to mark each row separately, the store managers have determined that about 20
percent of the time, a customer forgets to return an item and has to bring it back
later.

Renting ski equipment also raises the issue of reservations. On some holidays,
all of the equipment is rented out before 10:00 A.M.. Some long-term custom-
ers have said that they would like to be able to reserve equipment. Currently, the
rental managers will sometimes set aside equipment if a valuable repeat customer
calls in advance. This process works reasonably well, but the managers have talk-
ed about creating a system that is available to everyone. One of the drawbacks is
that they are concerned that the general public might reserve items and then never
show up, leaving equipment idle that could be rented to someone else.

Lab Exercise

The first step in any project is to identify some basic elements of the system. What
are the goals? What is the scope? What tools will be needed? What are the ben-
efits? What are the expected costs? How much development time will be needed?
All of these questions are difficult to answer, and rarely do the answers have a
single value. Instead, you need to create a project plan. The plan will include a
feasibility statement that describes the basic costs and potential benefits. As a real-
world project, you would also include a list of developers and a statement of ex-
pected fees, so the owners can evaluate the decision to hire you.

Project Outline

As a first step in developing the project plan, you need to summarize the overall
project. This summary should contain a brief description of the project, its goals,
and initial lists of primary forms and reports. Ultimately, this summary will also
include the scope and anticipated budget for the project.

Activity: Review the Case and

Research the Industry)

. . Action
For the purposes of this lab, you will Find information about skis and
prepare a project proposal for develop- snowboards on the Internet.

ing the sales system r}eeded by the All If necessary, install and upgrade the
Powder Board and Ski Shop. The rental DBMS.

component will be left for another ex-

Figure 1.5

Project Title: Sales System for Boards and Skis
Customer: All Powder Board and Ski Shop
Primary Contact: Katy

Goals:

Project Description:

Primary Forms:

Primary Reports:

Lead Developer:

Estimated Development Time:

Estimated Development Cost:

Date Prepared:

&)

¥

Chapter 1: Introduction 7

ercise. You should begin by reviewing the description of the company. You should
also use the Internet to check out some of the manufacturers and some of the com-
petitors. You need to be sure that you understand the key factors in the industry.
Figure 1.5 provides a possible structure for your summary. You should review the
case and enter the basic information requested.

Project Plan

The project plan consists of a detailed breakdown of the steps needed to create
the final system. A common approach is to follow the steps of the systems devel-
opment life cycle methodology: Initiation, Analysis, Design, Implementation, and
Review. Some organizations have rigid descriptions of each of the steps involved
in this process. Some organizations adopt a more flexible approach. Either way,
this plan should outline the basic steps that need to be completed and an estimated
schedule.

In the initial phase, it is also helpful to identify any potential risks to the project
development. At various stages, ask what might go wrong. If you are aware of
the potential problems, managers can monitor for them and can prepare solutions
more quickly.

Activity: Create the Initial Project Plan

Project plans and schedules are often
shown with Gantt charts to illustrate
how the various steps depend on each
other. If you have access to software
such as Microsoft Project, it is rela-
tively easy to create the project plan. Figure 1.6 shows the basic steps that the
labs will follow in building the application. Ultimately, you would estimate the
times required for each step. However, until you have read the rest of the book
and worked with the databases, it is difficult to estimate the times needed for each
step. For now, evaluate the steps and try to identify any dependencies between the
tasks. For example, is it possible to create the forms without having the database

Action

Fill in the project milestone dates based
on your school calendar.

Figure 1.6

1. Define the project and obtain approval.
2. Analyze the user needs and identify all forms and reports.
3. System Design
a. Determine the tables and relationships needed.
b. Create the tables and load basic data.
Create queries needed for forms and reports.
Build forms and reports.
Create transaction elements.
f. Define security and access controls.
4. Additional Features
. Create data warehouse to analyze data as needed.
b. Handle distributed database elements as needed.
5. System Implementation
. Convert and load data.
b. Train users.
. Load testing.
6. System review

©
d.
e.
a
a
@

Chapter 1: Introduction 8

tables and relationships? Assuming you have several people to help, reorganize
the tasks so that as many tasks as possible can be done at the same time.

Feasibility
Feasibility studies are notoriously difficult. The concept is certainly simple: iden-
tify the potential costs and potential benefits of a system and compare them. The
problem is that benefits might not be quantifiable, so it is difficult to attach mean-
ingful numbers. Nonetheless, it is useful to at least write down the anticipated
costs and expected benefits. Even if
numbers are not available, managers at Action

least can see a concise statement of the | Create the feasibility plan for the project.
analysis.

Figure 1.7

Assumptions

Annual discount rate 0.03

Project life/lyears 5

Costs Present Value Subtotal

One time
DBMS software
Hardware

Development

Data entry

Training

Ongoing

Personnel

Upgrades/annual

Supplies

Support

Maintenance

Benefits

Cost Savings

Better inventory control

Fewer clerks

Strategic

Increased sales
Other?

Net Present Value

Chapter 1: Introduction 9

1. Windows update
http://windowsupdate.microsoft.com

2. Office update
http://office.microsoft.com/productupdates

3. Data access component update
http://msdn2.microsoft.com/en-us/data/aa937730.aspx
Pick the highest numbered MDAC RTM.

Figure 1.8

Activity: Create the Feasibility Analysis

Figure 1.7 shows the basic elements of a feasibility study. You need to create a
spreadsheet with these main categories. Use research to identify approximate
costs of the various components. For example, assume that the shop will need
to purchase a server to host the main database and two client computers for the
sales staff. With Microsoft Access, several configurations are possible. Examine
the software license to determine the number of copies you will need and the ap-
proximate cost. Other numbers, including benefits can be estimated. Remember
that annual costs and benefits should be discounted to compensate for the time-
value of money. Use the present value (PV) function in Excel. Although the ben-
efits are relatively well defined, they can still be difficult to estimate. For example,
how will the system reduce the need for sales clerks? How many or how many
hours? How much do clerks earn? Likewise, in terms of inventory control, how

Figure 1.9

| Customer ', X
Field Name Data Type Description -~
| customeriD AutoNumber
LastName Text
FirstName Text
Phane Text
Address Text
City Text
State Text
ZIPCade Text

Field Properties

General |Lookup

Field Size 50
Format

Input Mask

Caption

Default Value

Validation Rule A field name can be up to 64 characters long,
Validation Text including spaces. Press F1 for help on field
Required MNo names.

Allow Zero Length Yes

Indexed Mo

Unicode Compression |Yes

IME Mode Mo Control

IME Sentence Mode Mone

Smart Tags 57

»

Chapter 1: Introduction 10

much money will be saved by not having to slash prices at the end of the season
to clear the unsold inventory? You need to know or estimate the number and value
of items typically left at the end of the season. In practice, the managers might
have answers to some of these questions, but you will still have to do additional
research. In this example, be sure that you spell out your assumptions.

5 2

'The Database Management System

Activity: Explore the DEMS

Two of the features that make Micro-
soft Access a popular database system
are that it is relatively inexpensive and
easy to install. If you are working in a
classroom lab, your machines should
already have Access installed. If you
are working on your own computer,
check your startup menu to be cer-
tain that Access is available. Note that
Access is not shipped with the Small

Action
Start Access and create the new table.

Create a new form with the Form
Wizard.

Use the Customer table.
Select all of the columns.

Use the default column layout.
Test the form by entering data.
Save the form.

Business version of Office. More im-
portantly, you need to make certain that
you system is up-to-date. You should check the three sites listed in Figure 1.8 to
update your computer in terms of the operating system, Microsoft Office, and the
data access components (MDAC). Microsoft often releases updates on these three
sites, so you should check them on a regular basis. Windows Vista should auto-
matically check these sites.

To get a quick perspective of the various components of the DBMS, you need
to build a simple database. Start Access and create a new, blank database. Be-
cause a database consists of tables, the first step is to create a table. Access 2007
opens a new database with a tool to help you create tables. However, this tool
hides many of the details that you need, so it is best to close this screen and use
the Create/Table Design option.

Figure 1.9 shows an initial definition of a customer table. Create a new table in
Design view, and enter the names of the columns (fields) and select the data types
as indicated. Then close and save the table design; name it “Customer” when
asked.

Now open the table and enter some data for fake customers. You can copy the
data from Figure 1.10 or just create your own. Access provides several tools in
the Table window to examine the data. You can sort by columns or even filter the
rows to see customers that meet some criteria. However, you will rarely give users
direct access to tables. Instead, you will build forms and reports for managers to
use. Close the Customer table.

Figure 1.10
CustomerlD - | LastName ~ | FirstName - Phone - | Address - City - State ~| ZIPCode
1 Jones Joe 111-222-3333 123 Oak Walnut Grove CA 95111
2 Smith Sue 333-555-2222 333 Elm Lockeford CA 95333
Mike 444-2332-3333 423 Palm Lodi CA 95222

3 Mason

Chapter 1: Introduction 1

N)= 2007) - Microsoft e
) i ©
I i [= New X Totals
o Save eling | %,
Bz UjlA & |HE]= = 27| RtAi‘v‘evsh X Detete
Rich Text Records
«|[2 customer
==l Customer
™
1
Jo
Jos
111-222.3333
123 0ak
Walnut Grove
A
95111
Recorg W 4 [Lor3 | » n i | Wiio i [[Searcn
Form View =8

Figure 1.11

Access provides wizards to help build forms and reports. A common data entry
form for the Customer table is relatively easy to create. Access 2007 has several
options to create forms. For simple forms, one of the easiest is to select the Cus-
tomer table in the list on the left side, then choose Create/Form from the menu.
More commonly, you will use Create/Form/ More Forms/Form Wizard because it
provides several useful options to create a form. The form in Figure 1.11 was cre-
ated with the simple form builder. When you save the form it will appear in the list
of objects on the left. However, you should click the display bar at the top of the
list and choose All Access Objects.

Notice that as you type data into the form, the changes are written directly to
the database table. The point of a form is to make it easier to enter and see data.
From a usability standpoint, the layout should match the needs of the users.

Be default, Access 2007 puts form (and report) controls into a layout object
that groups them together. You can switch to the Layout view or the Design view
to see and modify the individual controls or the group. The purpose of the layout
group is to make it easy to modify all of the controls at the same time. For ex-
ample, using the Layout view you can change the size of one input box and all of
them will adjust. An early hint: If you ever need to change the size or location of
a single data control, you have to right-click it and choose Layout/Remove to take
it out of the layout group. However, you can change basic display properties of a
single box and still leave it in the Layout group. For practice, select the LastName
textbox and click the Bold icon. You can also open the Property Sheet to see a list
of the many properties you can assign. Save the form and run it to see the effect
of your change. Similar wizards and properties are used to build reports, but there
are not enough tables and data to justify writing a report yet.

Exercises

Many Charms

Madison and Samantha, friends of yours, have a small business selling charms for
bracelets and necklaces. They buy some of the charms they sell; others they make.
So far, they have run the business as a hobby, selling primarily to friends and rela-
tives. But they have recently established a website to display pictures and prices

Chapter 1: Introduction 12

of some of the charms. You have agreed to build a database for them to track their
inventory, customers, and sales. Any orders they receive through the website will
be e-mailed, so the website does not have to be connected live to the database.
The database is a relatively traditional sales system, but it is slightly complicated
by the nature of the charms. Charms come in a variety of shapes, sizes, and mate-
rials. For example, customers who want a quarter-moon charm have a choice of 4
mm or 8 mm; and of silver, gold, gold plate, bronze, or painted ceramic. Charms
are also offered in categories such as animals, hearts, birthdays, and so on. Addi-
tionally, the duo offers a variety of chains and pins to hold the charms. Eventually,
they want to track the sales by all of these categories, so they will know which
items are selling the best and which make the most profit. Costs and prices tend to
fluctuate. If they purchase items in large bulk, the per-piece cost is lower, but they
need to know they can sell the entire shipment. If an item sits around too long,
they find that they have to significantly cut the price just to clear out the stock. Of
course, gold items are more expensive, making them more difficult to sell, and
they are reluctant to tie up their money in high-priced merchandise.

1. Research similar sites on the Internet. Describe or sketch the major forms and

reports that the company might use.

2. Create the initial proposal and feasibility study.

Standup Foods

Laura runs a catering company that focuses on Hollywood movie studios. Her
chefs prepare hors d’oeuvres, sandwiches, and other food items that are served to
the cast and crew of various movies and studios. To be fresh, the food is prepared
each day in the main kitchens, and meals are then assembled and displayed on-
site. For some clients, the company vans deliver fresh food every few hours. To
hold costs down, many of Laura’s employees are part time—only a few chefs and
managers are full-time employees. Some of Laura’s clients call at the last min-
ute, so she maintains a large list of potential workers who can perform a variety
of tasks, from driving to food preparation and display, as well as cleanup. The
chefs and managers evaluate workers after each job in terms of timeliness, appear-
ance, friendliness, and the ability to take orders and accomplish tasks. Workers
often perform many tasks at a given event. For instance, a driver might also be a
server. But some tasks require specific certifications. Not all workers are licensed
to drive, and only a few have been trained to perform some tasks such as cutting
meats. Most of the employee ratings are somewhat informal at the moment, but
she would like to computerize them to help her select the best workers for future
jobs. At some point, she would like to offer bonuses or higher pay to workers who
routinely perform well. Another challenge Laura faces is that some clients are fin-
icky about certain types of food. In particular, some movie clients have special
preferences as well as some items that cause allergic reactions. The chefs current-
ly keep these two lists in paper folders for some major performers and actors. But
to be safe, Laura wants to computerize the lists and, ultimately, the recipe ingredi-
ents. Then when a chef plans the meals, the computer could check the list of main
guests and their allergies against the recipe list to identify potential problems.

1. Research similar sites on the Internet. Describe or sketch the major forms and
reports that the company might use.

2. Create the initial proposal and feasibility study.

Chapter 1: Introduction 13

fﬁ EnviroSpeed
= Brennan and Tyler are owner/managers of a consultmg firm that spemahzes in

environmental issues. In particular, the company’s scientists are experts in clean-
ups for chemical spills. For example, if a tanker crashes and spills chemicals on
a highway, the company can quickly evaluate the potential problems and identify
the best method to clean up the spill and prevent problems. The company itself
does not clean up the spill, but it has contacts with several crews around the globe
that it can call if local emergency workers need additional help. The primary focus
of the company is to provide expert knowledge in the time of a crisis. This task re-
quires specialized scientists, good communication systems, and in-depth training
and practice. Brennan wants to improve the existing information system to main-
tain a database of case histories. Then, if a similar problem arises in the future,
the scientists can quickly search the database and identify secondary problems to
examine which solutions and ideas were successful and which ones caused more
problems. Tyler has explained that at a minimum, the database has to hold the
contact information for all of the scientists and emergency crews. It must also
list the specialties, training, and skill levels of each person in a variety of areas.
In terms of actual situations, the database should track the identities and roles of
the various people and the key time frames (when reported, response time, and so
on). Scientists also need the ability to list all of the chemicals involved and details
about the terrain (hills, water, soil composition). More subjective data must also
be captured, including comments by the onsite team and a description of the prob-
lem and secondary factors. All proposed solutions should be entered into the da-
tabase, along with comments regarding their strengths and weaknesses as well as
the final selections and an evaluation of the result. It is important to track potential
solutions that were discarded. Even if they did not apply to the original problem,
they might be useful for a future event with different circumstances.

1. Research similar sites on the Internet. Describe or sketch the major forms and
reports that the company might use.

2. Create the initial proposal and feasibility study.

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, do the following.

1. Research similar sites on the Internet. List the major forms and reports that
the company might use.

2. Create the initial proposal and feasibility study.

Chapter

Database Design

Chapter Outline

Database Design, 15

Access Data Types, 15

Case: All Powder Board and Ski Shop, 17
Business Objects: First Guess, 17
Relationships, 18

Lab Exercise, 19
Database Design System, 19
All Powder Design, 20

Exercises, 27

Final Project, 29

Objectives

+ Design the initial tables for the case.

» Create the design in the database design system.
« Determine the initial relationships for the case.

» Identify the data types needed for the attributes.

Chapter 2: Database Design 15

Database Design

You can design a database using paper and pencil. As you gain experience and
become more skilled at the task, pencil and paper will be relatively easy to use.
However, when you are learning, pencil and paper are tedious because you find
that you often need to remove items from potential classes, or even alter the entire
diagram. As an alternative, you might consider going directly to the DBMS and
defining the tables or classes off the top of your head. This approach might work
with Microsoft Access if you use the Relationships screen, but you will still find
it time-consuming to continually revise the tables. With any other DBMS, trying
to create tables from the top of your head is foolish because many systems do not
allow you to make major changes to tables once they have been defined.

A few computer-assisted software engineering (CASE) tools remain that can
help you define classes in a graphical environment. They are relatively powerful,
and many have the ability to generate the final tables based on the class diagram.
However, they are also expensive, hard to install, and cumbersome to learn. But if
you work for a company that has invested in these tools, they are an excellent way
to define the database classes.

To learn database design, there is a better tool. The database design system is
an online expert system that enables students to create class diagrams graphically
in a Java-enabled Web browser. The system makes it easy for you to create class-
es (entities) and build associations (relationships). More importantly, it provides
immediate feedback on the design, which is the expert system part. The system
runs on a custom Web server, and diagrams are stored in a central database. This
approach means that you can access your diagrams from almost any computer.
Changes you make in class or in your instructor’s office are saved and are avail-
able when you return to a lab or to your own computer. From an instructional per-
spective, the best part is that the system contains some complex rules to provide
feedback on your diagram. The system recognizes most design errors and points
them out with suggestions to improve the design. Your instructor can obtain the
database design system for your class. If it is available, you should use it to get
the benefit of the immediate feedback. If it is not available, you can draw the class
diagrams with paper and pencil, or with a graphics package such as Visio or even
PowerPoint.

Access Data Types

As a database designer, your job is to define the database tables that efficiently
store the organization’s data and support the business rules. In this process, you
will define the tables in terms of the data columns (attributes) and the table re-
lationships (associations). You will also need to know what type of data will be
stored in each column. Also, for some columns, you will want to specify con-
straints (for example, salary cannot be negative).

Selecting the proper data type can sometimes be a difficult step. Any DBMS
supports only a limited number of domains and you have to understand the ca-
pabilities and limitations of each type. You must also understand the underlying
business data—both the values collected today and the potential values that may
be collected in the future. For example, workers may only use integer values to
represent a quality rating. In the future, however, it is likely that the company will
want to use fractional values as well. Although database types are becoming more
standardized over time, each DBMS uses its own type names. Even more confus-

Chapter 2: Database Design 16

ing, the actual values supported can be different even if the data type name is the
same. The most common problem arises with the Integer data type. With some
systems, an Integer is limited to 16 bits, while others default to 32 bits. With any
DBMS, you should consult the help system to determine exactly which data types
are provided and their limitations.

Figure 2.1 shows the main data types available in Microsoft Access. The types
you will use most often are Text, Date/Time, Currency, and Long Integer. When
you need to store date or time values, be sure to use the Date/Time type. It sup-
ports date arithmetic so users can subtract two dates to obtain the number of days
between them. The OLE Object type can hold pictures, spreadsheets, or docu-
ments. However, the new Attachment data type stores images, spreadsheets, and
similar files more efficiently.

The numeric subtypes are generally the most confusing. To truly understand
the numeric types, you need to study the way that computers convert numbers into
binary format, but that study is beyond the scope of this book. The easy answer is
to split types into three groups: integers, floating point, and fixed point. Integers
do not contain fractions or decimal points. The difference between the three types
lies in the size of data that can be held. For example, a 16-bit integer cannot hold
numbers larger than 32,767. So, if you have many items to sell or customers to
track, you need to use a Long Integer, which can hold values to slightly over 2
billion. If you need fractional values, you need to choose the Single or Double
data type. Again, the difference lies in the size of the number and the number of
digits each type can hold. Single-precision numbers hold only seven significant
digits, regardless of where the decimal point falls. Double-precision numbers can
contain 14 significant digits. But, be careful. Even the 14 digits could cause you
problems—if you try to use the Double type for money. Because of the way deci-
mal numbers are converted to binary floating point, some numbers do not convert

Figure 2.1

Name Data Bytes
Text (Characters)
Fixed NA
Variable Text 255 Variable
Memo Memo 64K Variable
Hyperlink Hyperlink 1G Variable
Numeric
Byte (8 bits) Number: Byte 0-255 1
Integer (16 bits) Number: Integer +/- 32767 2
Long (32 bits) Number: Long +/- 2 billion 4
(64 bits) NA
Fixed precision Number: Decimal +/-1E 28 12
Float Number: Single +/-1E 38 4
Double Number: Double +/-1 E 308 8
Currency Currency +/-900.0000 ftrillion 8
Yes/No Yes/No 0/1 1 bit
Date/Time Date/Time 1/1/100 — 8
12/31/9999 (1 sec)
Image OLE Object 1 gigabyte Variable
Attachment
Generated Key AutoNumber Long (+/- 2 billion) 4
Replication ID GUID 16 bytes 16

Chapter 2: Database Design 17

correctly and you can get round-off errors. If you need decimal point values and
you need them to be exact, then you should use one of the fixed decimal types:
Currency or Decimal. Currency is designed for monetary data and can accurately
store 15 digits on the left side of the decimal point, and four on the right. The deci-
mal type is both larger and more flexible than Currency. Numbers can have up to
28 total digits (specified by the precision), and you can specify how many digits
fall to the right of the decimal point (given by the scale).

Although the many data types can be confusing, it is important that you choose
the type carefully. In particular, for numeric types, make sure that you select a data
type that will be able to hold the largest (or smallest) values that might exist in the
data.

Case: All Powder Board and Ski Shop

With any database project, the first step is to understand the various elements of
the organization and the components that will become part of the database ap-
plication. This knowledge is critical, because the database design must reflect the
business rules. In real life, you can ask workers about the processes and underly-
ing assumptions. With a written case, it can be more challenging to determine all
of the necessary rules. On the other hand, real life is messier and people often give
inconsistent answers. It takes experience to learn to talk with users to identify ex-
actly which components are the most important, and how the pieces relate to each
other. Cases avoid this design complication but generally require you to make
assumptions on your own. Since the goal is to make reasonable assumptions, you
should search the Internet or read a few articles on snow boards and skis before
you tackle the database design.

Business Objects: First Guess

One of the first steps in designing the database is to identify the business objects.
In many ways, this case is a fairly typical business problem, so you would expect
to see many of the traditional business objects, such as Customer, Employee, and
Sale. Because the store also rents equipment, there will be a Rental object similar

Figure 2.2
Sale
SalelD Customer
SaleDate CustomerlD
CustomerID LastName
EmployeelD FirstName
Phone Rental
Address RentID
City RentDate
Employee
ploy State CustomerID
EmployeelD ZIP ExpectedReturn
TaxpayerlD
LastName
FirstName
Address
City
State

ZIP

Chapter 2: Database Design 18

to the Sale object. Figure 2.2 shows initial versions of these four classes. These
objects are relatively standard, but some issues arise in this case. Notice that you
must also begin to think about primary keys. In each of these four tables, the pri-
mary key is a new value that will be generated by the DBMS. In Microsoft Access,
it will be an AutoNumber column. This decision was made because it ensures that
these values are always going to be unique, and they can be created instantly by
the DBMS. In most situations, the actual key values will be hidden from the users,
and they will see only the relevant names.

Notice that several attributes are missing from these initial classes. The main
reason is that it is important to ensure that the columns you include at this stage
are correct. If there is any doubt about a column in a potential class, leave it out
and think about it. A few other classes should be relatively obvious for this case.
In particular, several support tables are used to provide lookup data for other ta-
bles. Ultimately, you will have to define all of the objects, identify the columns for
each table, and specify the data type for each column.

Relationships

Classes or entities are related to other classes. For example, notice that the Sale
table contains a CustomerID property. Values in this column match entries in the
Customer table, which is keyed by CustomerID. So, if you found a CustomerID
value of 112 in the Sale table, you could look up the matching customer data by
finding the row in the Customer table that has a primary key value of 112. This as-
sociation also expresses several business rules. In particular, (1) each sale can be
placed by only one customer, (2) a sale must be identified with a customer, (3) any
given customer can participate in many sales, but (4) a customer might not have
bought anything yet.

Relationships are displayed on the diagram by drawing connecting lines be-
tween the two tables involved. The business rules are shown as annotations at
the end of each connection. Each side of the connection displays minimum and
maximum values. Figure 2.3 shows the association between the Sale and Cus-
tomer table. Notice that the annotations match the four business rules described in
the previous paragraph. The 1...1 notation on the Customer side represents rules
1 and 2. At a minimum, each sale requires at least one customer, and, at a maxi-
mum, a sale can have no more than one customer. Likewise, the 0...* annotation
represents rules 3 and 4. A customer can participate in zero to many sales. There
is no maximum (*), so a customer can participate in any number of sales, and the

Figure 2.3

Sale Customer
SalelD CustomerlD
SaleDate LastName
CustomerlD FirstName
Employee Phone

Address
City
State
ZIP

Chapter 2: Database Design 19

zero means that a customer might not have bought anything yet. As a database de-
signer, your job is to identify the entities and relationships needed for this case.

Lab Exercise

Database Design System

The database design system is designed as an instructional tool, so your instruc-
tor should have already registered to obtain an instructor account. The instructor
also chooses and schedules assignments for the class. You will need a class code
to register for a class, so be sure you get the correct admission code from your
instructor. You will also need a set of numbers to create a new student account on
the system. Check with your instructor to obtain these numbers. With the two sets
of numbers, and the class admission code, you are ready to create your personal

account.

@é Activity: Getting Started

Use your browser to navigate to the
database design website and select the
link as a new student who has two key

numbers. Figure 2.4 shows the form

Action
Browser: http://JerryPost.com/DBDesign
New student who has two key numbers.

you need to fill out. First, enter the key

numbers that you have. Next, create a username and password that you will re-
member. You must choose a username that is different from all others. Be sure that
you enter your name, e-mail address, and Student ID number correctly. Your in-

Figure 2.4

& New Student Keys - Windows Intemet Explorer [E=Et)
@ (&N [https:/sunamejerrypost.com/SsL/BookLogir + & [42 | x | [Google 2 ~|
@ -
e o [@Newsmdemxey; [I o ~ = - [} Page v & Taols ~
Create a New Student Account
Enter the key
numbers you
X y \ Tf you have purchased or received two key values, use this form to create a Username and Password
recelved ~\Aﬂa you have created a Username and Password you will no longer need the keys.
Keyl KwW - 16C9 - 908
Key2 OKA - ZLP8 - WBB
Create a username
and password >
Username deleteme
Password = eeses
E-mail Jermy@JerryPost com
First Name Delete
Last (Family) Name Me
Enter your correct Student 1D [
. 37
name, e-mail L~
addre S§ and “You must enter all of the requested data, but you can change it later. Your Name and Student ID are
Stu d entID important because they are used by your instructor to positively identify you. The E-mail address is critical
s0 we can e-mail your Username and Password if you forget them. The ID and password will be
encrypted.
Done [@ Internet | Protected Mode: On ®100% ~

&)

¥

Chapter 2: Database Design 20

structor will use the name and ID number to correctly identify you so you receive
credit for working on assignments. Note that your ID and password are encrypted
on the Web site database to protect them. However, if your university still uses
your Social Security number as an identifier, you might want to enter only a por-
tion of the number—and then go ask your university to wake up and create a safer
number. Your e-mail address is important so the system can send you the user-
name and password in case you forget what you selected. When you have entered
the data, click the Submit button. If you have an error in the key codes, or if your
username has already been selected by someone else, you will receive a message
and be asked to correct the items. Note that the key codes can only be used once
and can be discarded after the account has been created.

Once you have successfully created the new account, you must register for the
specific class. As shown in Figure 2.5, you simply choose your university and
your correct class. Enter the admission code provided by the instructor and click
the button to register for the class. If you do not have the proper code and are un-
able to register, you can get the code and return later. From the main page, enter
your username and password to log in. If necessary, once you are logged in, you
can click the link at the bottom of the main design page to register for a class. In
fact, once you get to the design page, if you try to open a problem and the list is
empty, it is most likely because you are not registered for a class.

All Powder Design

Action

Activity: Create Tubles and Columns File/Open, choose All Powder case.
When you have created an account, nght“cllck’/ ’Add Table.

registered for a class, and logged into | Type “Sale” as the new table name.
the system, you are ready to begin de- | Drag columns from right onto table.
signing the database. Figure 2.6 shows | Right click name/set data type.

Figure 2.5

@ Student Register for Class - Windows Internet Explorer | (5 |

@\/‘ - [&] https/wmnwjerrypost.cor = | ¢4 [x| [Google L~

®-
Wk [@ Student Register for Class [I fo v~ B v d v [hPage~
Register for Class
Students must enroll in the correct class. Your nstructor should have given vou an
AdmitCode, which enables you to enroll in a particular class. If you do not have a SeleCt a Country or
code, try enrolling by leaving the code blank_ If that does not work, ask your state to narrow the
instructor for the proper code. _/ h 1 1. t

SChool 11§
If you are working alone, choose World/Open to Everyone/Pick a sew
the Admit Code blank.
Go directly to textbooks.
Country/State World - \ SeleCt your
School Open to Everyone + — uanerSIty and ClaSS
Class Leaming Design 2007 1-1 +
Admit Code
~_
d 5
~ Enter the admit
code
Done [# @ Internet | Protected Mode: On H100% ~

Chapter 2: Database Design 21

the main elements of the system with the beginning of the solution. When you be-
gin, the various windows will be empty. You must first open a problem using the
File/Open menu choice and select the Workbook case. When the problem loads,
the right-hand window will display a list of available columns. Initially, it will
probably not include the key columns. You will add those in a minute.

You create a table (class/entity) by clicking the right mouse button on the main
screen where you want the table located. Then select the Add Table option. Re-
name the table by typing “Sale” as the new name, and pressing the Enter key.

Now you get to add columns to the table. All columns are added to a table by
dragging them from the right-hand window and dropping them onto the desired ta-
ble. In the case of the Sale table, you will need to generate a new primary key col-
umn (SaleID). To create a generated key column, drag-and-drop the top label for
Generate Key. Then, rename the newly created column. You rename columns by
double-clicking the name either in the table or in the right-hand window. Be care-
ful: Do not give two columns the same name, even if they are in different tables.
You will not be able to tell them apart in the main list of the right-hand window.
You might want to use an abbreviation and separator, such as Cust LastName.

Figure 2.6

2 Database Design - Microsoft Internet Fxplorer \Z||E|E\
File Edit Wiew Fawaorites Tools Help ",'
e Back - </ \ﬂ @ h /7\1 Search \;“\'(Favorites {‘} [i\.' :l_‘ — _J ﬂ ﬁ
Address |@ hitp: fflocalhost /dbdesign, Default, aspx v‘ Go links ? @

File Format Grade Generate Help € Menu

Hun 7, 2005121723 P = |4|custzip -
Sample Student “[custoender
Hew Solution CustDateOfBirth
Post-3e All Powder [TaxpayerD
Enter Title ‘|Cust3killComments
“feightMin
“hveighthanx
“|BindingStyle
Sale :|BindingDescription
Y Saleld :IEhipAddress
SaleDate ‘|5aleDate

Class 7 alesTae [anpciy

1 | lshipState

nti i

(e t ty) JshipzIP
A\SalesTax
[QuantitySold
Available [FelePrce B
columns ExpectedRetum
‘|Payrenthtethod
‘|Rentree
:|ReturnDate

‘|Returncondition
|RepairCharges
 fwaistwidth
 |EffectiveEdge
“|oustcity
~||RentalRate

<« 1 I [»] |i|satein -

Colurn SaleD changed. | ——n | StAtus line

<«—— Corrections

Sample Student

Eesize Logout Personal Data Class Registration

@ Applet DEDesign started @ Trusted sites

?

Chapter 2: Database Design 22

Later, the system can remove the prefix when it generates Oracle tables. Now you
can add some of the other columns needed in the Sale table. Look through the
right-hand window to find the SaleDate and SalesTax entries. You can simplify
your search if you sort the list by right-clicking on it and selecting Sort. Drag the
desired column onto the Sale table. Once a column is in the table, you can change
the order by dragging and dropping it higher or lower in the list.

At this point, you should set the data types of the columns in the table. The de-
fault type is Text, so in many cases you will not have to change it. However, you
should choose Date/Time for the SaleDate, and Currency for the SalesTax col-
umn. Double-click on the column name within the table to open the column edi-
tor. You can select the data type and change the data size if desired. You can also
add a constraint and default value, but you should probably do those later. The
default value is straightforward, but the constraint has to be expressed in Oracle’s
format. Be sure to save your work every few minutes in case you lose the Internet
connection or the server times out.

Activity: Create Relationships

Associations or relationships are a key]
element of database design. In a rela- AEH

tional database, columns in one table | Add Customerand Sale tables.

are connected to columns in other | Add GenerateKey to Customer table.

tables through common data. In the | Rename it to CustomerID.

case, the Sale table needs to connect | Dragnew CustomerID from right side
to a Customer table. Eventually, both | into Sale table.

tables will contain a CustomerID col- | Drag CustomerID from Customer and
umn. First, you have to create the Cus- drop it on CustomerID in Sale table.
tomer table, so right-click on the design | Fill out relationship box.

screen, add a new table, and rename it.
Again, to ensure that each customer is assigned a guaranteed unique identifier, add
a Generate Key column to it. Rename this new column as the CustomerID. It is
critical that you understand that this key value will be generated for each new cus-
tomer added to the table. This value can only be generated in this table. You would
never create another generated key column and call it CustomerID. Notice that
the column is marked with a solid (red) star to indicate that it is a key with values
generated in this table. How do you get CustomerID into the Sale table? Scroll
the right-hand window to the bottom and notice that CustomerID has been added
to the list of available columns. You could also sort the list and find it alphabeti-
cally. You can now drag this new column into the Sale table. Make sure its data
type is Integer32 (Long). Before attempting to build the relationship, add the other
customer properties to the Customer table by dragging them from the right-hand
window. You can use the Shift or Ctrl key to select multiple columns at a time,
but moving them takes a little practice. You can double-click the table heading to
automatically resize the table design box to fit the columns it contains. Set the ap-
propriate data types.

Now that you have both the Sale and Customer tables, and they both have a
CustomerID column, you can build an association or relationship between them.
Figure 2.7 shows how to create this relationship in the design system. Click on the
CustomerID column in the Customer table and drag it to the Sale table. Release
the mouse button to drop the cursor onto the CustomerID column in the Sale table.
The relationship window then asks you to specify the minimum and maximum

Chapter 2: Database Design 23

Sale Customer
1.1
Jr SalelD Y CustomerD Drag-and-
SaleDate CustLastMame d 1
SalesTax CustFirstMame <——{ drop column
CustomerlD CustEMail
[Sale [+] [Custormer [=]
Cust D Cust IC o 3
= I:” =t I:I =] Select min and
max for both
_| sides of the
—f relationship

) Connect O]
Mir Max Min e

W Optional) One () Optional ® One
) One @ Many ® One 0 Many

»

Enforce Referential Integrity Ok
Cascade deletions Cancel
e

Figure 2.7

2

values for each side of the relationship. These values specify the business rules,
and are often the most difficult items to identify. In the sale case, the typical as-
sumptions are that exactly one customer can place an order, and a customer can
place from zero to many orders. So, on the Sale side of the window, select the Op-
tional and Many buttons. On the Customer side, choose the One option for both
Min and Max values. Note that if an option was selected by your instructor, the
system will automatically attempt to create the correct relationship for you when
you add the CustomerID column to the Sale table.

Remember that relationships generally involve at least one side in a primary
key. The column names are often the same on each end, but they can be different.
However, the data types do have to match, and the relationship has to be logical.
For example, it would never make sense to connect an ItemID to a CustomerID,
because that relationship would imply that a customer can also be an item and
vice versa. Finally, notice that the integrity and cascade boxes are selected as the
default. You should almost always leave these checked. In the database, cascade
on delete means that if you delete a particular customer, all of the orders placed
by that customer will also be deleted. If you do not specify the cascade, then you
could end up with orders that contain a CustomerID, which has no matching cus-
tomer data. After you close the relationship window with the OK button, you
might have to refresh the display screen by right-clicking the design window and
selecting Refresh.

Activity: Evaluate the Design

One of the most powerful aspects of
the database design system is that it
contains an expert system to help ana- | Choose Grade/Grade and Mark.
lyze your design for errors. You can | Click messages in window.

quickly obtain comments by selecting | Fix errors by removing columns and
the Grade/Grade and Mark option on adding new tables.

the menu. At this point, you only have
two tables partially created, so the most important comment you should receive is
that overall, you are missing several tables. The system might also point out that
you are missing columns from the Sales table, because you have not yet added the
salesperson (employee) and the shipping information.

Action

Chapter 2: Database Design 24

To illustrate the power of the system, you will add a new table (Item), and then
build a new relationship that is incorrect. Add a new table for Inventory, and add
the SKU column (a common retail abbreviation for stock-keeping unit) used to
identify individual products. Right-click the SKU column in the Inventory table
and set it as a key. Add the Size and QOH columns to the Inventory table. Set their
data types to Single and Integer16 respectively. Now add the SKU column to the
Sale table as an intentional error. Create a relationship from Inventory to Sale us-
ing the SKU columns.

Choose the Grade/Grade and Mark menu option to save the changes and ob-
tain comments on the design. Again, the design is not finished, so focus on the
other error messages. In particular, find the message “For each value of SaleID
in table Sale, can there be more than one SKU?” and click it. Figure 2.8 shows
the resulting diagnostic screen. The SKU column in the Sale table is highlighted
as a potential problem. Indeed, it is an issue, because placing SKU into the Sale
table as shown would mean that for each Sale, only one item (SKU) can be sold.
You can usually double-click the comment to receive additional information about
database design. In this case, notice that SKU is not part of the primary key. You
might consider setting the SKU as a key column in the Sale table to solve the
problem. But that would cause even more problems. For instance, the SaleDate
depends only on the SalelD and not on the SKU. If you leave SaleDate in the table

Figure 2.8

2 Database Design - Micrasoft Internet Explorer |Z||E|E|
File Edit ¥iew Favortes Tools Help 1’,’
. —~ y - N T
eﬁack A > | |ﬂ @ _l‘ /.’Search 9.{ Favorites {‘} - da = _J ﬁ ﬁ
Address |g‘| httptjflacalhost/dbdesiaryDefault. aspy v| G lnks ? @ -
-~
File Format Grade Generate Help
Jun 7, 2005 2:27:46 PM | |4 |ManufzIP =
Student, Sample IModeln
Workbook 2 ‘Modelvear
Past-3e AllP Add SKU |Paymentethod
Enter Title JQoH
to the Sale |uantityalg
table _| |RentDate
Customer |RentFee
Sale 11 e customeriD ||RentalRate
CusiFirstiame |RepairCharges
Jr SalelD CustLastame |RetumCondition
SaleDate CustPhone [RetumDate
SalesTax 0. Custemall —{ [pku
CustomerlD Custcity |zaleDats
Sk CustState [FaleiD
CustZIP |saleprice
CustGendear |SalesTax -
Connect the CusiDateOEith [Shipaddress
|shipcity
Inventory table to —— |shipstats
the Sale table Errors are [hinziP
highlighted |eKilLevel =
- N Istyle
Click or double-click the StyleDescription
1 1 [TaxpayerlD
dlagnostlc message || vaistoicn
| feveightax ||
1 [»] | veighthdin hd
Graded 3tables. Score: 46.7
Overall, table Sale is missing colurmns. ¥ =
Does Salell in table Sale depend on sometng else consider SalelD, SKLL? E
For each value of SalelD in table Sale, can there be more than one 5KIJ? I~
4] i |] v
£ I
@ Applet DEDesign started @ Trusted sites

Chapter 2: Database Design 25

with both SaleID and SKU set as keys, you would be declaring that items within a
single sale can be sold on different dates.

If you set SKU as a key and resubmit the problem for grading, it will return
several messages. One of them will be the question “Does SaleDate in table Sales
really depend on SKU?” Notice that sometimes a table has many errors, so you
must carefully review the entire table to make sure you fix the primary problems
first. The Grade menu also contains an option to generate a separate HTML file
that lists all errors by table. This listing is easier to print.

Primary keys are one of the most difficult things for students to understand
when they first start designing databases. In particular, generated keys are tricky.
In terms of the database design system, primary keys are critical because they
are used to identify the tables. If you make major mistakes in the primary keys,
the system will give confusing feedback because it cannot correctly identify your
tables. For this reason, it is always best to begin with one or two tables, test them,
and then slowly add more tables and relationships.

You still need to fix the problem with the Inventory and Sale table association.
In a broad sense, it seems that there should be some type of connection between
Inventory item and Sale to indicate which items were purchased by the customer.
But placing the SKU attribute into the Sale entity appears to be a bad idea. The
reason is straightforward. If there is an association between Inventory and Sale,
it must be many-to-many. That is, a Sale can include many items (SKUs), and an
Inventory item (SKU) can be sold many times. Relational databases do not handle
many-to-many relationships directly. Instead, you must create an intermediary or
junction table.

Figure 2.9 shows the creation of the intermediary table. It contains the key col-
umns from both the Inventory (SKU) and Sale (SaleID) tables. Both columns are
keyed in the new Saleltem table. Examining the keys within the Saleltem tables
reveals that each sale can contain many items, and each item can appear on many
sales. This is exactly the many-to-many relationship needed. The additional col-
umns of QuantitySold and SalePrice indicate the number of items being purchased
and any discounts applied—for an individual item on a specific sale. The dashed
many-to-many line is never created, it is simply used here to show the goal of the
two relationships.

The new Saleltem table corresponds to the repeating lines of items that you
would see listed on a paper sale form. Examining the two new relationships re-
veals how the table works. Reading from the Sale to the Saleltem table, each sale

Figure 2.9

Inventory r = sale
1.1 1.1
SKU T —1 SalelD
Size SaleDate
QOH CustomerlD
EmployeelD

Saleltem

1.
0..x| SalelD —
L SKU
QuantitySold
SalePrice

Chapter 2: Database Design 26

can contain from one to many items, and in reverse, each Saleltem line (SaleID
and SKU) refers to exactly one sale. Essentially the same association exists from
Inventory to Saleltem. However, since items might not have been sold, each item
can appear on zero to many sales lines, and a given sales line refers to exactly
one item. All many-to-many relationships must be split and joined with a junction
table that contains the keys from both of the original tables.

Activity: Fix Inventory Design

Return to the database design system Acti
and delete the association between In- ction
Create the Saleltem table.
ventory and Sale. Then remove the
SKU column from the Sale table. Now | Create the ItemModel table.
you can create the Saleltem table. | Include the proper columns.
Simply drag the two keys (SaleID and | Set the keys.
SKU) into the table from the right-hand | Set the data types.
window—do not attempt to re-create | Grade/Grade and Mark.
them with a generate key. Double-click
to the left of both names to add the sim-
ple key icon (unfilled blue star). Build the two new relationships in the Figure 2.9
example and add QuantitySold and SalePrice to the Saleltem table. Make sure
the SalePrice data type is Currency and that the data size does not exceed 38, the
maximum number of digits allowed in an Oracle number.

If you grade this version, you will see that the detail issues have been corrected.
However, some design issues still exist in terms of handling inventory. The inven-
tory for a ski shop is somewhat more complicated than for a typical retail store. In
particular, snowboards and skis are sold in varying lengths to match the individual
customer. Figure 2.10 shows the two concepts. A manufacturer produces a model
line that exhibits certain characteristics such as width, flexibility, and side cut.
For a model type, several different lengths are available. From the perspective
of the All Powder store, the database has to keep information on each model, but
the actual inventory must refer to a specific item or length within the model type.
Each item will receive a different SKU. For example, SKU 1173 might refer to a

Figure 2.10

Item: 196 cm ltem: 180 cm

Model information
refers to the overall
type of board or ski

Inventory information
refers to an individual
ski or board; defined by
its length

Model: Rossignol Radical

Chapter 2: Database Design 27

Sale Customer
11 3¢ 520D 11 9 CustomerD
SaleDate CustFirstiame
SalesTax . CustLastMame
CustornerlD 0. CustPhone
CustEMail
Custtddress
temModel CustCity
5" ModellD 1... CustState
Calar Saleltem EUSEIP ;
Cost 1.7 ustGender
Graphics Inventory n.* g g;ﬁm CustDateOfBirth
modelyaar i
Syl . j’f? Skl 1.1 Quantl‘gﬂSold
_ 0. WadellD SalePrice
SkillLevel Siza
Q0H
Figure 2.11

Rossignol Radical ski that is 196 cm in length, while SKU 1174 references a Ros-
signol Radical ski of 180 cm.

The catch is that it would waste considerable space to repeat all of the model
data for every possible size of ski or board. Consequently, it is important to create
two entities to handle the details: ItemModel and Inventory. Figure 2.11 shows
the basic tables and the resulting relationships. Observe that each model results
in many inventory items (multiple sizes of boards or skis), but each item can be
only one model type. At this point, you should be able to add more attributes and
more tables to the design, but the completion of the design will be left to the next
chapter.

Exercises

Crystal Tigers

"1l Crystal Tigers is a service club with about 150 members. The club primarily spon-
sors events such as community pancake breakfasts, local concerts, and sporting
competitions. The club successfully uses the events to raise money for various
charitable organizations. The club needs a database to help track the roles of the
various members, both in terms of positions within the organization and their
work at the events. The following form represents the basic data that needs to be
collected.

Chapter 2: Database Design 28

Position/Title Comment

Last Name, First Name
Phone, Cell Phone }F=====--
Adderss

City, State, ZIPCode

- —
—-m o i —

Member Activitie for Event

Event title

Start Date End Date
Charity

Charity contact
rPhore fTT==="
Amountraised ~ heaaaaaa

Date Hours Activity | Comment

R ——
-
R

1. Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Capitol Artists

= Capitol Artists is a partnership among several commercial artists that work on
freelance and contract jobs for various clients. Some jobs are contracted at a fixed
price, but complex jobs require billing clients for the number of hours involved in
the project. To help the artists track the time spent on each project, the firm wants
you to build an easy-to-use database. On a given day, the artist should be able to
select the time slot, then choose a category and a job. All jobs are given internal
numbers, and each job has only one client. But, it is helpful to list the client infor-
mation on the form once the job has been selected. The artist then enters a short
task description, the billing rate, and any out-of-pocket expenses. The billing rate
is somewhat flexible and depends on the client, the job, the task, and the artist. For
example, the company can charge higher rates for an artist’s creative work time,
but lower rates for copying papers. The following form contains the basic infor-
mation desired.

Employee
Last name, First name
Date

Time Category | Client Job# | Task | Description | Hours | Rate | Expenses
8:00 AM | Meeting Name 1173
+

Phone

8:30 AM
9:00 AM
9:30 AM

1. Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Chapter 2: Database Design 29

&2 Offshore Speed

The Offshore Speed company sells parts and components for high-performance
boats. Some of the customers modify the boats for racing, others simply want
faster boats for informal races. The engine parts tend to be highly specialized and
new variations are released each year by manufacturers. Compatibility of parts is
always a major issue, but most are tested by the manufacturers with data available
from their websites. Customers tend to order parts through the store, but some-
times they will buy off-the-shelf components. The store also keeps many spare
parts in stock because customers tend to break them often and the profit margins
are good. The store also has arrangements with other firms that can help customers
redesign and upgrade interiors and cabins, for example, provide new upholstery
for seats and complete systems for beds and sinks for cabins. Lately, the store
has been successful in selling and installing high-end GPS and communication
systems. The form below is used to place custom orders for the clients. Discounts
are given to customers based on several subjective factors that will not be entered
into the database.

Customer Employee

Last name, First name

Phone, E-mail Sale date

Address Estiamted receive date
City, State, ZIP

Boat: Brand, year, # engines, length
Engine 1: Brand, year, out drive, year
Engine 2: Brand, year, out drive, year

Manuf. | Mfg Part No. | Category | Description | Quantity | List Price | Extended

-
-
-
-
[R ——
-

Subtotal
Tax
Discount
Total Due

1. Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following task.

1. Analyze the forms and create the main classes and associations needed to
maintain the data for this organization.

Chapter

Data Normalization

Chapter Outline

Database Design, 31

Generated Keys: AutoNumber, 31

Case: All Powder Board and Ski Shop, 33

Lab Exercise, 34
All Powder Board and Ski Database Creation, 34
Relationships, 39

Exercises, 43

Final Project, 44

Objectives

* Understand how to use generated AutoNumber keys.
+ Create tables and specify data types.

« Create relationships and specify cascades.

« Establish column constraints and default values.

» Create lookup lists for columns.

« Estimate the data volume for the database.

30

Chapter 3: Data Normalization 31

Database Design

The main objective of database design is to define the tables, relationships, and
constraints that describe the underlying business rules and efficiently store the
data. The normalization rules are critical to properly identifying the columns that
belong in each table. The first step is to make sure the keys are correct. A key
uniquely identifies the rows in the table. If multiple columns are part of the key,
it indicates a many-to-many relationship between the key columns. Note that if
a base table contains a generated key column, it is the only column that may be
keyed.

If you are uncertain about which columns should be keyed, write them down
separately and evaluate the business rules between the two objects. Figure 3.1
shows a typical situation with orders and customers. First ask yourself: For a giv-
en order, can there ever be more than one customer? If the answer is “yes” based
on the business rules, then you would mark the CustomerID column as key. How-
ever, most businesses have a rule that each order is placed by only one customer,
so CustomerID should not be keyed. Second, reverse the question and ask your-
self: For a given customer, can there be more than one order? Obviously, most
businesses want customers to place repeat orders, so the answer is “yes.” So you
mark the OrderID as key. Since only OrderID is keyed, both columns belong in
the CustomerOrder table.

Once the keys are correct, you need to check each nonkey column to ensure
that it follows the three main normalization rules. First, each column must contain
atomic or nonrepeating data. For example, a single phone number, but not multi-
ple values of phone numbers. Second and third, each nonkey column must depend
on the whole key and nothing but the key. You need to examine each potential
table, determine that the keys are correct, then check each column to ensure that
it depends on the whole key and nothing but the key. If there is a problem, you
need to split the table. Remember that any time you make a change to the keys in
a table, you have to reevaluate all of the columns in that table.

Generated Keys: AutoNumber

Key columns play a critical role in a relational database. The key values are used
as a proxy for the rest of the data. For instance, once you know the CustomerID,
the database can quickly retrieve the rest of the customer data. That is why you
only need to place the CustomerID column in the CustomerOrder table. However,
the database requires key values to be unique. Guaranteeing that key values are
never repeated can be a challenging business problem. In some cases, businesses
have separate methods to create key values. For instance, the marketing depart-
ment might have a process to assign identifier numbers to customers and products.
But the process must ensure that these values are never duplicated. In many situ-

Figure 3.1

OrderlID CustomerlD

CustomerOrder(OrderID, CustomerlD, ...)

Chapter 3: Data Normalization 32

ations, it is easier to have the database generate the key values automatically. In
particular, orders often require keys that are generated quickly and accurately.

Microsoft Access provides the AutoNumber data type to generate new key val-
ues. You assign this type to the primary key in a table where you want the key
value created. For instance, the CustomerID column in the Customer table, or the
OrderID in the Order table, might be assigned the AutoNumber type. Whenever
a row is added to a table with an AutoNumber column, a new key value is gener-
ated. The keys are long integers and the value is incremented by one each time a
row is inserted. The 32-bit integer supports slightly more than 2 billion positive
values and an equal number of negative values.

In general, the AutoNumber approach is relatively easy to use for most simple
applications. Figure 3.2 shows how you select the AutoNumber data type when
creating a table. No matter how the data is created, whenever a row is inserted a
new key value is generated. The rest of the Access system utilizes the AutoNum-
ber column, making it easy to build input forms. In most cases, you do not have
to display the key value, so users never need to worry about it or even know that
it exists.

The main drawback to the AutoNumber approach is that it is tricky to obtain
the newly generated value. If you have an application that creates a new customer,
you might have to obtain the newly generated key to use it in a second table. Ac-
cess does not provide a function to obtain the new key value. There is a way to
obtain the key in most cases, but you have to be careful, and it requires program-
ming code.

There is one important step you have to take at this stage when you create
tables with the AutoNumber data type. Since the column value can only be cre-
ated in one table, you need to choose the Number/Long Integer data type if you
use that column in a second table. For example, CustomerID can be AutoNumber
in the Customer table, so new values are created when a customer is added. But to

Figure 3.2

)% AllPowder2007-02: Database (Access 2007) - M... Table Tools

ExtemalData Database Tools

Design

2w Insert Rows

All Access Objects

Tables

= customer

Forms

F customer

The data type determines the kind of values
that users can store in the field, Press F1 for
help on data types.

[EETTEI

Chapter 3: Data Normalization 33

use CustomerID in the Order table, it will have to be assigned the Number/Long
Integer data type in that table.

Case: All Powder Board and Ski Shop

When you first approach a database design problem, you will often experience
one of two perspectives: the project seems immensely complicated, or the project
seems too easy. Usually, both perspectives are wrong. Even a difficult project can
be handled if you divide it into small enough pieces, and few projects are as easy
as they first appear. The main issue is to correctly identify the business rules. And
there always seem to be complications with some of the rules. For the All Powder
case, consider the issue of customer skill level. Whether a customer is renting or
buying a board or skis, the salespeople need to match the person to the proper
board or ski based on the customer’s skill level. In terms of business decisions,
managers need to identify the types of customers to plan for the models and in-
ventory decisions for next season.

As shown in Figure 3.3, consider what happens if you try to place the Style
(downhill, half pipe, and so on), and SkillLevel directly into the Customer table.
The problem is that the business rules state that each customer can have one skill
level in many styles, and each style can apply to more than one customer. For
example, customer Jones could be an expert downhill skier but only a beginner
in half-pipe snowboard. However, customer Sanchez is an expert at half pipe but
has never tried any type of skiing. If you place Style and SkillLevel in the Cus-
tomer table, you might try keying only CustomerID. But that action would state
that each customer participates in only one style, with one skill level. On the other
hand, if you key just the Style column, you would be indicating that each style
can be performed by only one person. The only solution is to key both the Custo-
merID and the Style columns. Then each customer can participate in many styles
(with one skill rating per customer per style), and each style can apply to many
people (with possibly different skill ratings). But you cannot leave the Style and
SkillLevel columns in the main Customer table along with columns such as Last-
Name. It is clear that a customer’s last name does not change for each different
style. A customer’s last name depends only on the CustomerID, so you need to
split the tables.

Figure 3.3

Consider what happens if you (incorrectly) try to place Style and SkillLevel in
the Customer table:

CustomerlD, LastName, ... Style, SkillLevel
CustomerlID, LastName, ... Style, SkillLevel

Business rule: Each customer can have one skill in many styles.
Business rule: Each style can apply to more than one customer.
Need a table with both attributes as keys.

CustomerlD, LastName, ... Style, SkillLevel

But you cannot include LastName, FirstName and so on, because then you
would have to reenter that data for each customer skill.

Figure 3.4

Chapter 3: Data Normalization

Style

Customer
CustomerlD
LastName
FirstName CustomerSkill
Phone
Address CustomerlD
City Style
State SkillLevel
ZIP

Style
StyleDescription

SkillLevel

SkillLevel
SkillDescription

34

Figure 3.4 shows the resulting design. The Customer table is keyed only by
CustomerID and contains attributes that describe each customer. The Style and
SkillLevel tables are used as lookup tables to ensure that clerks select from the
defined list of choices. Without them, the database would quickly become a mess
because everyone would use different spellings and abbreviations for the entries.
The CustomerSkill table contains the CustomerID and Style as key columns to
support the business rules.

Lab Exercise

All Powder Board and Ski Database Creation

You should use the database design system to refine your table definitions. The
system is designed to check the main design rules and ensure that your tables
meet the requirements of good database design. However, if you make different

Figure 3.5
(D) 9 - ©) AlPowderZ007-02; Database (Access 207) - M. Table Toals [EE)
Hoame Create External Data Database Tools Acrobat Design @
E 1E N\ =3 Sr=Insert Rows B gj-
Gl = ¥ Delete Rows =
View | |Primary| Builder Test Validation Property Indexes
= Rules 20 Lookup Column || sheet
Views Tools Show/Hide
| s pCess objects + « || =1 customer X
Pri k Loies A Field Name Data Type Description -
rimary Key F3 Customer # customeriD AutoNumber E
s LastName Text
3 costomer FirstName Text
Phone Text
EMail Text
'Address Text Data t} pe
Column name ciy Tet
State Text
2IPCode Text
Gender Text
DateOfgirth Date/Time Addt l
p{(peni o 9 | |
/ information
Field Size Long Integer
MNew Values Increment.
Format
Caption
Indexed Yes (Mo Duplicates)
Smart Tags Afield name can be up to 64 characters long,
Text Align General including spaces. Press F1 for help on field
names
Design view. F6 = Switch panes. F1 = Help. [EEEET

Chapter 3: Data Normalization 35

i

Figure 3.6

assumptions about the underlying business rules, you can create slightly different
tables than those recommended by the design system.

Activity: Create Tuables

Once you have determined the over-
all Database Design, creating tables in
Access is straightforward. The Design
View visual editor makes it easy to en-
ter column names and select the data | Select data types.
types. One of the strengths of Access is | Assign the primary key.
that it allows you to change the table | Save the table.
design later. So, if you find you made
a mistake, you simply go back and edit
the table. Of course, if you have already entered data into the table and need to
make a major change, it can be more complicated because you will want to save
the data so you do not have to reenter it.
Figure 3.5 shows the basic elements of the Table Design screen. As you enter
the column (field) names, you select the data type from a drop-down list. Addi-
tional choices regarding the data type are made in the lower box. These options
depend on the initial data type, so the elements in the box change. For example,|
the text data type is defined with a maximum of 50 characters by default. Access
will efficiently store the data even if it takes less than 50 characters, but it will
not allow anyone to enter a value with more than 50 characters. You will need
to change this limit for some columns. For example, the Email column should
probably allow up to 100 or perhaps 150 characters. Access supports a maximum
of 255 characters in a text column. If you need more than that, you will have
to switch to a Memo type of data. However, there are some limits on searching]
memo data, so do not use it unless you truly need the space.
You indicate the primary key by clicking the gray box to the left of the column|
name, and then clicking the Primary Key icon on the top menu bar. A small Key

Action
Create Customer table in Design view.
Enter column names.

Design @

Selected

All Access Objects
Tables
= customer

Data Type Description -~
Text E
Text

Number

Number \
Number data type

Subtype: Single I\ i

Forms
B Customer

Field Properties

Afield name can be up to 64 characters lang,
induding spaces. Press F1 for help on field
nnnnnn

Design view. F6 = Switch panes. F1 = Help. [EEEET

o)

Chapter 3: Data Normalization 36

icon is placed in the gray box to indicate the Key column. To set multiple column
fields as keys, you first highlight each column field row that needs to be keyed.
Then click the Key icon. You can select multiple rows by clicking and dragging
the mouse across contiguous rows. Or you can use Shift + click or Ctrl + click to
choose multiple rows. You give the table the appropriate name when you save it.

Although the Access Design view is relatively easy to use, you need to be care-
ful when you select numeric data types. In Figure 3.6, the Size column is given
the Number data type. Number, however, has several subtypes. You select the ap-
propriate subtype in the lower window. In this case, the data type of Single indi-
cates a relatively small floating point number. Most skis and boards are measured
in centimeters, so the numbers are not overly large. However, some manufacturers
might choose to use fractional lengths, so the single-precision floating point is ap-
propriate. This step is sometimes difficult for beginners to catch. If you forget to
choose the single or double precision subtype, you will not be able to enter frac-
tional values (with decimal points). If you ever encounter that problem, simply
return to the Design view and set the proper data type.

Activity: Create Constraints and Default Values

In many cases, you will want the data- -
base to enforce the business rules. Plac- Action

ing the rules in the database means that | Select the Gender column.

they will be enforced in all situations, | Validation rule: “Female” Or “Male” Or
without relying on other programs. “Unidentified”.

Figure 3.7 shows the primary elements Validation text: Please enter Female,
for setting a condition to ensure gender Male, or Unidentified.

data is entered consistently. First, select

the column that needs to be controlled. Second, enter a validation rule that speci-
fies the acceptable values or range of values. Many times, you will use rules that
list acceptable values, such as the list of three items for gender. Other times, you
might use a rule which specifies that values must fall within some range. For in-

Figure 3.7

‘.6:,\\ H9-) % AllPowder2007-02 : Database (Access 2007) - M... Table Tools =t X
Y dome Creste EternalDats DotobaseTonls Awobat | Desian @
View || primary Buider Test Valcati
- | ke Rules
All Access Objects x
Tables ~ Field Name DataType Description -
B customer 7 | customeriD AutoNumber E|
B Inventory LastName Text
FirstName Text
Z‘""S 4] Phone Text
— EMail Text
| Selected column Adress Te
aity Text
state Text

¥, zPcode Text
Gender Text
DateOfBirth Date/Time

| Acceptable values ’\

Message /’

Flease enter Female, Msie, or Unidentified
o
Designview: F5 = Switch panes. Fl = Help [Eeawy

Chapter 3: Data Normalization

37

ICANEE 5 AllPowder2007-02 : Database (Access 2007) - M... Table Tools B>
) =
Home Create External Data Database Tools Acrobat Design 2
B Y & ; =1
View || Primary Builder Test Validation " || Property Indexes
o ey u o0 Lookup Column || Sheet
Views Tools Show/Hide
All Access Objects ~ «|| 2 customer x
Tables ES Field Name Data Type Description Py
= customer 7 | customeriD AutoNumber E
3 towerntory LastName Text
FirstName Text
[2 Phone Text
S 1 t d 1 Email Text
clected column Address Text
city Text
state Text
ZPCode Text
N Gender Text
DateOfgirth / L k t. b |
*
Tagkup
- Display Contror— | Comba Bax
‘Ialue hSt Row Source Type Value List
> “Female’; Male’; Unidentified”
Bound Colugdy 1
Columy 1
| et Headls Ho
. Column Widths
Values in quotes o s
List Width Auto
Limit To List Ho

and separated by
commas

Allow Muttiple Values Mo
Allow Value List Edits o
List ltems Edit Farm

Show Gnly Row Source V No

([otomvesfo=swnanes 7 = e

EEITET

Figure 3.8

stance, to indicate that a salary column must be greater than zero, select the Salary
column and enter >0 as the validation rule. Finally, enter a message that will be
displayed to anyone who tries to enter an invalid value. This message can be any
text message, but keep it precise and friendly.

Notice that it is also easy to specify default values. These are values you want
displayed whenever a new row is created. The user can override the default value
and enter something else, but it is often convenient to display a commonly used
value to save time for users who are entering data. For example, a SaleDate can be
set to the Now() function so that the current date is automatically entered.

- Activity: Create Lookup Lists

Ultimately, you want to make the data entry process even easier for users. Instead
of waiting for users to guess what values they might enter for gender, you can cre-
ate a simple lookup list that contains the three acceptable values (Female, Male,

Figure 3.9

@H9- &) TableTools AllPowder2007-02 : Database (Access 2007) - Microsoft Access (S =)
i =
Home | Create External Data Database Toals Acrobat Datasheet @
% C e 3 : - a
M % cut a5 S == | \ﬂ = New E Totals 3l Y E; Selection m 23 Replace.
= L3 Copy . = [Bsae % speling | 5 V4 Advanced ~ = GoTo -
v Paste Brl:nEE == Refresh Filt Find
few | Poste pormat painter || B4 10| [(B[] == R | X petete = B more = |45 | ™" 7 Toggle Fiter || T [y setect~
Views Clipboard 2 Font 5| Rich Text Records Sart & Filter Find
All Access Objects v « || 53 Customer X
Tables B CustomeriD - | LastName - | FirstName - Phone EMail - | Address -| City State - ZIPCode - | Gender - DateOfBirth - A
= customer 1 Jones Joe 111-222-3333 jones@isp.con 123 Oak Walnut Grove CA 95111 Male 1/10/1982
3 mventory 2 Smith Sue 333-555-2222 half-pipe@isp. 333 Elm Lockeford CA 95333 Female 2/15/1989
— = Mason Mike 244-222-3333 423Palm Lodi cA 95222
5 * ew) Male
= cust
B Customer b A | snidentitied
Record: 4 420f3 | b M b | & | Search KL I] b
Datashest View EEEETT

or Unidentified). Figure 3.8 shows the
choices once you select the column and
click the Lookup tab. You can choose
between a combo box and a list box.
The combo box is usually preferred
because it uses less screen space: the
choices are displayed when the user

Chapter 3: Data Normalization

38

Action
Select the Gender column.
Select the Lookup tab.
Display Control: Combo Box.
Row Source Type: Value List.
Row Source:

“Female”;”Male”’;”Unidentified”.
Switch to datasheet view and test it.

clicks the familiar drop-down arrow.
For the simple list of pre-defined terms,
choose the Value list and enter the val-
ues in the next row. Each item is en-
tered in quotes and separated by semicolons.

There is a major drawback to entering a list of values into the table definition:
This list is difficult to change later. Consequently, you should use the predefined
list only for items that rarely change. If you suspect the list will need to be up-
dated later, you should create a separate lookup table and store each possible entry
as a row within that table. Then you can use this same process to point to that table
instead of a fixed list, by selecting Table/Query for the Row Source Type.

Switching to data entry mode, Figure 3.9 shows the effect of this design on the
Customer table. In terms of gender, users see a defined list of choices and are not
able to enter other values. Even if a programmer attempted to enter a value not in
the list, the validation rule would prevent the change. Also, notice the effect of the
AutoNumber column for the primary key. Initially, no value is displayed. As data
is entered into the row, Access automatically creates a new key value that is one
unit higher than the prior value. However, note that if you delete a row, the num-
bering does not start over. Eventually, some numbers will be missing from the list.

Figure 3.10

— 3
;’ﬁ,',\ ¥~ -5 AlPowder2007-03 : Database (Access 2007) - M... Table Tools =
] =
- Create External Data Database Tools Acrobat Datasheet @
M j_‘ jzl j & Insert Data Type: [Number Unique _3(3 E‘fl
. ' Delete Format: Formatting Is Required E] =
View New Add Existing Lookup Relationships Object
- Field Fields Column =0 Rename | | § % o [|5 %) ependencies
Views Fields & Columns Data Type & Formatting Relationships
All Access Objects = « || =] sale X
Tables % SalelD - SaleDate - | CustomerlD - Employee - EmployeelD ~ |
1 customer 1002 3/17/2006 1300 Miyahira, Adam, Brassard 2 =
T Employee 1003 6/25/2006 1282 4
2 inventory 1004 6/30/2006 871 | adam Amo ~ 6
= 1005 4/26/2006 41 || [0 Boit Philip [2.
sale 1006 1/31/2006 491 || Bourgeat Pierrick 10
g
Forms £ 1007 2/19/2006 1583 || [Brassard Jean-Luc 3
El customer 1008 4/12/2006 1061 ||] carr Chris 2
1009 3/9/2006 345 || 8] cavagnoud Regine 4
1010 3/7/2006 120 ||| Daehlie Bjorn 16 .
1011 2/4/2006 1574 | I Fawcett Mark 12
1012 1/5/2006 33|00 Gra_wer Richard 2
1013 1/5/2006 326 ”e'den Beth a
1014 1/15/2006 56 | ::_ISIEV'JEV j‘”dez"‘ 5.
1015 8/12/2006 419 m N: ": Lear' 2 12
cKkenna esley
1016 12/6/2006 1608 [C1 miyahira Hidehary &
1017 9/10/2006 417 Il Moe Tommy 6
1018 8/8/2006 1299 [street Picabo ~ 4. -
Record: 4 420f500 | b M k[& [[search]| ¢ o »
Datasheet View m m A

5 2

Chapter 3: Data Normalization 39

Since the actual value does not mat-
ter, only the uniqueness, do not worry
about any missing values.

Access 2007 added a new feature | /Addall tables.
that is of somewhat dubious value, but | Move and resize them to fit.
it does have a specific use when you | Dragand drop key columns on foreign
want to integrate data with Microsoft | Keys-

SharePoint. Access 2007 now supports | Check integrity and cascade boxes.

a multivalued field. In simple terms, it | Define all relationships.

violates first normal form by enabling
you to store multiple entries in a single cell. For example, perhaps the owner wants
to store data in the Sale table so that multiple employees can participate in a sale,
creating a many-to-many relationship between Sale and Employee. Technically,
you should store this data in a third, intersection table that contains both SalelD
and EmployeelD as columns in the primary key. Actually, this is exactly how Ac-
cess handles the problem by creating a hidden table. Behind the scenes, Access
draws data from this table to make it appear that multiple items can be selected for
the SalesPerson.

Figure 3.10 shows how the multivalued field is presented to the user to make
it easier to enter data. In particular, a list of checkboxes is displayed and the user
selects the employees who participated in the sale. The point of the list is to make
it easier for user to enter data and save the developer a few steps by automatically
creating the list of checkboxes. In most situations, you are probably better off ex-
plicitly defining the intersection table and creating your own forms to handle the
data entry. Retrieving data with queries involving the new field adds more com-
plications. Access created a new Employee.Value option to display and search the
list of individual employees.

Action
Tools/Relationships (or button).

Relationships

Activity: Define Relationships

When all of the tables have been created, you need to define the relationships. For
now, create at least the CustomerSkill table with two columns in the primary key.
You can click the Relationships button under the Database Tools menu. Select the
tables to be displayed on the screen. Eventually you will need all of the tables, but
sometimes it is easier to start with a smaller group and add tables one at a time
with the Add Tables button. As shown in Figure 3.11, to build a new relationship,
click-and-drag a column from one table and drop it on the corresponding column
of the second table. To edit an existing relationship, double-click the relationship
line. In the Edit Relationships window, verify that the column names are correct.
If a relationship needs to join across multiple columns, you must select the ad-
ditional columns in the list. When they are correct, check all three of the integrity
boxes. These boxes enforce the integrity rules so that users can only enter data
that exists in the original base table. For example, it does not make sense to enter
skill data for a customer number that does not yet exist, so the database will en-
force that rule and display an error message if someone tries to violate it. Click the
OK button to establish the new relationship.

Continue adding tables and building the required relationships. Eventually, all
of the tables should be tied together. An important consequence of building the
relationships is that it forces you to enter data in a specific sequence. In the ex-

Chapter 3: Data Normalization 40
— - T g p— (=l@] %]
F’D’l\ = 5 AllPowder2007-02: Database {Access 2007) - M... | Relationship Tools
i) =
~ Home Create External Data Database Tools Acrobat Design @
ﬁ d(% Property Sheet 4 Database Documenter %g 5'2 Switchboard Manager
== ¥ =
— i =7 Object Dependencies || 34 Analyze Performance ¥ i Baccy
Visual _, || Relationships ; SQL Acces| . . Make
Basic iz S T seer pand Relationshp line | acor
Macro Show/Hide Analyze Move
All Access Objects = « || = Relationships X
Tables £ i
I==-] Customer %
CustomerD CustornerSkill
Drag column /Y LastName % customerd
and drop Firsthlame F style
Phone SkillLevel
EMail SkillComments
=l customer Address
City Edit Relationships @l&l
Verify both 2w
ZIPCode
Table/Query: Related Table/Query:
1 m Gender []r
columns Dt Customer - - —
CustomerlD Ecustcmerlﬂ =
3
Enforce Referential Integrity
Check all S /] Cascade Update Related Fields
three boxes L 91cazcae Delete Rented Recorc
Relationship Type: One-To-Many
-
4[] »
Ready i
Figure 3.11

ample, you must first enter data into the SkiBoardStyle, SkillLevel, and Customer
tables before you can create an entry in the CustomerSkill table. In general, you
should first enter data into the base lookup tables, like the SkillLevel table. This
data is generally relatively static and well-defined. Notice that it could be difficult
to explain this process to users. To look ahead a little, users should never enter
data directly into tables. Instead, you will create forms that make it easy for users
to enter data properly.

Figure 3.12

CustomerlD
LastName
FirstName
Phone
Email

State
ZIP
Gender
DateOfBirth

)

CREATE TABLE Rental (

CREATE TABLE Customer (

Long,
Text(50),
Text(50),

Text(50),
Text(150),
Address Text(50),
Text(50),

Text(15),

Text(15),

Date,

RentID Long,

RentDate Date,

CustomerID Long,
ExpectedReturn Date,
PaymentMethod Text(50)

CONSTRAINT pk_Rental PRIMARY KEY (RentID)
CONSTRAINT fk_RentalCustomer FOREIGN KEY (CustomerID)
REFERENCES Customer(CustomerID)

CONSTRAINT pk_Customer PRIMARY KEY (CustomerID)

Chapter 3: Data Normalization 41

As of the XP/2002 version of Access, you can create tables and relationships
using direct SQL statements. However, the syntax does not support all of the SQL
standard options. For instance, only a single command can be issued at a time.
Figure 3.12 shows how you could use SQL to create two of the tables for the case.
Note that you will have to create each table separately, but they are displayed to-
gether to highlight the relationship. You can open a new query and switch to SQL
view, then enter the CREATE TABLE command and execute the query to create
the table.

Why would you want to use this method to create tables—particularly when
the Table Design view screen is so easy to use? The answer is that the Design
View screen requires someone to create each table and column by hand. That is
fine when you are initially creating tables and if you never have to re-create them.
However, the text-based approach enables you to save the table definitions so that
you can quickly re-create the tables in a new database. It is a useful way to save
backup copies of the table definitions. These backup copies are useful when you
need to modify the tables at some point, or create a new database, or have some-
one else re-create the database on a different machine. The method is also useful
when a design system generates the CREATE TABLE statements for you.

If you create a file listing all of the tables, be careful about the order in which
the tables will be created. Some tables must be created before others. In particular,
a table can only establish a foreign key reference to an existing table. In the exam-
ple, the Customer table has to be created before the Rental table can reference it.
Also, keep in mind that the CREATE TABLE command is a recent feature in Mi-
crosoft Access, so it does not fully support the SQL standard. In particular, it does
not appear to support the ON DELETE CASCADE and ON UPDATE CASCADE
options for the foreign key relationship. You will still have to go to the Relation-
ships screen, edit the relationship, and check those boxes separately. Also, Access
2007 does not support the CHECK and DEFAULT options to specify individual
column constraints and default values.

Activity: Estimate the Database Size Action

At some point, you need to estimate the | Create a spreadsheet.

size of the database project. Of course, | Enter table names as rows.

any estimate at this early stage will | Add columns for: Bytes, Rows, Totals.
be very rough. Your goal is not to be | Calculate the bytes per table row.
perfect but to be able to categorize the | Egtimate the number of rows.

overall project size. The information | compute the table and overall totals.
will help you identify the basic cat-
egory of database server and perhaps
narrow your choice of tools. In particular, it will help you determine whether the
project is too large to be handled in Access, or if you should move up to SQL
Server or Oracle. You still might want to use Access as a front-end tool, but it
would be helpful to know if you need to move the database to a larger server.

To estimate the database size, you begin by estimating the size of each data
table. You must already know which columns belong to each table. Figure 3.13
shows the process for the Customer table. Some of the column size estimates are
straightforward. Look back to Chapter 2 to see that a long integer uses 4 bytes
of storage in Access. The text columns are a little trickier. For instance, although
the database will allow up to 50 characters of text for the last name, almost no
names will actually be that long. Instead, you need to estimate the average length

Chapter 3: Data Normalization 42

CustomerlD Long 4
LastName Text(50) 30
FirstName Text(50) 20
Phone Text(50) 24
Email Text(150) 50
Address Text(50) 50
State Text(50) 2
ZIP Text(15) 14
Gender Text(15) 10
DateOfBirth Date 8
Average bytes per customer 212
Customers per week (winter) *200
Weeks (winter) *25
Bytes added per year 1,060,000

Figure 3.13

of customer last names. You could use existing data or perhaps take a sample from
a phone book. Perhaps an average last name is 15 characters long. But the DBMS
stores text in Unicode format, which requires 2 physical bytes of storage for each
character, so the average storage space needed for a last name is 30 bytes. Use a
similar process to estimate the number of bytes needed to store an average row of
customer data.

Next, you need to estimate how many new customers will arrive each year. In
a real case, you could look at past records or talk with the expert users. Here, as-
sume it is about 200 per week, but there are only 25 weeks of the ski season; so
estimate 5,000 new customers a year. Multiplying the estimated number of cus-
tomers by the size of an average row yields the initial data size of the customer
table of about 1 million bytes.

Follow a similar process for all of the tables in the case. Figure 3.14 lists some
of the basic assumptions you can use. You should build a spreadsheet that lists
each table, the average number of bytes per row, the estimated number of rows,
and the total estimated size for the table. There is still some flexibility in the final
number, but your estimate should be around 5 to 6 megabytes. Remember that
this is data for only one year. Also, additional space will be required for indexes,
overhead, queries, forms, and reports. But even if the final number is closer to 20
megabytes, Microsoft Access should be able to handle the database on a typically
configured computer.

Figure 3.14

200 customers per week for 25 weeks
2 skills per customer

2 rentals per customer per year

3 items per rental

20 percent of customers buy items

4 jtems per sale

100 manufacturers

20 models per manufacturer

5 items (sizes) per model

Chapter 3: Data Normalization 43

Exercises

5

Many Charms

Samantha and Madison want you to build the database for their charms sales.
They emphasized that the system has to be easy to use. They also pointed out
that a key element of their business is tracking all of the products and the various
suppliers, then monitoring the costs so they can set their prices accurately. They
are also concerned about monitoring how quickly their charms sell. They figure
they will need to start with at least 200 basic charms, but most charms come in
two sizes, along with the different metals and finishes. When asked, the women
indicate they are uncertain how many customers they will have but would like to
get at least 50 sales a week. Although some of the sales might be small, they hope
to build a solid list of clients who return for new purchases on a monthly basis.
To encourage return customers, they are thinking about offering some type of fre-
quent-buyer program, where customers receive discounts or maybe a free charm,
after purchasing a specified number of charms.

1. Define the final tables needed for this case.
2. Create the database.

3. Estimate the size of the database for one year of operation.

Standup Foods

Laura’s business has been established for several years. Many of her clients are
old customers, and she has a couple of thousand in her files—although some have
gone out of business. Her business has grown considerably based on referrals from
existing clients. She gets so many good comments and referrals, she is thinking
that she needs to track which customers pass her name on to others so she can call
them or send thank-you gifts. But, her more immediate concern is tracking em-
ployees. Over the course of a year, she has a relatively high turnover in some posi-
tions. Other employees have been with her for years. In total, she probably deals
with 400 to 500 employees a year. Employees are rated after each job, and typi-
cally employees work 15 to 20 jobs a year for her. On average, employees tend to
have three tasks per event. For instance, a driver will also be a server, and possibly
also a busboy or dishwasher. They are evaluated on 10 items for each task they
perform, as well as given an overall rating. Client food preferences are somewhat
more complex, so Laura wants the capability to add free-form comments to cover
extreme cases. For common elements, such as allergies to nuts, she wants to keep
itemized lists—Dboth for desired items and forbidden items. Some clients are easy
going, but this is Hollywood, so many have long lists of items—often ranging to
50 or even up to 100 items.

1. Define the final tables needed for this case.

2. Create the database.

3. Estimate the size of the database for one year of operation.

Chapter 3: Data Normalization 44

fﬁ EnviroSpeed
= For good or bad, Tyler and Brennan have been busy. Their firm has been averag-

ing four to five cleanups a week. Although there are not many permanent em-
ployees (fewer than 100), they have close associations with about 200 experts in
various areas. All of these people need access to the environmental documents and
other information. Additionally, about 400 crews around the world are called in to
work on various problems. The crews consist of 10 to 20 people. Initially, experts
contribute the most information. Sometimes an expert will contribute hundreds of
pages of documents and comments. Once an incident is opened, most of the new
data and the searches come from the emergency crews. Time schedules, environ-
mental factors, and comments can arrive quickly from all of the crew members.
Some of the notes are on paper and saved until the emergency is over, when clerks
enter the basic data to the database. A typical incident can generate dozens of pag-
es of notes and schedules from each crew member. Although there are hundreds
of possible chemicals, the firm has found that only about 50 major chemicals are
typically involved in critical incidents. One important aspect of this case is the
need for experts and crew members to search through documentation based on
key words. For example, crews will need to search for certain chemicals, possibly
in combination with other chemicals, and often include the type of problem, such
as water or road spill. Brennan estimates a typical document needs to include at
least 20 keywords to identify the exact purpose of the document.

1. Define the final tables needed for this case.

2. Create the database.

3. Estimate the size of the database for one year of operation.

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following instructions.

1. Finalize your database design.

2. Create the tables in the DBMS.

3. Estimate the amount of data that might be generated for one year.

Chapter

Database Queries and SQL

Chapter Outline

Database Queries, 46
Case: All Powder Board and Ski Shop, 46
Lab Exercise, 47
All Powder Board and Ski Data, 47
Computations and Subtotals, 55
Exercises, 61
Final Project, 63

Objectives

» Create or import sample data into a database.

» Create basic queries to answer common business questions.
* Use joins to create multitable queries.

» Use queries to perform simple calculations.

* Answer business questions involving totals and subtotals.

Chapter 4: Database Queries and SQL 46

Database Queries

Relational databases are designed to store data efficiently. Efficiency results in
splitting the data into many tables, interconnected by the data. Consequently, you
need a good query system to retrieve data. SQL is a powerful standard designed
to perform several tasks in retrieving and manipulating data in relational database
systems. Most modern systems implement some version of SQL. The catch is that
the standard continues to evolve, and it takes time for the DBMS vendors to catch
up. Also, vendors tend to include proprietary extensions to provide additional fea-
tures. Because the SQL syntax can be difficult for managers, most vendors also
include some type of query-by-example (QBE) system to make it easier to con-
struct common queries. The visually oriented QBE also saves some typing effort
and provides lists of tables and columns so you do not have to memorize them.
But, ultimately, you need to learn SQL because it is a standard and because some
queries are easier to understand in SQL. With Access, the query designer makes it
easy to switch from QBE to SQL, so you should get in the habit of checking the
SQL to see that the query is being built correctly.

This chapter focuses on the data retrieval aspects of queries. SQL can also be
used for data definition (e.g., CREATE TABLE), and for data manipulation (e.g.,
UPDATE and DELETE). These features and more complex queries are covered in
Chapter 5. Once you learn the foundations of queries presented in this chapter, the
other topics are easier to understand.

In any database, it helps to have a copy of the class (relationship) diagram handy
when you are writing queries. One of the more difficult aspects to creating a query
is to find which tables hold the data you need. This problem is one of the reasons
it is so important to label your tables and columns carefully when you create the
database. Managers need to be able to identify the tables and columns that match
the business questions. With dozens or even hundreds of tables with confusing or
abbreviated names, it can be difficult to find the correct data.

Case: All Powder Board and Ski Shop

Before you can build queries, you need data in the tables. Even with a small num-
ber of tables, it is time-consuming to create reasonable data. You have to match the
foreign keys across the relationships. For instance, it is straightforward to create
basic customer data, although it would take a while to type in data for a thousand
customers. But then, when you want sales data, you have to select CustomerID
values from the existing list. You also have to create ski and board models and
then generate data for items with appropriate attributes, then choose the proper ID
values for the sales and rentals. In a typical business project, you can test the da-
tabase with a few dozen examples, and then wait for the business to generate real
data to analyze. In a class setting, it is better to use sample data. For that reason,
sample data is available for the tables in the All Powder case. The one catch is that
your tables might not contain exactly the same columns. So you might have to edit
the data slightly in Excel before you import it into your database. This data was
randomly generated with specially built generators. The business interpretations
might not be useful, but the dataset is consistent.

Chapter 4: Database Queries and SQL 47
_» Saleltem 1 1 temhodel
[(#5akD “~{# ModellD
HSKU 1 1 Imwentory M anufactured D
QuantitySeld B8l el . Categary
1.1 SalePrice MadellD Color
SalelD — Sioe Cost
galetDatelD 0. QOH Maodelyear
Lstomet — p
EmploveelD ﬁé?npg::tserial ."1 Manufacturer
Shipdddress ListPrice # Manufacturer D
ShipCity 1x Rentltem Style M anufh ame
ShipState —| # RentlD: Shillevel Marufsddress
ShipZlP # 5K Weighthax M arufCity
SalesTax RentFee ‘wieightidin M amufState
Paymenttdethod ReturnDate e aistwlidth MaruiZIF
ReturnCondition EffectiveE dge ManufPhane
RepairCharges Bindings5tule b arifE b ail
RentalR ate Eategory
1 Customer
—— # CustomerlD Rental
CustLastM ame “—# RentlD
CustFirstM ame 0.+| RentDate
CustPhone CustomerlD
CustEMai ExpectedR eturn
Custhddress Paymenttdethod
CustCity
CustState
CustZIP
CustGender
CustD ateOfBirth

Figure 4.1

Lab Exercise

All Powder Board and Ski Data

At this point, the main tables of your database should be similar to those in Figure
4.1, although several supporting tables have been removed from the figure. The
Manufacturer, Customer, Sale, and Saleltem tables are common to most business
databases. The Rental and Rentltem tables simply mirror the sale aspects. The
Inventory and ItemModel tables arose because of the characteristics of the board
and ski products.

To save time and effort, a sample database is included with initial data that you
can use to test queries. In real-world cases, you will need to import data. Access
is quite flexible about important data, but it still takes time to setup the database.
sample data files are provided for each of these tables, plus the common support-
ing tables. Access can easily import the data files into your tables. To import data,
you will first have to extract the files from the compressed archive. Also, if your
table definitions are different from these, you will have to edit the data files. For
example, your ItemModel table might not have all of the columns. In this case,
you can open the data file in a spreadsheet program, delete the unneeded columns,
and save the file in comma-delimited format.

@“ Activity: Create Basic Queries

Creating a query requires that you translate a business question into a form
that the query system can process. Sometimes this step is straightforward, other
times it is difficult. It helps if you format your query in terms of the four main
questions: (1) What do you want to see? (2) What do you know or what are the
constraints? (3) What tables hold the data? (4) How are the tables connected? You
can use the query grid in Access to reduce the typing, or you can switch to SQL.
Either way, you have to answer the four questions. Figure 4.2 shows the basic

Chapter 4:

Database Queries and SQL

48

Ea\H9- &) All Powder Board and Ski Shop Query Tosls
. Home. Create External Data Database Tools Acrobat Design 2]
SWltCh to SQL /-ﬁ [@ :' A ﬁ @ Dunion % S Insert Ro 3 [Fropery sheet
or view results view Run | |sce| wake sppend Update Craston petee B oo | ron Totas 3
- Table a7, Data Definition | Table A um: | All - rs
Results QueryType uerys'_p S| i
All Access Objects .
v >| Show table list
3 Bindingstyle L
Select tables
o 1 TtemModel
0 oedhget 7 Mogein [
Display fields/ B
columns

Conditions |\

E switevel \é:rt: -
e .
Figure 4.2
elements of the query grid. Tables that -
have been selected are displayed in the Action ‘
top half of the grid screen. Connec- | Choose Create/Query/Query Design.
tions among them will be displayed as | Add the ItemModel table.

lines. Columns or computed fields that
you want to see are displayed in the top
row of the grid. Conditions that apply
to individual columns are displayed in
the Criteria row. You can also sort the

Select columns for Category, ListPrice,
WeightMax, Color, and Graphics.

Enter conditions for Board, ListPrice,
and Weight.

Run the query.

results by selecting the appropriate sort
order in any column.

Begin with a straightforward query: Display the snowboards with a list price
under $300 for riders over 150 pounds. The potential buyer wants to know what
color and graphics are available for boards that meet those conditions. The most
difficult step in this query is to identify the table and columns that match the con-
ditions. For example, snowboards are identified by the Category column in the
ItemModel table. If you examine the data, you will see a Board entry for each
item that is a snowboard. The list price, maximum weight, color, and graphics
columns are also in the [temModel table.

Figure 4.3 shows the basic query, both using the query grid and switching to
the SQL. In the grid, once you have selected the [temModel table, you can double-
click or drag the desired columns down to the display grid. In SQL, you would
type the names of the columns you want to see immediately after the SELECT
command. Notice that Access automatically includes the name of the table (Item-
Model.Category). With only one table, this step is not required, but Access plans
ahead in case you add more tables that might have similar column names. The
conditions you are given (snowboard, list price, and weight) are entered on the
Criteria row of the grid, or typed immediately after the WHERE clause of the
SQL statement. The grid conditions can be tricky at first. Notice that you enter <
300 in the ListPrice column. Since it is in the ListPrice column, this line is read as
ListPrice < 300. Because the three conditions are on the same Criteria row, they
are connected with ANDs, meaning all three conditions must be true. The SQL

Chapter 4: Database Queries and SQL

49

5 Quenl = x
ItemModel =
ModelD -
ManufacturerlD
Category
Color
Cost
Modelvear
Graphics
TtemMaterial
visterice L
K] »
Field: | category ListPrice WeightMax Color Graphics =
Table: |kemModel TtemModel HemModel TemModel TtemModel EI
Sort:
Show:
<300 150

Criteriai | *Board®
or:

Kam|

5 Queryl

Category -

Board|
Board
Board
Board
Board
Board
Board
Board
Board
Board
Board

ListPrice - | WeightMax » | Color
$294.00 158 Red
$270.00 191 Yellow
$255.00 239 Red
$292.00 188 Orange
$263.00 181 Magenta
$262.00 179 Purple
$290.00 194 Blue
$256.00 171 Magenta
$283.00 226 Blue
$277.00 162 White
$259.00 223 Magenta

$0.00

Graphics -
Sunrise
Landscape
Gothic
Fade
Geometric
Space
Abstract
Sunrise
Gothic
Gothic
Linear

Record: M

1of1l

>>|>|."

Search

Display snowboards with a list price under
$300 and max weight over 150 pounds.

SELECT ltemModel.Category, ItemModel.ListPrice, ltemModel.WeightMax,
ItemModel.Color, ItemModel.Graphics

FROM ltemModel

WHERE (ltemModel.Category="Board”) AND (ltemModel.ListPrice<300) AND

(ItemModel.WeightMax>150)

Figure 4.3

WHERE clause is a little easier to read, but it has more parentheses than neces-
sary. At any time you can switch between the grid and the SQL by selecting the

desired view. The results show the 11 boards that meet the desired conditions.

ﬁ‘ Activity: Create and Test Multiple Boolean Conditions

Interpreting business questions can sometimes be difficult because of the ambi-
guity of natural languages. It is one of the reasons SQL remains so important. SQL
requires you to specify exactly what you want to see and to write the conditions
mathematically. Of course, these conditions can become relatively long when the
business question is complex. Consider a customer who wants skis for jumping.
She wants them made from composite materials, and the main color can be red

Figure 4.4

Ski for jumping.

Composite material.

Red or Yellow as main color.
Yellow skis must be under $300.
Red skis must be under $400.

‘j:‘Qur:r,'l - = x
a
IrernModel E
Color
Cost
ModelYear
Graphics
TtemMaterial
ListPrice
Style
-
4) L4
7 \
Field: | Category ItemMateria Style ListPrice =
Table: |ItemModel Model ltemModel ltemModel ltemModel %
Sort:
Show:
Criteria: | “Ski” “Composite “Jump”

or

4w

Chapter 4: Database Queries and SQL

50

or yellow. She does not want to spend

more than $300, but if they are red, she Ac,t"m))
is willing to pay up to $400. Create a new query in Design View.
Add the ItemModel table.

Begin with a new query, and again
recognize that all of the attributes are in | Add columns: Category, Color,
the ItemModel table. Looking through -
the data, the first three conditions are | Setrequested conditions.
straightforward: the Category is Ski, | Check the SQL.
the ItemMaterial is Composite, and the | Run the query.

ItemMaterial, Style, and ListPrice.

Style is Jump. The colors appear to be

straightforward, except that the choice is connected with Or. Whenever a query
contains both And and Or conditions, you must be careful, so start with basic con-
ditions and check the results as you go. Figure 4.4 shows the initial query with the

three main conditions that must always hold (ski, jump, and composite).

Now you can think about how to add the other two aspects of the question. If
yellow skis must cost less than $300, what happens if you add both conditions to
the query? Figure 4.5 shows the query and the results. Since all of the conditions
are on the same Criteria row, all five must be true at the same time. The query

therefore returns only yellow skis.

To see the red skis, you somehow have to add the option of Red as a color, but
you also have to establish the higher acceptable price for red skis. The solution is
to add a new criteria row. Again, the Category, [temMaterial, and Style are set to
Ski, Composite, and Jump. As shown in Figure 4.6, the Color this time is set to
Red and the ListPrice must be under $400. Conditions on multiple rows are con-
nected with Or clauses, so the final query displays skis that are yellow or red. The
yellow skis must be composite jumping skis priced below $300. The red skis must
be composite jumping skis priced below $400. Note that the grid requires you to

duplicate the main conditions that hold true across the yellow and red skis.

Figure 4.5

9 Queny0405 - = x

TtemModel =

Color
Cost
ModelYear
Graphics

| Yellow and price conditions |

TtemMaterial
ListPrice
Style

....... NG
S

/
/

Field: | Category Color TtemMaterial Style ListPrice

Table: |itemModel TtemMadel TtemMadel TtemMadel ItemModel

Sort:

Show:
Criteria: | *Ski® “Vellow" “Composite” “Jump” <300

| »

[»

All five conditions must hold, so only one row matches

3 Queny0405 - = x
Category - Color ~ | ltemMateriz = Style v ListPrice -
Yellow Composite Jump $70.00

* $0.00

Record: M 1ofl BoOM B i Search

Chapter 4: Database Queries and SQL 51

£ Query0406 - =

TtemModel
Category
Color
Cost
ModelVear

Graphics
ItemMaterial
ListPrice)1

4 [w)
Field: | Category Calor TtemMaterial Style ListPrice
Table: |It It 1t It
Sort:
Show:
Criteria: | “Ski" “Yellow” “Composite” “Jump” <300
or: “Red" “Composite” “Jump” <400
4 [l
£ Query0406 - = x
Category - Color ~ | ltemMateriz - Style - | ListPrice -~
Skil Red Composite Jump $294.00
ski Red Composite Jump $137.00
ski Red Compaosite Jump $223.00
Ski Yellow Composite Jump $70.00
* 50.00
|Record: L] 1aof4 L T | % | Search |

Figure 4.6

If you switch from the grid view to the SQL view, the SQL query looks com-
plex. Part of the problem is the excessive use of parentheses, but the query is also
longer than it needs to be because Access duplicates the three main conditions.
Figure 4.7 shows the SQL version generated from the query grid. However, you
would never type the query in that way. Instead, the query can be simplified by
removing the excess parentheses and the unneeded table name prefixes. The lower
half of Figure 4.7 shows the simpler SQL query. You should enter this query into
the SQL editor in Access and verify that it produces the same answers as the grid
query. The SELECT statement lists the columns that you want to see. The FROM
clause lists the single table. The WHERE clause begins with the three items that
must be true. It also includes the two choices of colors with their associated price
limits.

Figure 4.7

SELECT ltemModel.Category, ltemModel.Color, ltemModel.ltemMaterial,
IltemModel.Style, ltemModel.ListPrice

FROM ItemModel

WHERE (((ItemModel.Category)="Ski”) AND ((ItemModel.Color)="Yellow”)
AND ((ItemModel.ltemMaterial)="Composite”) AND ((ItemModel.Style)="Jump”)
AND ((ItemModel.ListPrice)<300)) OR (((ltemModel.Category)="Ski”) AND
((temModel.Color)="Red”) AND ((ItemModel.ltemMaterial)="Composite”) AND
((ItemModel.Style)="Jump”) AND ((ltemModel.ListPrice)<400));

Simplified:

SELECT Category, Color, ltemMaterial, Style, ListPrice

FROM ltemModel

WHERE (Category="Ski” AND ItemMaterial="Composite” AND Style="Jump”)
AND ((Color="Yellow” AND ListPrice<300)

OR (Color="Red” AND ListPrice<400));

Chapter 4:

Activity: Use Multiple Tables in a Query

Database Queries and SQL

52

Relational databases require the ta-
bles to be carefully designed so that
the DBMS can efficiently store large
amounts of data. This process entails
placing data into multiple tables. Con-
sequently, a key feature of SQL is its
ability to join the tables to make it
easy to retrieve data from many tables
with one query. The Access query grid
makes it easy to join tables. Once the
tables are joined, you can generally
treat the columns as if they came from
a single table.

Action
Create a new query in Design View.
Choose the Sale table.

Select columns: SalelD, SaleDate,
CustomerID, and PaymentMethod.

Set conditions for Cash sales in May.
Choose Query/Show Table (or button).
Add the Customer table.

Add columns: LastName, FirstName.
View the SQL.

Run the query.

To understand the joining process,

create a new query and add just the Sale table. The objective is to find all of the
sales in May that were made with a cash payment. Figure 4.8 shows the initial
query. Note the use of the Between clause to specify the month of May. Also ob-
serve that Access automatically places pound signs (#) around the dates. These
marks enable you to enter dates in any common date format. Notice that the query
returns the CustomerID, but no one is going to memorize CustomerID numbers.
Instead, you need to look up matching customer names. If you look at the relation-
ship diagram (part of it is shown in Figure 4.1), you find that the CustomerID and
matching names are stored in the Customer table. You could take each of the ID
values returned by the Sale query and create a new query on the Customer table

Figure 4.8

£ Quen

EmployeelD -

ShipAddress

ShipCity
ShipState

Sales in May

Cash payment

ShipZIP
SalesTax
PaymentMethod =

« [»
Field: | salelD SaleDate CustomerlD PaymentMethod
Table: |Sale Sale Sale Sal
Sort:

Show:
Criteria: Between #5/1,/2006% And #5,/31/2006% “Cash’
ar:
L] »
= Quent - = x
SalelD - | SaleDate ~ | CustomerlD - PaymentMe -
/ 5/7/2006 1309 Cash
5/2/2006 314 Cash
5/10/2006 69 Cash
5/13/2006 645 Cash
* (New) o

Record: W 1of4

b oMb | &

Search

Chapter 4: Database Queries and SQL 53

to find the names; however, the table JOIN command is much easier and more
powerful.

With the Sale query in Design view, click the Show Table button on the menu.
Then add the Customer table to the query. The Customer table is added to the top
half of the query screen, and the join to the Sale table is shown with a connecting
line between the CustomerID columns. This connection exists because the rela-
tionship was created when the tables were designed. Most of the time, these auto-
matically created joins will be correct. But sometimes you will have to delete or
add connections. You can remove a join by right-clicking on the line and selecting
the delete option. You can create a new join by dragging a column name from one
table and dropping it onto the matching column in the second table.

Figure 4.9 shows the basic query design. Once the tables are joined correctly,
you can move any column down to the query grid. In this case, place the Cus-
tomer LastName and FirstName columns in the grid. Run the query to see that the
DBMS automatically looks up the names that match the ID values. If you want to
double-check the lookup, you can add the CustomerID column from the Customer
table and see that it matches the CustomerID values from the Sale table.

Figure 4.10 shows the SQL for the same query. The FROM and INNER JOIN
statements specify the tables and how they are joined. If you read the FROM state-
ment carefully, you can see that it provides the same information as the query grid
join. It lists the two tables and specifies that they are connected by the CustomerID
column. Because the column has the same name in both tables, you are required
to specify the full name of the column in the ON statement. For two tables, the
FROM and INNER JOIN syntax is relatively easy to follow. With more tables, the
join begins to look a little messier. Consequently, it is often easiest to join tables
using the visual connections in the query grid, and then switch to SQL view to
ensure that the query is correct.

Figure 4.9

B Quend —

Sale Customer

= - = -
¥ salelp z ¥ customerlD

SaleDate LastMame E|

CustomerID = FirstName

EmployeelD Phone
ShipAddress EMail
ShipCity P Address

1| Matching names |

4 [/, »
Field: | SalelD SaleDate CustomerlD Lastpame FirstName PaymentMethod =
Table: |sale Sale Sale Cyftamer Customer Sale %
Sort:

Show:
Criteria: Between #5/1/2006# And #5/31/2006# “Cash”
ar:
| »
/

£ Queryl % = o x
SalelDd - | SaleDate - |CustomerlD - |LastMarr - FirstNan - |PaymentMe -

! 5/7/2006 1309 Pratt Adrian Cash

5/2/2006 314 Rich Manuel Cash

5/10/2006 69 Forbes Horace Cash

5/13/2006 645 Alexander Marvin Cash

Record: 1of4 koM E | K Search

Chapter 4: Database Queries and SQL 54

SELECT Sale.SalelD, Sale.SaleDate, Sale.CustomerlD, Customer.LastName,
Customer.FirstName, Sale.PaymentMethod

FROM Customer INNER JOIN Sale ON Customer.CustomerID = Sale.
CustomeriD

WHERE (Sale.SaleDate Between #5/1/2006# And #5/31/2006# AND Sale.
PaymentMethod="Cash”);

Figure 4.10

To see the power of the SQL joins, consider a slightly more challenging busi-
ness question: Which customers bought Atomic skis in January or February? Note
that Atomic is the name of a ski manufacturer. Before leaping into the Access
query screen, it is best to think about the query and look at the relationship screen
for a minute. As shown in Figure 4.11, you can begin with what you want to see:
the names of the customers. These are in the Customer table. Now, what facts do
you know? In this case, you are given the name of the manufacturer, the Item-
Model.Category, and the range for the SaleDate. You should also begin writing
down the tables you need to provide these facts: Customer, Sale, ltemModel, and
Manufacturer so far. When you examine the relationships for the database, you
will see that these four tables are not enough—they do not connect together. You
will also need the Saleltem and Inventory tables.

Figure 4.12 shows the final query in Design view. Notice the large number
of tables involved. But you need to verify that each connection is correct for the
specific problem. Once the tables have been selected and joined, you can quickly
place the columns you need on the query grid, and then enter the desired condi-
tions. Running the query reveals the two people who meet the desired conditions.

Figure 4.13 shows the matching SQL for the same query. The INNER JOIN
and ON statements seem complex, but you do not need to worry about the order
of the statements, so it is more flexible than it first appears. The main thing is to
make sure you list all of the tables and include the correct connections within the
ON statements. Nonetheless, it is easier to join tables with the visual design, and
let it enter the matching SQL statements. You can always switch to the SQL view
to examine the statements or make minor changes.

Figure 4.11

Which customers bought Atomic skis in January or February? |

What do you want to see? Customer names, SaleDate

What do you know? Manufacturer name, SaleDate
range, Category is Ski

What tables are involved? Customer ... Sale ... ltemModel,
How are they joined? Manufacturer

SELECT LastName, FirstName, SaleDate —

FROM Customer, ..., Sale, ..., ltemModel, Manufacturer
INNER JOIN ...

WHERE Manufacturer.Name="Atomic”
AND Sale.SaleDate BETWEEN 1/1/2006 And 2/28/2006
AND ItemModel.Category="Ski”

Chapter 4: Database Queries and SQL 55
Customer Sale Saleltem Inventory é
7 CustomerD H ? salelD 7 salelD L 7 sku
Lasthame SaleDate 7 sku = ModellD
Firsthame CustomerID QuantitySold ItemSize
Phone EmployeelD salePrice QuantityOnHand
EMail ShipAddress
Address ShipCity
Manufacturer ternMeodel
ManufacturerD # ModellD
MName ManufacturerlD E|
Address Category
City Color L
W S >
Field: |LastMame FirstMame Category MName SaleDate =
Table: | Customer Customer ItemModel Manufacturer Sale E
Sort:
Show:
Criteria: “ski” “Atomic” Between £1/1/2006% And #2/28/2006%
or v
4 [l »
LastName - FirstName - | Category -~ Name ~ | SaleDate ~
Patterson Gene Ski Atomic 2/15/2006
Mahoney Francis ski Atomic 1/23/2006
*
Figure 4.12
SELECT Customer.LastName, Customer.FirstName, ltemModel.Category,
Manufacturer.Name, Sale.SaleDate
FROM Manufacturer INNER JOIN (ItemModel INNER JOIN (Inventory INNER
JOIN (Saleltem INNER JOIN (Sale INNER JOIN Customer ON Customer.
CustomerID = Sale.CustomerID) ON Sale.SalelD = Saleltem.SalelD) ON
Inventory.SKU = Saleltem.SKU) ON ItemModel.ModellD = Inventory.ModellD)
ON Manufacturer.ManufacturerID = ItemModel.ManufacturerID
WHERE (((IltemModel.Category)="Ski") AND ((Manufacturer.Name)="Atomic”)
AND ((Sale.SaleDate) Between #1/1/2004# And #2/29/2004#));
Figure 4.13

2

Computations and Subtotals

Activity: Compute Values with Queries

In general, it does not make sense to
store some columns in the database. In
particular, the DBMS query system has
the ability to perform common calcula-
tions. Figure 4.14 shows how the query
system can easily calculate the profit
margin for each item. In this case, the
table holds the item’s list price and the
acquistion cost. The profit is simply the

Action
Create a new query in Design view.
Add the ItemModel table.

Select columns: Category, ItemMaterial,
and ListPrice.

Create new column as Profit: [ListPrice]-
[Cost]

Run the query.

Chapter 4: Database Queries and SQL 56

£ Quend - = x

IternModel =

* Y

¥ ModellD
ManufacturerlD|

Category
Color
Cost
ModelYear =
b
< [»
,,,,,,,,, .
N
Field: | Category TtemMaterial ListPrice Profit: [ListPrice]-[Cost] <
Table: |temModel TtemMaodel ItemMaodel
Sort: | Ascending Descending
Show:
Criteria: |2
or: =j=:| Queryl = = B
Category - ltemMaterial - | ListPrice -~ Profit -
4] p— =
Board| Wood $649.00 $227.15)
Board Wood 3647.00 $226.45
. Board Wood 646.00 226.10f
SELECT Category, ltemMaterial, — — 2644 = 2225 40‘
tl;(t)Pl\;‘IuI:te, Ll\l/lstgrllce-Cost AS Profit Board Wood $642.00 $224.70
ORDEReBr$ CO te ListPrice DESC: Board Fiberglass $642.00 5224.?0‘
BUSgelTh (RIS ' Board Wood $623.00 $221.55
Board Composite $633.00 $221.55
Board Fiberglass $629.00 $220.15
Board Composite $626.00 5219.10‘
Board Composite $613.00 $214.55
Board Composite $608.00 5212.80‘
Board Wood $582.00 $203.70f
Board Composite $579.00 $202.65 |
Record: W 10f505 » M r % | Search |

Figure 4.14

difference between the list price and the cost. In the grid, you enter the name of
the new column (Profit), followed by a colon (:) and the calculation (ListPrice -
Cost). Observe that Access will place square brackets around the column names.
It does this to be cautious. Anytime a column name is a reserved word or contains
special characters (such as a space or the # sign), you must place the brackets
around the column name. Notice that the query is sorted by Category and List-
Price. You make these selections on the Sort row. The SQL is also straightforward.
To add the computed column to the display, enter the calculation in the SELECT
line, followed by AS and the name of the new column.

Calculations written in this form are always performed on data on the same
row. It does not calculate across rows. -
You can use the standard mathemati- Aftlon o
cal operators (add, subtract, divide, Create a new query in Design view.
and multiply). You can also use sev- | Add the Sale table.
eral standard functions built into Ac- | Select columns: SaleID and SaleDate.
cess. Figure 4.15 shows some of the | Create new column as LateDate:

commonly used functions. Most are [SaleDate] + 30.
straightforward, but the date func- | Create a nother new column as LateMonth:
tions require a little explanation and DateAdd(“m™,1,[SaleDate]).

Run the query.

Chapter 4: Database Queries and SQL 57

Lcase To lower case

Len Length/number of characters

Mid Get substring

Trim Remove leading and trailing spaces
Ucase To upper case

Date Current date

DateAdd Add days, months, years to a date
DateDiff Subtract two dates

Format Highly detailed formatting

Now Current date and time

Abs Absolute value

Cos Cosine, all common trig functions
Int Integer, drop decimal values

Sgn Signum

Round Round-off

Figure 4.15

practice. The Format function enables you to specify detailed formats for date and
numeric columns.

To illustrate the power of some of the date functions, create a new query us-
ing the Sale table and display the SaleID and SaleDate columns. Now, as shown
in Figure 4.16, add a new column as SaleMonth: Format(SaleDate,”yyyy-mm”).
Be sure to enter the quoted format correctly—it controls the way the date will be
displayed. In this case, it will display the four-digit year, followed by a two-digit
number for the month. You may want to format months this way to ensure that
they sort correctly. The Format function has many options, and you will have to
consult the Access Help documentation for details.

The DateAdd and DateDiff functions are even more versatile. Create a new
query, again using the Sale table. Display the SaleID and the SaleDate. Then, as
shown in Figure 4.17, add the column LateDate: SaleDate + 30. This calculation
generates the new date that is 30 days in the future. Now, add the column Late-
Month: DateAdd(“m”, 1, SaleDate). Run the query to compare the two calcula-
tions. The first one adds 30 days to the SaleDate. The second adds one month to

Figure 4.16

= Quenal - = F
‘Eﬂ Queryl - = x < :
ale =
SalelD - | SaleDate - ||SaleMonth - |& * N
002 3/17/2006 £006-03 [¥ e
1003 6/25/2006 P0O0G-06 CustomerID
1004 6/30/2006 PO06-06 E:';ﬂ:ii
1005 4/26/2006 ﬁooﬁ-m shipCity &
1006 1/31/2006 P006-01 H
A [»
1007 2/19/2006 ﬁoos-oz ---------
1008 41!12];’2005 PO0G-04 ::Ild: ga:eID za:eDate SaleMonth: Format([5aleDatel, "yyyy-mm’) é
able: ale ale
1009 3/9/2006 ﬁooﬁ-os Sort:
1010 3/7/2006 p006-03 oo:
1011 2/4/2006 ﬁooﬁ-oz or: -
1012 1/5/2006 p006-01 4) <
1013 1/5/2006 ﬁoos-ol
1014 1/15/2006 p006-01
4n1c o {19 fynn i
Record: M (107500 | » M b | 6 | Isearcn

Chapter 4: Database Queries and SQL 58

= Quend - 8 x
FY
Sale E
' FY
% salelD
saleDate | SaleDate + 30 days
CustomerID
EmployeelD | SaleDate + one month |
ShipAddress
Ship City b1
b
Ly »
,,,,,,,,, A | o /
Field: | SalelD CustamerlD LateDate: [SaleDate]+30 LatehMontR DateAdd("'m" 1, [SaleDate]) =
Table: |5ale Sale %
Sort: £ Quenl Sl
Show: saleld - |customeriD - | LateDate -~ | LateMonth - =«
Criteria: 1900 4/16/2006 4/17/2006
on 1003 1282 7/25/2006 7/25/2006
4 [1004 871 7/30/2006 7/30/2006
1005 41 5/26/2006 5/26/2006
1006 491 3/2/2006 2/28/2006
1007 1583 3/21/2006 3/19/2006
1008 1061 5/12/2006 5/12/2006
1009 345 4/8/2006 4/9/2006
1010 120 4/6/2006 4/7/2006
1011 1574 3/6/2006 3/4/2006
1012 33 2/412006 2/5/2006
1013 326 2/4/2006 2/5/2006
1014 856 2/14/2006 2/15/2006
1015 419 9/11/2006 9/12/2006 ~
Record: M+ 107500 | b M b | @ ['searcn
Figure 4.17

the SaleDate. Of course, you could specify any number of days or months and the
system would correctly compute the date across month or year boundaries. For
many business questions, you will only need the standard SQL date arithmetic.
But occasionally, you will find it useful to apply the power of DateAdd or DateD-
iff. DateDiff is similar to DateAdd, but it subtracts two dates. In both the addition
and subtraction, you can specify how you want the date arithmetic performed—by
dates (“d”), months (“m”), years (“yyyy”), or other options. Check the Access
documentation to see how to count the number of workdays or even the number of
Fridays between two dates. Note: You might have to open the Visual Basic Editor
before the Help system can find the documentation for some of these specialized
functions. To open the VB Editor, open a form in Design view and then select
View/Code.

Activity: Calculate Totals and Subtotals

Business managers often need to
compute totals across rows of data.
SQL provides several aggregation
functions to perform these tasks. The | Add the Sale table.

most commonly used functions are | Select columns: ShipState and SalesTax.
Sum, Average, and Count. Of the | View/Totals (or Totals button).

three, the Count function can be the | Select “Where” for Total row in State.
most confusing to use. Just remem- | Enter “CA” as a criteria.

ber that it simply counts the number | Select “Sum” for SalesTax Total row.
of rows, while Sum adds up the num- | Ryp the query.

Action
Create a new query in Design view.

Chapter 4: Database Queries and SQL 59

S (=)= 5
| (= H9-w®-)+ All Powder Board and Ski Shop Query Tools =L
toa
C

Home Create External Data Database Tools Acrobat Design @

2 @D Union Sp= rsInsetRows | Insert Columns
B Elst ¢ AR F
. '@‘ E‘ . =8 x' @ Pass-Through =% Delete Rows W' Delete Columns

View Run | |Select | Make Append Update Crosstab Delete
- Table

Show =
. Data Definition || Tapre - Builder 3 Return: | Al
Results Query Type Query Setup

All Access Objects v«
Tables & & Quenyt
A BindingStyle 5 oven
= customer 3
T customershn Bl 1L Totals button adds

ShipAdress

£ vepariment sty the Total row

1 employee shipZP
A tventory SalesTax
£ itemModel

EH Manutacturer
1 PaymentMethod

E ProductCategory
E Rental I
1 Rentitem

= sale

T saleitem

A skiBoardstyle

= skillLevel

Queries x>

Ready ere 0 | sou o] s

Figure 4.18

bers within a row. The challenge is to identify when you need to use Count instead
of Sum.

The Sum function is straightforward. For example, how much sales tax does
the company owe to the State of California? Begin by creating a new query based
on the Sale table, because it has the ShipState and SalesTax columns. As a crite-
rion for ShipState, enter the CA abbreviation for California. Run the query, and
you should see two columns: each row will have CA in the state and a value for
the SalesTax. To compute the total, return to Design view. You now need to indi-
cate that you want to compute totals by clicking the Totals button on the menu bar.
As shown in Figure 4.18, this button adds the Total row to the grid. Select the Sum
option under the SalesTax column and the Where option for the ShipState column.
The Sum option makes sense since you want the total of the sales tax. When you
run the query, you will see a single value—the total amount of sales tax collected
for the state of California.

Figure 4.19 shows the SQL syntax for the query. Note that setting the Where
option for the SaleState was not strictly necessary, but it makes the SQL clearer.
Note the use of the column alias SumOfSalesTax to provide a name for the output
column. You can set this name to almost anything, but it should indicate the busi-
ness interpretation of the column. Of course, you can use multiple tables with the
FROM and INNER JOIN syntax.

To understand some of the power of SQL, what if you want to see the total tax
owed to each state? Of course, it would be possible to edit the CA condition and

Figure 4.19

SELECT Sum(Sale.SalesTax) AS SumOfSalesTax
FROM Sale
WHERE Sale.ShipState="CA”

Chapter 4: Database Queries and SQL 60

= Quent £ T
ShipState - SumOfsales - El
$55_15 EmployeeID -
ShipAddress
AK 50.00 shipcity
AL $784.77 :::z;t:te E| Group By produces
AR $313.25 calesTax subtotals for all values in
AZ 5510.93 PaymentMethoc ™ || the specified column L
CA $5,332.11 4 [7 ¥
co $34?'4E Field: yp&ﬁ(/ISaIesTax =
CT $254.38 /Tauk-/ Sale Sale E
nc $285.95 T:;anlz: Group By Sum
DE 50.0/ Show: [
L - 34 Criter‘ijar; 1
GA $470.61 <] ’
HI $175.49
1A $164.01 |
|Record: 4 4 260f48 » :; | [y Search
Figure 4.20
replace it with each state, but there is)
an easier way. Close this query and A.Ct"m .
begin a new query the same way. Add Create a new query in Design view.

the Sales table and use the ShipState | Add the Sale table.

and SalesTax columns, but do not
specify any limiting conditions. Click
the Totals button to see the totals row.
Select the Sum option under the Sal-

Select columns: ShipState and SalesTax.
View/Totals (or Totals button).

Select “Sum” for SalesTax Total row.
Run the query.

esTax column, but do not change the
setting for the ShipState. The default option for the Totals row is Group By. This
choice instructs the DBMS to identify each unique entry in that column and com-
pute the selected subtotal for each element. Figure 4.20 shows the query and the
result. The result lists each state, followed by the total sales tax collected for that
state.

Figure 4.21 shows the corresponding SQL statement. The main addition is the
actual GROUP BY clause. Note that any column listed in the GROUP BY clause
must be included in the SELECT clause. It would not make sense to compute
subtotals and then not display the values you are grouping. Of course, you could
compute the average or count the number of items in a group just as easily. In fact,
you can compute multiple functions at the same time, just by including multiple
copies of the desired column and selecting a different aggregation function.

For practice, you should compute the total value of sales to customers in Colo-
rado (the state code is CO). Create a new query and add the Sale and Saleltem

Figure 4.21

SELECT Sale.ShipState, Sum(Sale.SalesTax) AS SumOfSalesTax
FROM Sale
GROUP BY Sale.ShipState;

Chapter 4: Database Queries and SQL 61

‘ﬁ:‘ Queryl = = -
Sale 1 Saleltem =
SaleDate - *
CustomerlD _M ? salelD
EmployeelD 7 sKU SaleTotal
ShipAddress Quantitysold $4,96400
ShipCity salePrice
ShipState
ShipZlP 7
Ly »
Field: |Shipstate SaleTotal: [QuantitySold]*[SalePrice] =
Table: | sale E
Total: |Where sSum
Sort:
Show: 1 [
Criteria: | "CO"
an -
4 [3
SELECT Sum([QuantitySold]*[SalePrice]) AS SaleTotal
FROM Sale INNERJOIN Saleltem ON Sale.SalelD = Saleltem.SalelD
WHERE Sale.ShipState="CO”;

Figure 4.22

tables. Use the ShipState column from the Sale table. To compute the total value
of the actual sale is slightly trickier. You need to multiply the QuantitySold by the
SalePrice from the Saleltem table, then compute its sum. To be safe, first do the
multiplication and check your progress. In a new field, enter the name SaleTotal,
followed by a colon, and the formula: QuantitySold * SalePrice. Enter CO as the
criteria to select the state, then run the query and check the results to see if they
make sense. You might want to list the QuantitySold and SalePrice separately, and
then use a calculator or spreadsheet to verify some of the calculations. Returning
to Design view, you need to compute the total. Click the Totals button and select
Sum for the SaleTotal column, and Where for the ShipState column. Technically,
the query will work if you leave the ShipState as Group By, but the SQL is clearer
and potentially faster if you use Where. Figure 4.22 shows the query.

Exercises

Crystal Tigers

Enter sample data for the Crystal Tigers service club database. You can make up
data, but remember that it has to be consistent. You might want to share data with
other students so that everyone has a larger database to work with. Then create
queries to provide the following business information.

1. Listall of the members who have been president of the organization.

List the charities for which the club has raised more than $1,000.
Pick an event and list all of the members who worked at that event.

Count the number of events and the amount of money raised for each charity.

woks »w N

List the total number of service hours provided in the latest year.

Chapter 4: Database Queries and SQL 62

6. List the number of service hours provided by each member.

7. List the members who have held the most number of officer positions.

Capitol Artists

= Enter sample data for the Capitol Artists business. You can create random data,

but remember that it has to be consistent. You might want to share data with other

students so that everyone has a larger database to work with. Then create queries

to provide the following business information.

1. Pick a date and an employee and list all of the tasks by that person on that
date.

List all of the tasks performed for a specific job (e.g., Job #1173).

List all of the client jobs that had active tasks on a specific date.

Count the number of meetings held regarding one client (pick any client).
List the employees who have attended the most number of meetings.

Pick a job and compute the amount of money billed (hours * rate).

NS kW

List the clients in order of the ones that have provided the greatest revenue
(billing + expenses).

Offshore Speed

Enter sample data for the Offshore Speed company. You can create random data,
but remember that it has to be consistent. You might want to share data with other
students so that everyone has a larger database to work with. Then create queries
to provide the following business information. If you have not created data that
matches these questions, either add more data, or change the query to match your
data. For instance, if you do not have any sales of propellers, pick a category of
item that you have sold several times.

1. Pick a month and list all of the customers who purchased propellers

(Category).

List all of the parts sold on a particular day.

What is the most expensive steering wheel we have sold?

List the manufacturers sorted by the number of parts we sell from each one.
List the employees to identify the best salespeople in terms of value.

List the brands of boat for which we sell the most oil pumps (Description).

NS kWD

For a given order, compute the total value of the order and the sales tax,
assuming a 6 percent tax rate.

Chapter 4: Database Queries and SQL 63

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.

1. Create a few rows of sample data for all of the tables.

2. Identify at least five business questions that a manager would commonly
ask and provide the queries to answer those questions. At least two of the
questions should involve subtotals or averages.

3. Exchange three business questions with other students in your class and write
the queries for the questions you receive.

Chapter

Advanced Queries

Chapter Outline

Advanced Database Queries, 65
Case: All Powder Board and Ski Shop, 66
Lab Exercise, 66
All Powder Board and Ski Data, 66
SQL Data Definition and Data Manipulation, 77
Exercises, 81
Final Project, 83

Objectives

» Create more complex SELECT queries using subqueries.
* Understand the role of INNER and LEFT joins.

« Create theta joins using inequalities to match categories.
» Use a UNION statement to merge rows of data.

* Use DDL to CREATE and DROP tables.

* Use DML to INSERT, UPDATE, and DELETE data.

64

Chapter 5: Advanced Queries 65

Advanced Database Queries

SQL is a powerful language. For many queries, you will not need the full power of
SQL, but some seemingly innocent business questions can be tricky to answer. In
these cases, you need some additional capabilities. Some of these capabilities can
be challenging to understand, but if you follow the examples carefully, you should
be able to use the ideas to create similar queries in the future.

Subqueries are one of the more interesting features of SQL. A subquery is a
query that calls a second query to obtain additional data. Instead of looking up
a second set of numbers yourself, you can add a second query to do the work
automatically.

Joins offer other powerful options. Joins are commonly used as a lookup link
between tables, making it easy for you to build a query that uses data from mul-
tiple tables. However, joins have several options to help you answer even more
complex questions. It is especially important that you understand the difference
between inner and outer joins.

One of the strengths of SQL is that it operates on sets of data. Instead of think-
ing in terms of individual rows, you can concentrate on collections of rows that
meet specified conditions. SQL offers some interesting set-operation commands
that provide detailed control over rows of data. For example, the UNION state-
ment combines rows of data from multiple SELECT statements.

Chapters 2 and 3 hinted at the ability of SQL to define tables. In fact, you can
use a DBMS without the fancy visual screens. Generally, everything you need to
do can be handled with SQL commands. For example, the data definition com-
mand CREATE TABLE is a powerful method to create new tables. Storing these
SQL statements in a text file makes it easy to quickly rebuild or transfer a data-
base. Similarly, the data manipulation commands (INSERT, DELETE, and UP-
DATE) are powerful tools for copying and deleting rows, and quickly changing
thousands or millions of pieces of data.

Figure 5.1
_» Saleltem 11 Itemtdodsl
[|#3aklD 1.5 =~ ModellD
H3KU 1. 1 Inventory M arufacturer D
cal QuantitySold B8R el 0 Category
= 1.1 SalePrice ModelD Color
SalelD — Cize Cost
galetDatelD 0.x Q0H Modelr'ear
ustamer] Graphics
EmployeelD ItempMateriaI 1.1 I\;a':ufac:turer
Sh!pﬁﬁdless R ListPrice anufacturerl D
ShipCity 4« Rentltem Shyle ManLit ame
ShipState = |# RentlD ShilLavel manu;.é;ldress
ShipZlP #5KU \weightid ax Manufslty
SalesTax RentFee \WeightMin anufState
Payrnenthdethod ReturnD ate N W/ gisPdicth I anukZ| P
RetunCondition EffectiveE dge tManufPhane
RepairCharges BindingStyle b anufE M ail
RentalFate Category
1.1 Cuistorner 1
—— # CustomerlD Rental
CustLastMame % RentlD
CustFirsth ame 0.x| RentDate
CuztPhone ~—| CustomerD
CustEMail ExpectedRieturn
Custéddress Paymentiethod
CustCity
CustState
CustZIP
CustGender
CustD ate0fBirth

Chapter 5: Advanced Queries 66

Case: All Powder Board and Ski Shop

As the queries become more complex, it is better to work from a common set of
data. Figure 5.1 shows the primary tables for the All Powder Board and Ski Shop.
Your tables and sample data should be very close to these tables. Note that several
supporting tables are not displayed in this diagram, but you will also need those in
your database. As explained in Chapter 4, you can import the sample data to these
tables. If you add more data, your query results may be slightly different from the
ones shown in this chapter. Although the query is more important than the actual
results, the results are useful to help you decide if you have constructed the query
properly.

One of the greatest challenges with any database query is that most queries
return values, but they might not be answers to the question you thought you were
asking. You must learn to build the queries and test each intermediate step care-
fully so that you can be sure the final result is an accurate answer to the question
being asked.

Lab Exercise

All Powder Board and Ski Data

Subqueries are used to create a second (or more) query to look up additional data
that can be used in the primary query. The value is often used within a WHERE
clause to make comparisons in more depth. For example, Katy the manager wants
to identify the best customers of the shop. In particular, she would like to know
which customers have placed the most sales. You could just give her the complete
list of customers and the sales made by each person. Eventually, however, this
list would be too long. Instead, she wants a list that displays the customers whose
total purchases are larger than the average purchase per customer. Although the
business question is reasonable, this question is slightly tricky because you have
to build the query in pieces.

Figure 5.2
 Quent s x
-
Customer Sale Saleltem B
. = . K .
? CustomeriD . 7 saleln L= P saep
LastName SaleDate sku
Firsthame = CustomerID QuantitySold
Phaone EmployeelD SalePrice e
EMail ShipAddress O Quend S —
Address b ShipCity i Customerll ~ LastNam -~ FirstMan » SalesValue = =«
=
7 Rice Charlotte $94.00
L — 18 Embry Jahala $252.00
Field: | CustomerlD LastName FirstName | SalesValue: [QuantitySold]*[SalePrice] 19 Bell Leslie $1,110.00
Table: | Customer Customer Customer 21 Jantzen William $477.00
Total: | Group By Group By Group By Sum 22 Reynolds Connie $692.00
Sort:
Show: 32 Hansen Adam $845.00
Criteria: 33 Richmond Hershel $323.00
or
< 40 Gentry Arturo $1,690.00
41 Lehman Llewellyn $1,174.00
42 Sharp Leland $871.00
43 Hughes Jody $996.00
45 Foster Alicia 5766.00
47 England Marshall $149.00
51 Yamaguchi Elwood $475.00
54 Lawrence Clinton $999.00 -
Record: W 1 10f438 » M & ['searen |

Chapter 5: Advanced Queries 67

Activity: Create a Subquery

The first step in the query is to recognize
that you need to compute total sales by
customer. The phrase “by customer” is
an indication that you need to compute
subtotals using the GROUP BY clause.
Figure 5.2 shows the initial query that
computes these subtotals. Of course, it
lists the sales for every customer, and
Katy wants only the ones with greater-
than-average sales. But this query is an
important step and needs to be saved as
“CustomerSales”.

The next step is to use this first que-
ry to compute the average amount of
sales for customers. This computation
is straightforward. Simply build a new
query using CustomerSales as the only table, and calculate the average of the sales
column. Figure 5.3 shows the basic query and the result based on the current data.
Notice that the SQL is straightforward. In this case, the SQL is critical for the next
step. It is not necessary to save this query, but you might want to leave the SQL
window open for the final step.

The last step is to create a new query that answers the overall question to de-
termine which customers spend more than average. The new query will also be
based on the CustomerSales query created in the first step, so just add that query.
This time, select the LastName, FirstName, and SalesValue columns. If you ran
the query at this point, you would get the same results as in the first query. Instead,
you want to add a criterion to only display the customers with a SalesValue greater
than the average. The simple approach is to enter the value 942.11 as a condition
in the query. Although this approach works this time, it does not work very well
over time. It would require the owner to run the average query first, then copy the
value into the Design view of the main query. It makes more sense to automate
the entire process. So instead of entering the actual number as the condition, you
need to enter the subquery calculation. You can write the complete SQL state-

Action
Create a new query in Design view.
Tables: Customer, Sale, Saleltem

Columns: CustomerID, LastName,
FirstName, SalesValue: [QuantitySold]
* [SalePrice].

Sum the SalesValue, Group By the rest.
Save query as CustomerSales.

Create new query in Design view.
Table: CustomerSales query.

Columns: SalesValue.

Set Totals and select Avg.

Run the query.

Figure 5.3

= Quend ° 7 7 SELECT Avg(CustomerSales.SalesValue)

= AS AvgOfSalesValue
FROM CustomerSales;

CustomerSales

CustomerlD
LastMame
FirstMame
SalesValue

$942.11

4 [u]

Field:
Table:
Total:
Sork:
Show:
Criteria:
or

SalesValue
CustomerSales
Avg

4)

Chapter 5: Advanced Queries 68

ﬁ Queryl = x =j:| Queryl - = x
= LastNam - FirstNan - Salesvalue - &
CustomerSales = Lyons Chester $3,569.00
Hines Arlene $2,315.00
CustomerlD -
LastName Dixon carol $2,789.00
Firstame Gillespie Audrey $2,703.00
SalesValue O'Connor | Carlos $2,674.00
Ford Manuel $2,661.00
- MNash Joseph $2,600.00
w0000 4 Rush Bonita $2,485.00
eretct: [oatn —n e = Warden Jewell $2,406.00
leld: astName irstName alesValue
Table: | CustomerSsles | CustomerSales | CustomerSales E Wi __[[Sn ST
Sort: Descending Harvey Simon $2,314.00
A Peck Burt $2,260.00
C”tﬂ:r; >(Select Avg(SalesValue) FROM CustomerSales) 1 Crowe Chelsea S2,754.DD |
<] 4 [Record: 4 <[tz [» m o [
SELECT LastName, FirstName, SalesValue
FROM CustomerSales
WHERE SalesValue > (SELECT Avg(SalesValue) FROM
CusmterSales)
ORDER BY SalesValue DESC;
Figure 5.4

[8)

ment, but it must be contained within
parentheses. Figure 5.4 shows the final
query that you can give to Katy. Notice
that it is sorted in descending order by
SalesValue so that the customers with
the largest total purchases are listed at
the top. Also, always remember to put
the subquery inside parentheses; other-
wise the query will not run at all. If you
want to save some typing and reduce

Action
Table: CustomerSales query.

SalesValue.

>(SELECT Avg(SalesValue)
CustomerSales).

Create a new query in Design view.

Columns: LastName, FirstName,

Criteria for SalesValue (enter in SQL)

FROM

errors, you should create the subquery first in a separate query to test it. When it is
correct, you can copy the SQL statement and paste it into the WHERE clause for
the final query. Again, remember to add the parentheses around the subquery.

Activity: Build Quter Joins

Joining tables is one of the more com-
plex issues in SQL. Up to this point, the
joins have been simple equality joins
designed to show how a column in one
table links to data stored in a related ta-
ble. It is important that you understand
the effect of this join. Jim the sales
manager and David the rental manager
want to know if customers who rent
equipment also purchase items for sale.
As with many questions, there are sev-
eral different ways to build this query.

Action

Create a new query in Design view.

Tables: Rental and Sale.

Columns: RentDate, SaleDate, and
CustomerID from both tables.

Join the tables on CustomerID.

Run the query.

Run the query.

Join the tables on RentDate=SaleDate.

Figure 5.5 shows the effect of an inner join. Build a new query and add the Rental
and Sale tables. Join these tables through CustomerID by dragging and dropping
the CustomerID from one table onto the column in the other table. When you dis-
play both CustomerID values in the query and run it, you can see that they are the

SELECT Rental.RentDate, Rental.Customer|D, Sale.CustomrelD, Sale.SaleDate
FROM Rental INNER JOIN Sale ON Rental.CustomerlD=Sale.CustomerID

Chapter 5: Advanced Queries 69
=j:| Queryl -] x =5 Queryl - = x>

N RentDate =« | Rental.Custc ~ |Sale.Custom » | SaleDate -~ -

Rental Sale = 11/3/2006 2 1900 1900 3/17/2006 Tl
. . N 11/7/2006 1900 1500 3/17/2006
¥ RentlD % saleld 11/16/2006 1282 1282 6/25/2006
RentDate SaleDate H 1/13/2006 41 41 4/26/2006
CustomeriD CustomeriD 11/24/2006 1061 1061 4/12/2006
ExpectedReturn EmployeelD 11/12/2006 1061 1061 4/12/2006
PaymentMethod ShipAddress 12/15/2006 345 345 3/9/2006
ShipCity - 11/11/2006 345 345 3/9/2006
1/8/2006 345 345 3/9/2006
-1 1/10/2006 120 120 3/7/2006
4 [w] » 12/4/2006 1574 1574 2/4{2006
“““““ 11/13/2006 1574 1574 2/4/2006
Field: | RentDate CustomerlD CustomerlD SaleDate = 11/23/2006 326 326 1/5/2006
Table: |Rental Rental Sale Sale % 3/28/2006 1608 1608 12/6/2006

sort: 12/12/2006 417 417 9/10/2006 ~

Show: [Record: 4« 1of504 b M Search
Criteria:
o
b
Ly} 3

Figure 5.5

same. The effect of this join is that the results show the customers (ID only) who

participated in a sale and a rental—at any time.

If you want to know which customers made a purchase and rental on the same

day, you could add a condition that RentDate equals SaleDate. Or you could add
a second join that connects RentDate and SaleDate. Figure 5.6 shows the query
with the second join condition. Notice the use of the AND in the join statement,
This query demonstrates the effect of the inner join. In many respects, it is equiv-
alent to a WHERE clause. The inner join restricts the rows that you will see by
forcing values to be equal.

On the other hand, perhaps Jim would like to see a list of all of the custom-
ers who participated in sales, and then check to see which of those have rented
items. You need to build a new query. This time include the Customer table so
their names can be displayed. Then add the Sale and Rental tables. Delete the
join from Customer to Rental. That join would force all of the CustomerIDs to be
equal which is not what Jim wants. Then connect Rental to Sale by CustomerID,

Figure 5.6
£ Queryl = = ¥ £ Quenyl - o x
RentDate - Rental.Custc - |Sale.Custom » | SaleDate -
Rental Sal
= = — 11/10/2006| 1629 1629 11/10/2006
7 RentiD @ saleld 1/7/2006 1291 1291 1/7/2006
RentDate SaleDate 11/9/2006 930 930 11/9/2006
CustomerID CustomerID
ExpectedReturn EmployeelD
Faymenthethod shipAddress |Re(ord: L] 1of3 P H | ._’\ | Search |
ShipCity 11
-
A) »
= SELECT RentDate, Rental.CustomerlD,
Field: | RentDate CustomerlD CustomerlD SaleDate
Table: |Rental Rental Sale Sale EI Sale.CustomerID, SaleDate
sort: FROM Rental
e INNER JOIN Sale
or: - ON Rental.RentDate = Sale.SaleDate
<) AND Rental.CustomerlD=Sale.Customer|D

Chapter 5: Advanced Queries 70

but this time, double-click the resulting
line to modify the join properties. Fig-
ure 5.7 shows the basic query. Select
the option to display all of the values
from the Sale table and only the match-
ing values from the Rental table. As
shown in the SQL, this option sets up a 27
LEFT JOIN, which displays all values | /dd join from Sale to Rental.

in the Sale table (the left table in the | Double-click this new join.

SQL query list), even if the customer | Select option to include all from Sale.
never rented items. If you have prob- | Run the query.

lems running the query, you might have
to remove the Customer table from the
query. Sometimes Access cannot figure out how to establish left joins when more
than two tables are in the query. In these cases, you build the left join with only
two tables, save the query, then create a second query based on the saved query
and any other tables needed.

Figure 5.8 shows some of the results from running the query. Notice that sev-
eral of the rows show missing values for the Rental.CustomerID. These are the
customers who purchased items, but have never rented an item. If you want to see
only this list, you can add the condition that Rental.CustomerID Is Null. Observe
that the full list from the main query might not include all of the customers. To
review your knowledge of joins, you should be able to identify the customers that
might not be in this list. Looking at the design, notice that there is still an inner
join between the Customer and Sale tables. Consequently, customers who have
not participated in sales at all will not be displayed in this list. If you truly wanted
a list of all customers, you would have to use a left join from the Customer to the
Sale table. However, you will probably have to do one of the joins at a time, save
the query, and then do the second join.

Action
Create a new query in Design view.
Tables: Customer, Sale, Rental.

Columns: LastName, FirstName, and
CustomerID from Sale and Rental.

Delete join from Rental to Customer.

Figure 5.7
X Join Properties M
SELECT LastName, FirstName, Sale.
CustomerlD, Rental.CustomerID Left Table Name Right Table Name
FROM (Customer Sale [v] Rents [~]
INNER JOIN Sale Left Column Name Right Column Name
ON Customer.CustomerlD=Sale.CustomerID) CustomerID [z] |customertD [~]
LEFT JOIN Rental (71 1: Only indude rows where the joined fields from both tables are equal.
hy @ 2: Indude ALL records from ‘Sale’ and only those records from ‘Rental' where
ON Sale.CustomerlDMCustomerlD o ot fetie e ool
= Quenyl ("X Indude ALL records from ‘Rental’ and only those records from ‘Sale’ where
= the joined fields are equal.
Customer Sale [OK J [Cancel] [Mew
¥ CustomenD ¥ saleld N
LastName SaleDate RentDate
FirstName CustomerlD %
Phone EmployeelD Expedte : s
Shipacares Paymenthithod Join Properties:
Address ShipCity b4 LEFT JOIN
L] »
Field: | Lastlame FirstName CustomerlD CustomerlD *
Table: | Customer Customer sale Rental =
Sort
Show:

Criteria:

A [4

Chapter 5: Advanced Queries

7

‘E Queryl - = X
LastName - FirstName - | Sale.CustomerlD - Rental.CustomerlD - =
Baldwin Fernando 1500 1500
Baldwin Fernando 1500 1900
Lawson Jessica 1282 1282
Warden Bart 871
Lehman Llewellyn 11 4
Denton Chai 491
MNash Joseph 1583
McKinney Joyce 1061 106i\ Customers who
Mckinney loyce 1061 1061 purchased items without
Dennizon g lena 215 15 renting anything have
Dennison Lena 345 345 P
ennison Ttena e aas missing (Null) values for
McDougal Andrew 120 120 the Rental.CustomerID
Dennison Melinda 1574 157
Dennison Melinda 1574 4
Richmond Hershel 33
McKinney Chan 326 3
Hooks Gilbert 856
Payne Horace 419
Cook Belinda 1608 1608 ¥

|Record: 1] 1of692 » M % Search

Figure 5.8

Recall the question of listing the
customers who have purchased items
but have not rented anything. With the
left join, it is straightforward to get this
list by adding the Is Null condition. But
you must be very careful when creat-
ing this query. If you forget to specify
the left join and stick with the standard

Action
Create a new query in Design view.
Tables: Customer and Sale.

Columns: LastName, FirstName, and
CustomerID.

Criteria for CustomerID (use SQL):
Not In (SELECT CustomerID FROM
Rental).

. .o, 1o e Check the SQL.
inner join, the query will indicate that
. Run the query.
no customers match that condition. The
Figure 5.9
@ Queryl - = x =E Queryl - = x
= LastNam - | FirstNan - |Customerll - <
Customer Sale = Abrams Marc 603
. . = Allen Laura 1085
® CustomerlD 7 salelD
LastMame SaleDate Baez Agnes 302
Firsthame CustomerID Baldwin Orville 403
Phone EmployeelD Bell Leslie 19
EMail Ship&ddress
Address ShipCity b Brovy jlonyj g2
Brown Tony 832
v
« [¥ Buchanon Orson 66
""""" Cardwell Christina 1377
Field: |LastName FirstMame CustomerID = Cardwell Christina 1377
Table: Custum.er Custom.er Customer @ Carrow Keith 1403
Sort: | Ascending Ascending
Show: Carter Ruth 757
Criteria: Mot In (SELECT CustomerID FROM Rental) Cash Wilma 622
ar -
Cher Warren 657
L] » Y -
[Record: 4 < T1of18s | » M b [&

SELECT LastName, FirstName, Customer.Customer|D
FROM Customer INNER JOIN Sale ON Customer.CustomerlD=Sale.Customer|D
WHERE Customer.Customer|D Not In (SELECT CustomerID FROM Rental)

Chapter 5: Advanced Queries 72

reason for this result is that an inner join automatically leaves out the customers
you are searching for. This question can also be answered with a subquery. Figure
5.9 shows the subquery approach. Start a new query and add the Customer and
Sale tables. Sort the columns by LastName and FirstName. Then add the condi-
tion CustomerID Not In (SELECT Customer]ID FROM Rental). As always, re-
member to put the subquery in parentheses. This query will retrieve all Customers
who have participated in sales but have not rented any items. You should compare
the results from this version to the left join version to ensure that both queries re-
turn the same results. Most systems support either method to answer the question,
but there can sometimes be performance differences between the two approaches.
Access seems to be faster using left join, but you would have to time large sets of
data to measure the difference.

Activity: Create Complex Joins

Jim the sales manager is concerned
about excess inventory. He wants to be) o
able to monitor the status of quantity on | Create anew query in Design view.
hand (QOH) for all inventory items. He | Table: Inventory.
is particularly concerned about identi- | Columns: ModelID and
fying which models are selling quickly QuantityOnHand.
versus models that have large numbers | Sum the QuantityOnHand and sort it in
of items sitting around. Remember that descending order.
models are product lines from the man- | Run the query.
ufacturers, while individual items are | Save itas ModelsOnHand.
specific sizes within a model group. He | Create a new table in Design view.
wants the totals for the model. To see | Columns: CategorylD, CategoryName,
if there is a problem, construct a new LowLimit, HighLimit.
query that totals the quantity on hand | Save it as SalesCategory.
and sorts it in descending order by | Enter data.

ModelID. Figure 5.10 shows the total
QOH for the various models. Save the query as “ModelsOnHand.”

Action

Figure 5.10
£ Quenyl - o x 3 Quend - o x
_— j | ModellD - SumOfQuantityOnHand - &
ventory B =
Inventory = YCG-584 70
. YXY-385 70
7 sku
ModellD Qpv-720 70
Itemsize MHQ-568 60
QuantityOnHand LDK-181 60
YKU-321 60
L NTE-526 30
| » QDG-75 50
......... NCS-293 a0
Field: |MaodellD QuantityOnHand = GUC-993 35
Table: |Inventory Inventory @ GZE-862 35
Total: | Group By Sum
Sort: Descending FCU-154 35
Show: OES-739 35
Criteria: IRZ-701 5 -
o L4 R di M 1o0f505 » M # Se:
« [l . ecord: o i e

Chapter 5: Advanced Queries 73

£ SalesCategory
CategorylD - | CategoryMame - | Lowlimit - | HighLimit -

1 Hot 0 i)
2 Good 6 10
3 0K 10 20
4 Weak 20 40
5 Slow 40 1000

Figure 5.11

But Jim does not want to wade through the entire query every day. Instead,
he is proposing a categorical system, where items with more than a certain QOH
will be called slow sellers, and items -
with minimal QOH will be hot sell- cgion
ers. He also wants a few categories in- | Create a new query in Design view.
between. While you have the tools to | Tables: ModelsOnHand and
build this query, there is one catch: he SalesCategory.

wants the ability to fine-tune the num- Cglumcr;?: Modpllg,H ic .
bers on the ranges for each category. Ol Gl v, (CiigReitylID),

. . and CategoryName.
The solution is to create a new table cEory) o
that defines the category and the up- In SQL view add the inequality join.
. Run th .
per and lower limits for each category: un the query.
Figure 5.12
The join cannot be displayed in F Quet -0
J . play ModellD - |SumOfQuan - | CategorylD - |CategoryNam - =
design view and must be entered AGN-950 a 1 Hot T
by hand in SQL view AIC-434 6 2 Good
AIK-785 28 4 Weak
AML-198 10 3 OK
APV-445 10 3 OK
e ; AUB-497 8 2 Good
jj Quer}l AVV-468 7 2 Good
BAQ-474 6 2 Good
MchTIEOnHantI Sale:*Categcr; BEL-501 5 1/ Hot
ModellD % CategorylD BBT-561 2 ZiGood
SumOfQuantityOnHand CategoryMame BEK-173 10 3 OK
LowLimit BHP-532 6 2 Good
HighLimit BHS-914 6 2 Good a
Record: W 10f505 *F M 8 Search

4] ’
Field: | ModellD SumOfQuangityOnHa| CategoryID CategoryMame) |
Table: | ModelsOnHand ModelsOnHand SalesCategory SalesCategory %

Sort:
Show:
Criteria:
on i1
LA »

/

SELECT ModelsOnHand.ModellD, ModelsOnHand.SumOfQuantityOnHand,
SalesCategory.CategorylD, SalesCategory.CategoryName

FROM ModelsOnHakd INNER JOIN SalesCategory

ON (ModelsOnHand.SumOfQuantityOnHand>=SalesCategory.LowLimit)
AND (ModelsOnHand.SumOfQuantityOnHand<SalesCategory.HighLimit);

Chapter 5: Advanced Queries 74

B Quen - o x
FY
MedelSales =
*
MaodelID
SumOfQuantityOnHand
CategonryID
CategoryMame
b
| »
Field: | CategorylD CategoryMame ModellD =
Table: | MaodelSales ModelSales ModelSales I%
Total: |Group By Group By Count
Sort: | Ascending
Show:]
Criterig = Quend ——
° CategorylD - | CategoryName - | CountOfModellD - »
1 Hot 179
2 Good 253
3 0K 29
4 Weak 35
5 Slow 9
Record: M <[lof5 | b M+ | search

Figure 5.13

SalesCategory(CategorylD, CategoryName, LowLimit, HighLimit). If the QOH
for a model is greater than or equal to the LowLimit and less than the HighLimit,
it falls into the specified category. The CategoryID ensures a unique key and could
be used to sort the rows if necessary. Figure 5.11 shows the initial categories.

Using the categories in a query requires slightly tricky join conditions. You need
to use inequality (theta) joins. Begin with a new query based on the ModelsOn-
Hand query and the SalesCategory table. Display the ModellD and SumOfQuan-
tityOnHand along with the CategoryName. But do not attempt to join the tables in
Design view. Instead, switch to SQL view and modify the FROM clause to match
the Figure 5.12 inequality join statement. Access can handle inequality joins but
cannot display or edit them in Design view. Figure 5.12 also shows the sample
result from the query. Save the query as ModelSales so Jim can perform some ad-
ditional analysis on the data.

Jim might create a new simpler query that counts the number of models that
fall within each of the categories. Fig-
ure 5.13 shows the basic query. It is
built simply using the results of the
previous query. This query hides the
complicated details as Jim needs to see
only the simple data results. The final
aggregation query uses the CategorylD
to sort the results logically; otherwise,

Action
Create a new query in Design view.
Tables: Customer and Sale.

Columns: CustomerID, LastName,
FirstName, and SaleDate.

Set January sale date in criteria row.

they would be sorted alphabetically by i SQL'
the category name. Fortunately, most of Cleppy {69 Gl 7 GiFiSme,
Add the word Union.

the models appear to be in the catego-
ries indicating that they sell relatively | Paste the SELECT statement and change

quickly. Although, the category defini- 613 (G Comaliitom o MIEKGH,
Run the query.

Chapter 5: Advanced Queries 75

= Queny1 - = ox

List customers who
. - bought items in

¥ CustomerlD ¥ salelD .
Ltame smedste E January or in March.

Phane EmployeelD
EMail ShipAddress

A e T It could be done with
) 5 simple conditions, but
it is good practice for
UNION.

[im] »

Custormer Sale =

Lo
8

Field: [CustomerD LastMame FirsthName |SaleDate
Table: | Customer Customer | Customer Sale

Sort:
Show:

Criteria: Between #1/1/2006% And £1/31/2006%

ar:
4) >

[ii] »

SELECT Customer.CustomerID, LastName, FirstName, “Jan” As SaleMonth
FROM Customer INNER JOIN Sale ON Customer.CustomerID = Sale.CustomerID
WHERE (((Sale.SaleDate) Between #1/1/2004# And #1/31/2004#))

UNION

SELECT Customer.CustomerID, LastName, FirstName, “Mar” As SaleMonth
FROM Customer INNER JOIN Sale ON Customer.CustomerlD = Sale.CustomerID
WHERE (((Sale.SaleDate) Between #3/1/2004# And #3/31/2004#));

Figure 5.14

2

tions might not be accurate, Jim can quickly alter the range numbers and rerun the
query to see the results.

Activity: Combine Data Rows with UNION

You need to understand the role of the UNION command. It is designed to com-
bine rows from multiple queries. Read that line carefully. It says combine rows
not columns. If you have two queries that retrieve similar columns of data, the
UNION statement will combine the results into one set of data. To illustrate the
process, consider a request that Katy made to see a single list of customers who
purchased items in January or in March. You could build this query using simple
WHERE conditions, but if you want to list people twice if they bought items both
in January and in March, the UNION query is easier.

As shown in Figure 5.14, create a new query using the Customer and Sale ta-
bles. Display the CustomerID, LastName, and FirstName columns. Add the Sale-
Date column, but uncheck the box to display the date. Add the condition to select
sales only in January. If you run the query at this point, you will see a list of
customers who bought items in January. To get the March customers, switch to
SQL view. Mark the entire SQL statement and copy it. Delete the semicolon at
the end, add the word UNION after the existing query, then below that, paste a
copy of the query. Now modify the dates in this copy to indicate March instead
of January. Finally, in the first SELECT
statement (January), add a computed
column to display “Jan” As SaleMonth.
Do the same thing for the second SE-
LECT statement, but display “Mar” for
March. This column will identify each
row to indicate the month for the sale.
Run the query, and you will see a com-
bination of rows from both queries. If
you want to sort the data by Customer
or by date, first you will have to save

Action
Create a new query in Design view.

Tables: Rental, Rentltem, Inventory, and
ItemModel.

Columns: RentDate, Category, RentFee.
Set totals to sum RentFee.

Set “Where” and criteria for RentDate to
Between [Start Date] And [End Date].

Run the query.

Chapter 5: Advanced Queries 76
=j:| Queryl - = x
rs
Rental Rentltern Inventory TemModel E
. * B " . N
7 RentiD - 7 RentD ~ ? sk 1 g
e ModelID
RentDate 7 sku oo/ ModellD oo~ Manufacturer]%
CustomerlD RentFee Items5ize Category
ExpectedRetur ReturnDate QuantityOnHan Color
Paymenthethec ReturnCondi Cost
RepairCharg: ¥ Modelfear ¥
k4
L »
Field: | Category RentFee RentDate =
Table: |kemModel Rentltem Rental %
Total: | Group By Sum Where
Sort:
Show:]]
Criteria: Between [Start Date] And [End Date]
or: I
4 g a2
fu] -ﬁj Queryl - = x
— | Enter Parameter Value lilg T Category - |SumOfRentf - .
Board 56,880.00
start Date Boots $4,875.00
Electronic 5600.00
01012006
[0/ Poles 5285.00
Rack $30.00
[OK] [Cancel] Ski $13,580.00
|Record: M 1of6 P M | i

Figure 5.15

the query, then you can build a second query based on the first and sort the col-
umns as needed.

Activity: Create Parameter Queries

Parameter queries are useful when you need to create a query that a manager runs
on a regular basis but needs to change some of the constraints. For instance, you
often use parameters to set starting and ending dates so the manager can easily
select a range of data without having to know anything about building queries.
The example in Figure 5.15 shows a query that displays the total rental income
by Category for a specified range of dates. Save the query as RentalsByTime, so
David the rental manager can run the query whenever he needs. When the query is
run, two boxes pop up to request the starting date and ending date.

You can build complex queries and insert parameters to request specific data
from the person running the query. In your query, simply enter a brief description
in brackets, and treat that parameter as any other number or date. When the query
runs, the user will enter a value and it
will be applied to the query. It is a use-

Action

ful method to quickly build queries that
users can control without having to al-
ter the query.

Create a new query in Design view.
Do not select any tables.

Switch to SQL view.

Enter the CREATE TABLE command.
Run the query.

Chapter 5: Advanced Queries 77

CREATE TABLE Contacts
(

ContactID Long,
ManufacturerID Long,
LastName Text(25),
FirstName Text(25),
Phone Text(15),
Email Text(120),

CONSTRAINT pk_Contacts PRIMARY KEY (ContactID),
CONSTRAINT fk_ContactsManufacturer FOREIGN KEY (ManufacturerID)
REFERENCES Manufacturer(ManufacturerlD)

Figure 5.16

SQL Data Definition and Data Manipulation
Activity: Create Tables

Although Access makes it easy to create and delete tables using the visual design-
er, sometimes you will need to know how to create a table using the data definition
language (DDL) CREATE TABLE command. After working with the database for
a while, you realize that it would be nice to have a separate table that lists sales-
people and other contacts at the manufacturers. Each person has a direct phone
number and an e-mail address. To practice building tables, Figure 5.16 shows the
CREATE TABLE command for the new Contacts table. Essentially, you list each
desired column along with its data type. Note that you have to choose the basic
data type, and not the higher-level type you might select in the designer. For in-
stance, you have to enter “Long” instead of just “Number.”

To enter the code, you must open the SQL Query window. Create a new query
and close the Table Selection window without choosing any tables. Then click the
SQL button or select it from the View option. Delete any statements in the win-
dow and type the CREATE TABLE query as shown.

You should also create the primary key constraint to indicate the ContactID is
the sole primary key column. If you need multiple columns, simply create a com-
ma-separated list. The foreign key constraint is similar, but you must also specify
the table and column that is referenced by the foreign key. The Access 2002 ver-
sion does not support the ON DELETE CASCADE or ON UPDATE CASCADE
options for the foreign key, so you should add them by hand in the relationships
screen. If you have a more recent version of Access, you should try adding these
two lines immediately after the foreign key constraint to see if support has been
added. To run the query, you must use the exclamation point Run button. You can
only run this query one time, otherwise it will try to create duplicate copies of the
same table with the same name—which is not allowed.

Figure 5.17

CREATE TABLE MyTemp
(
ID Long,
LName Text(25),
FName Text(25)

5 4

Chapter 5: Advanced Queries 78

Generally with Access, it is easier to create tables with the design screen. How-
ever, sometimes you will want to create temporary tables—eventually within a
section of program code. For the next section, you will need a temporary table to
transfer data. Figure 5.17 shows the table that you need to create.

The SQL ALTER TABLE command can also be used to add new columns to an
existing table. However, you rarely need this command, since it is easier to use the
table design view in Access to add a new column to a table.

Activity: Insert, Update, and Delete Data

SQL also provides data manipulation
language (DML) commands to insert,) o
update, and delete rows of data. Con- | Create anew query in Design view.
sider the INSERT command first. The | Do not select any tables.
simple version of the command shown | Switch to SQL view.
in Figure 5.18 inserts a single row into | Type the INSERT command: INSERT
one table. Notice that you specify the | INTO Customer (LastName,
table columns in the first list and the FirstName, City, Gender) VALUES
. . (‘Jones’, ‘Jack’, ‘Nowhere’, ‘Male’);.

corresponding values in the second Run th
list. By listing the column names, you un the query.
choose to enter the data in any order
and to skip columns. Of course, you will rarely enter data this way, but occasion-
ally it comes in handy. More importantly, the SQL statement can be generated
using programming code with complex routines to extract data from one source,
clean it up, and transfer it to the desired table.

On the other hand, a second version of the INSERT command is more useful
because of its power. You use it to transfer large blocks of data from one table
into a second table. Note that the second table must already exist. The example

Action

Figure 5.18

INSERT INTO Customer (LastName, FirstName, City, Gender)
VALUES (‘Jones’, ‘Jack’, ‘Nowhere’, ‘Male’);

in Figure 5.19 copies some data from the Customer table and transfers it to the
temporary MyTemp table you created in the previous section. Again, you list the
columns for the new table that will hold the data, then write a SELECT statement
that retrieves matching data for those columns.

You should keep in mind that the SELECT statement can be as complex as you
wish. It can include calculations, multiple tables, complex WHERE conditions,
and subqueries. For complex queries you should first build the SELECT statement
on its own and test it to ensure that it retrieves exactly the data you want. Then
switch to the SQL view and add the INSERT INTO line at the top. The ability to
perform calculations has another benefit. You can add a constant to the SELECT

Figure 5.19

INSERT INTO MyTemp (ID, LName, FName)
SELECT CustomerID, LastName, FirstName
FROM Customer
WHERE City="Sacramento’

statement that will be inserted as data
into the second table. For example, you
might write SELECT ID, Name, “West”
to insert a region name into a new table.
The INSERT INTO command is useful
when you need to expand a database or
add new tables. You can quickly copy
selected rows and columns of data into
a new table.

The UPDATE command is used to
change individual values for specified
rows. It is a powerful command that af-
fects many rows. You must always be
cautious when using this command be-
cause it can quickly change thousands

Chapter 5: Advanced Queries

79

Cost.

Action
Create a new query in Design view.
Table: ItemModel.
Columns: Category, ModelYear, and

Criteria: Category="Board” And
ModelYear=2004.

Run the query.
Choose Query/Update Query.

Under Cost set Update To:
Round([Cost]*1.04,2).

Run the query.

of rows of data. To illustrate the power of the command, consider that the manu-
facturers have announced that costs will increase by 4 percent for the 2006 boards.
The ItemModel table contains an estimate of the Cost for each model, so you need
to increase this number by 4 percent, but only for the boards.

To be safe, begin by creating a query that displays the Cost for the 2006 boards.
You should run the query to ensure that it returns exactly the data that you want to
update. Next, as shown in Figure 5.20, select the Query/Update Query option on
the main menu to display the Update To row on the grid. In the Cost field, enter

Figure 5.20

Home Create

B!
!
View Run

Results

External Data

@ %! -i-! F‘ % «§ @uen

Query Typ

All Access Objects

Run

T Employee
EH inventory
1 temModel

= Manufacturer
B3 myTemp

EH PaymentMethod
EH ProductCategory
= Rental

3 Rentitem

B sale

B saleltem

ER salesCategory
EH skiBoardstyle
B skillLevel
Queries
#¥ Quenosiz
#¥ Quenosio
62 Quenysis
6 Quenyos17
B3 Customersales
3 Modelsales

Acrobat

* @ pass-Through
Select Make Append [Update|Crosstab Delete
Table

TtemModel

% MadellD -
ManufacturerID)
Category
Color
Cost
ModelVear
Graphics -

1w, Data Definition

Design

%

Show
Table

el

Database Tools

Zealnsert Rows T Insert Columns
¥ Delete Rows ' Delete Columns
SN Builder il Return:

Query Setup

[E=NIER =

[%F Property Sheet

| Table Names.

S Parameters
Show/Hide

Totals

Query / Update Query

7

Field:
Table:
Update To:
Criteria:
or:

Ready

Catego
Tt del

“Board”

<[

ModelYear
TtemModel

2006

TtemModel
Round([Cast]"1.04,2)

New value

UPDATE ItemModel SET Cost = Round([Cost]*1.04,2)
WHERE (Category="Board”) AND (ModelYear=2004);

Chapter 5: Advanced Queries 80

'ﬁj Queryl - = x

3

MyTemp
*
D
LMame
FMame

| b

Field: |ID =
Table: | MyTemp %
Delete: |Where
Criteria: | =100
ar

4 [»

DELETE
FROM MyTemp
WHERE ID > 100;

Figure 5.21

the new calculation as Round([Cost] * 1.04, 2) to indicate the 4 percent cost in-
crease. Note that you will have to type the brackets around the Cost column name.
If you do not, Access might place the entire formula in quotes, which would result
in an attempt to write the formula text into the column instead of the actual val-
ues. The Round function is used to ensure that the final Cost value is rounded off
to cents instead of extended fractions. You can run the query by clicking the Run
button on the main toolbar.

Notice that the SQL statement is straightforward. It is also easy to change mul-
tiple columns at one time. On the grid, just add the new column and the new for-
mula. In SQL, add a comma after the first calculation and enter a new one in the
SET clause. Of course, you can use multiple tables. In SQL, they are added with
the standard join statement; but it is generally easier to add the tables in the De-
sign view grid and let Access build the join statement. If necessary, you can then
switch to SQL to modify the lines.

The DELETE command is similar to
the INSERT and UPDATE commands, Action
but it is more dangerous. It is designed Create a new query in Design vView.
to delete many rows of data at a time. | Taple: MyTemp.

Keep in mind that because of the rela-
tionships, when you delete a row from
one table, it can trigger cascade deletes

Columns: ID, LastName, FirstName.
Criteria: ID > 100.

on additional tables. For the most part, ETISt the query. Delet
these deletes are permanent. If you are S5 (R IRIEE QU ey,
Run the query.

not careful, you could wipe out a large

Figure 5.22

DROP TABLE MyTemp;

Chapter 5: Advanced Queries 81

chunk of your data with one delete command. To minimize the impact of these
problems, you should always make backup copies of your database—particularly
before you attempt major delete operations. You should probably take a break and
do that now. Use Windows to copy the main database file.

To be extra safe, this example is just going to delete data from the temporary
table that was created in the previous section. Create a new query in Design view
using the MyTemp table. To see the rows you are going to delete, add all three
columns to the display and set a condition to show only rows with an ID > 100.
You can then use the Query/Delete Query option to setup the delete query. If you
switch to the SQL view, you will see that the individual columns are listed. These
columns are not necessary because the query will always delete the entire row.
Figure 5.21 shows both the Design view and the basic SQL needed to delete the
specified rows. In practice, it is best to stick with simple WHERE clauses when
possible. However, it can be complex and include subqueries. Particularly in
the complex cases, you should first build a SELECT statement using the same
WHERE clause to ensure that you are deleting exactly the rows you want to de-
lete. Then convert the query into a Delete Query, or delete the SELECT statement
and replace it with the DELETE command.

The DROP TABLE command is even more dangerous. It removes the entire
table and all of its data. Generally, you should only use it for temporary tables. As
shown in Figure 5.22, the syntax is straightforward; just make sure you enter the
correct table name. Again, it would be wise to make a backup copy of your data-
base before removing tables.

The main aspect to remember about these commands is that they operate on
sets of rows that you control with the WHERE clause. The WHERE clause can be
complex and can include subqueries with detailed SELECT commands. All of the
power of the SELECT command is available to you to control inserting, updating,
and deleting rows of data.

Exercises

5

Many Charms

You will need to create some additional sample data for each table. Madison and
Samantha know that they will want certain information on a weekly basis, but
they will not be able to build complex queries to retrieve the data. You will have
to build a few queries for them that they can run when they want to see the results
or need to change prices. Some of the queries should be parameter queries so they
can easily select the values they need to control the results. Note: You will have to
modify the queries slightly to match the data that you have entered.

Which customers who ordered bracelets have not ordered necklaces?
Which customers bought more gold charms than silver ones?

Which categories generated the most profit over a parameterized time period?

b=

Are expensive charms more profitable than mid-priced or low-priced
charms? Hint: Create categories based on the prices.

5. Create a parameterized query to enable Samantha to increase the prices of a
certain category of charms by a given percentage.

Chapter 5: Advanced Queries 82

6. Create a new table with SQL and copy into it all of the customers who have
not purchased items within the last three months.

7. Delete customers from the new table in the prior exercise who have spent
more than $100 in the past year.

Sy
)

A /?(5 Standup Foods

X" You will need to create some additional sample data for each table. Laura knows
she will want certain information on a weekly basis, but she will not be able to
build complex queries to retrieve the data. You will have to build a few queries for
her that can be run to display results or change prices. Some of the queries should
be parameter queries so Laura can easily select the values she needs to control the
results. Note: You will have to modify the queries slightly to match the data that
you have entered.
1. Identify the employees who have below-average overall job evaluations.

2. Identify the main menu items that have not been served to a particular
director or other celebrity. (Pick one from your list who wants something
different.)

Which customers have not yet referred her business to other clients?

4. Create a category table to segment the employee ratings (excellent, good,
average, poor). Use the table to identify the employees with excellent
evaluations as both server and dishwasher.

5. Create a temporary table and copy into it information about employees who
have worked as drivers but have not driven within the last month.

6. Delete from the temporary table in the previous question the drivers whose
average evaluations are less than 6 (on the 10-point scale).

7. Write a parameterized query that enables Laura to increase the base wage
rate of employees by specifying a category, a minimum overall average
evaluation, and the percentage increase.

ﬁé EnviroSpeed
=

You will need to create some additional sample data for each table. Brennan and
Tyler know that they will want certain information on a weekly basis, but they
will not be able to build complex queries to retrieve the data. You will have to
build a few queries for them that they can run when they want to see the results
or need to change prices. Some of the queries should be parameter queries so they
can easily select the values they need to control the results. Note: You will have to
modify the queries slightly to match the data that you have entered.

1. List the experts who have worked with two or more crews in the same

month.

2. Which experts have not contributed any documents within the last three
months?

3. List the crews that are more than 25 percent larger than the average crew.

Chapter 5: Advanced Queries 83

Create a table to categorize the expense of cleanups. For example, spills
costing more than $1 million to clean up are expensive; cleanups costing
$500,000 to $1 million are merely costly; and so on. Create a query to apply
these categories to the actual spills.

Write a query that retrieves documents based on a list of keywords entered by
a user. The keywords might appear anywhere in the document, and the final
query should sort the list based on the number of matches.

Write a parameterized query to update a severity value for an incident by
allowing the user to enter a chemical name and a point increase in severity.

Write a query to copy the data on experts to a new table who have
participated in a total of at least three incidents in the last year.

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, answer the questions below. You will have to create sample
data for each of the tables.

L.

Identify and create at least two parameter queries that would be useful to
managers. Share the business question (not the query) with other students and
solve their queries.

Identify a business question to list items greater (or less) than average. Write
the query to return the results.

Create a temporary table and write a query to copy some rows of data from
one table into the new table.

Write a delete query to remove a few rows of data from the temporary table.

Write an update query using parameters to change the value of one of the
numeric columns in a table based on a percentage and conditions entered by
the user.

Chapter

Forms and Reports

Chapter Outline

Applications, 85
Case: All Powder Board and Ski Shop, 85
Lab Exercise, 86
All Powder Board and Ski Shop Forms, 86
All Powder Basic Reports, 101
Exercises, 109
Final Project, 110

Objectives

» Create forms (main, grid, and subforms) that make it easy for users to enter data.
» Create reports to display and summarize data.

« Build applications that connect forms and reports.

* Add toolbars and menus to forms.

» Add help files to the database application.

Chapter 6: Forms and Reports 85

Applications

The main purpose of the DBMS is to store data efficiently and provide queries to
retrieve data to answer business questions. But from the perspective of businesses,
the true value of the DBMS lies in the applications that can be built on top of the
database. One of the strengths of Access is the tools provided to build forms and
reports. Once the database is designed, you can use the wizards to quickly build
basic forms and reports. You will still need to edit the designs to clean them up to
make them easier to use..

Forms are used to make it easier for users to enter data. You would never want
users to enter data directly into the tables. For example, look again at the Sales
table. It contains mostly ID numbers, and you cannot expect workers to memorize
thousands of ID numbers. Instead, you build forms to match the processes and
styles of the business. Likewise, you rarely ask managers to build queries them-
selves. Instead, you create reports that display details and subtotals within a layout
that is easy to read. You can even include charts to make it easy to compare values
or examine trends over time.

Access provides some support for Web pages. However, these tools will work
only on internal servers. For the most part, you cannot use Access forms and re-
ports to provide data on the Internet to typical users. For those types of tasks, you
should switch to Visual Studio and ASP.NET.

Case: All Powder Board and Ski Shop

The primary application at All Powder Board and Ski Shop is the need to track
sales and rentals. Of course, these applications also require you to build forms and
reports for inventory items and customers as well. Eventually you will have forms
that store data into each of the tables in the relationship diagram. However, before
you leap to the Forms wizard, make sure you understand the three major form
types shown in Figure 6.1: main form, grid form, and main with subform. A main
form shows one row of data at a time, such as a form to edit basic information
about one customer. A form appears similar to the Table view in that it shows sev-

Figure 6.1

Ski Board Style

Style Style Description Category

Customer

Last Name I:l Im
First Name I:I
Address I:l

Customer Salesperson

ItemID| Description Price Quantity | Value

Main and
Sub-form

Chapter 6: Forms and Reports 86

eral rows at one time. Main and subforms combine the two: the main form shows
one row of data from one table and the grid subform shows matching rows from
a related table. The classic business example is the Sale form and Saleltem grid,
where the main form shows data from one sale, and the grid shows the repeating
items purchased and stored in the Saleltem table. At this point, your responsibil-
ity is to examine the business operations and determine the best type of form to
handle each operation.

Lab Exercise

All Powder Board and Ski Shop Forms

Many of the forms in an application are straightforward main forms. Users want
to see data for one row—such as one customer or one employee. You generally
create main forms when you need more control over the layout.

@f Activity: Create Basic Main Forms

Figure 6.2 shows a simple version of
the form to edit customer data. In its .
simplest layout, the main form contains A (09 Ol A,

labels and text boxes for each column | Select the Customer table. .

in the table. You can enter any text into Transfer all columns to the right window.
the label to help tell the user what data | Use the Columnar layout.

is to be entered into each text box. The | Selecta style.

data on the form is bound to the data- | Enter a name for the form.

base table. Changes made to the data in
the text boxes are automatically written
to the database table. However, these changes are written only at certain times—
such as when the user moves to a new row. The importance of the main form is
that you have considerable control over the layout and presentation of the items.
You can change the image of the form by setting the properties for the form or the
controls to control things such as size, position, and color. You can add new con-

Figure 6.2

Action

— 5 [ESET==)
() =] All Powder Board and Ski Shop
Home | Create External Data DatabaseTools Acrobat @

== 4 = New X Totals 3 7 Selection ~ —

X E=INE s & Y

& ([BLulE=EF - BSave Fspelling | %) A -

View || Paste b ||| Refresh 2| Fiter

< 2F | EEE JEZ R | X Detete + Smore - || 45 7 Toggle Filter

Views | Clipboard ™ Font Rich Text Records Sort & Filter

Forms + « || =2 Customer x
EEl Customer

Cystomer

Label CustomeriD 1

LastName Jones

FirstName Jack
Phone 111-222-3333

EMail JonesJ202@msn.com

Address 123 Main

city sacramento

state <A Combo box

zIp 95838

Gender Male

DateOfBirth 2/12/1986

Record navigation

T]

Record: 14 «[10f2004 | » M b | & [searcn
~—

Form View

Chapter 6: Forms and Reports 87

trols to display images or include but-
tons to delete or find records.)))

Access 2007 introduced two main Switch Customer form to design view.
options for forms: (1) a tabbed display | /dd a command button.
of multiple forms, and (2) the layout Select Record Operation/Delete Record.
control on a form that treats controls as Add a command button to insert records.
a group. Both of these options are used | Run the form and test the buttons.
in this form. The tabs option is set for | View/Tab Order and verify sequence.
the entire database, not for individual | Save the form.
forms. Its use generally comes down
to individual preference but it tends to
force all forms to be the same size. It is set or removed using the Office But-
ton in the top-left corner of Access and clicking the Access Options button. Un-
der the Current Database list, you can set either Overlapping Windows or Tabbed
Documents.

You created a version of this form in Chapter 1 using the simple form builder.
To explore some of the options, this chapter focuses on using the Form Wizard.
Creating a main form is straightforward using the wizard. To build the Customer
form, create a new form using Create/Forms/More Forms/Form Wizard. Figure
6.3 shows the most important step of the wizard: choosing the tables and fields.
For this form, select the Customer table and choose all of its columns by transfer-
ring them to the box on the right. In the next step, select the Columnar form, which
is how Access describes the main form type. Then you can select the overall style.
If you are ambitious, you can create your own template styles for other developers
in your company to use. The style simply applies some basic design elements to
the form, such as font size and background colors. For the most part, you want to
pick a style that is easy to read. Also, be sure that you remain consistent. All of the
forms in an application should have the same style. Figure 6.2 shows a Customer
form that should be similar to yours. If you finish the wizard and realize that you

Figure 6.3

Action

Ferm Wizard ‘

Which fields do you want on your form?

‘You can choose from more than one table or query.

Select table

Tables/Queries
Table: Customer / [+] | Select/transfer fields

Available Figlds: eleckEd Fields:

FirstMame
Phone

88

Chapter 6: Forms and Reports
) H 9™) = Switch to Ski Shop Form Design Tools I 5 o I (= [ot
&) | Field list box .
Home Creat : ools Acrobat Design Arrange _I @
design or * = _
E Calibri display VleW E =- 5 abl B 2 dl=S Sinfls \ jEI EM @
View lin . Lugu Iﬂ m:.EI?IP.:‘IﬁQ, L}E A AddEx\stingr-,. ,‘%
: = - - BlaEFiEe @0 Z 3¢ Reds | sheet |
Views Font Gridlines Controls Tools
Forms » <« || Z2] Customer Property Sheet ®
B customer l_H PR R E e S S S E \ R Selection type: Text Box
ﬂ # Form Header A} Phone El
- g Al
Select to / C Toolbox to :zrmat Data | Event L::her
- ame one -
Open fOI‘l’n R add ContrOIS Control Source Phone D
. __ [giee Faormat
properties || # Detail || |pecimal piaces Auto
. :| : = || |wisible Yes
e Text Format Flain Text
Datasheet Caption
N Show Date Picker For dates
: Width 28757
- Height 0.2292°
1 Top 1.0833°
[f |ert 2
Back Style MNormal
- Back Color #FFFFFF
N Border Style Salid
. - T Border Width Hairline
3 :||Address Eorder Color Borders/Gridlines
. e R Special Effect Flat
ety Properties Scroll Bars None
. Font N Calib
: state to control Fort Sze T
g . Text Align Left
- = ObJGCtS Font Weight Mormal
3 |Gender Font Underline No
4 m] Font Italic Na s
Design View | H@'E[! E‘E

Figure 6.4

made a mistake or simply want to change the design, the easiest way to make the
change is to delete the form and start over.

The wizard does a decent job of displaying the data for the form, but invariably
you will want to modify the design of the form. Sometimes you simply need to
change the layout, formatting, and colors. At other times you want to add but-

Figure 6.5

Form Properties
Record Source=Customer table

Property Sheet X
Selection type: Form

Form |z|
|Format| Data | Event | Other I All |
Record Source Customer |;[£]
Recordset Type Dynaset

Fetch Defaults Yes

Filter

Filter On Load Mo

Order By

Order By On Load Yes

Data Entry Mo

Allow Additions Yes

Allow Deletions Yes

Allow Edits Yes

Allow Filters Yes

Record Locks Mo Locks

Control Properties
Control Source=CustomerID column

Property Sheet
Selection type: Text Box

x

CustomerID

[=]

|Format| Data | Event | Other | &N |

CustomerlD EE]

Plain Text

Control Source
Text Format
Input Mask
Default Value
Validation Rule
Validation Text

Filter Lookup Database Default

Enabled Yes
Locked Mo
Smart Tags

Chapter 6: Forms and Reports 89

tons to open additional forms or reports, or to add or delete data rows. As shown
in Figure 6.4, you can switch to Design view to edit the details of the form and
its controls. The layout view is useful for changing alignments or sizes of group
objects. Design view provides more detailed control over each individual object.
Right-click a control, the form background, or the small square in the top-left cor-
ner of the form to set the various properties. The property box shows you which
properties can be set for each item and helps you select the appropriate values.
The toolbox contains additional controls that you can place on the form. The field
list box is a quick way to add a standard data field to the form. For example, if you
delete one of the existing fields and its label, you can open the field list box and
drag the field back onto the form.

To understand how the form works, you should look at two main properties: the
Record Source for the form and the Control Source for a text box. As shown in
Figure 6.5, in this example, the Record Source is the Customer table and the Con-
trol Source is the CustomerID. The Record Source is a table or query that retrieves
all of the columns that can be displayed and edited on the form. The field list box
uses this query to show you the fields available to be placed on the form. In this
example, remember that only the Customer table was selected when the form was
created. You could have added columns from additional tables, in which case the
Record Source would be a query. You can still make changes—simply click the
Ellipses button (...) and you will be shown a query edit screen in which you can
add more tables and columns. However, you must be careful to make sure the
query is updatable. The main trick is to use the primary key from only one table.
You can pull in other columns from additional tables, but use the primary key
from only one table. This condition is critical to understanding the role of forms:
Each form is designed to edit only one table at a time. You can stretch that state-
ment a little and actually change some data values in several tables, but the main
form should only be used to add data rows to a single table. Once you have the
table or query chosen, you can set the Control Source for each individual control.
Of course, it is much easier to let the wizard or the field list box do the work, but

Figure 6.6

Command Button Wizard

What action do you want to happen when the button is
pressed?

Different actions are available for each category.

Categories: Actions:

Record Mavigation Add New Record

Record Operations
Form Operations
Report Operations
Application
Miscellaneous

Duplicate Record
Print Record
Save Record
Undo Record

: Back [Mext »][Einish

Chapter 6: Forms and Reports 90

once in a while you might have to edit a Control Source—particularly if you go
back and change the name of a column in a table.

Adding labels and command buttons to the form is a common step. For in-
stance, you might want to add buttons to make it easier to add and delete a data
row. If you run the form, you will see that the menu provides options to delete
and add rows, but users sometimes forget to check the menu. They also might not
know that they should click the selection bar at the left side of the form. It is often
useful to place buttons on the form to delete and add new rows of data. To begin
the process in Design view, select the command button in the toolbox and click a
desired location on the form. Figure 6.6 shows the main command button wizard
screen. It provides many common options that you might want to use on a form.
In this case, select the Record Operations and then Delete Record options. You
can use one of the default icons or enter a word that will be placed on the button.
The wizard writes the code necessary to carry out the desired command. This code
is stored in a subroutine on the form, and you should give it a descriptive name so
you can find it later if needed. In this case, cmdDelete is a useful name, where the
cmd prefix indicates that the routine is tied to a command button. The wizard then
creates the button and the necessary code. If you selected an icon for the button,
set the button’s control tip property to add a short description of the button’s role.
In this case, “Delete this customer” is a good start. It will be displayed when the
user rolls the cursor over the button. Follow the same procedure to create a button
to add a new customer. To see the code that was created, right-click the button and
choose Build Event. For simple events, the Access 2007 wizard relies on macro
commands. Macros are more difficult to edit and have fewer options than VBA
code. Later, when you want to add more complex processing to your form, you
will probably want to write in VBA code instead of using macros. For buttons
without macros, the Build Event link provides an option to display code, or you
can click the View Code icon in the Tools section of the ribbon.

One last element of the form is important. The controls have a tab order that
specifies how the focus shifts when the user presses the Enter or Tab keys. Gener-
ally, the tab order should be set so that the user’s focus moves from the top to the
bottom of the form. When you add controls to a form, this order is often altered.
Right-click the form and use the Tab Order option to rearrange the sequence.

Figure 6.7

—5| SkiBoardStyle
Style - StyleDescription ~ | Category -

Back-Country Back country and telemark Ski
Cross-Country-Skate Cross-country skate skis Ski
Cross-Country-Traditional Traditional cross-country Ski
Downhill Basic downhill and racing Ski
Extreme Board Crazy boards Board
Freestyle Show, jumps, shorter skis Ski
Half-Pipe Turns and jumps Board
Jump Ski jumps from structures Ski
Ride Basic board Board

*

Chapter 6: Forms and Reports 91

Form Wizard
— Tabular style
What layout would you like for your form? has more design
flexibility
® Columnar
() Tabular

() Justified

Datasheet style
is simpler than
tabular

Cancel ” < Back ” Mext = ” Finish

Figiyre 6.8
v, Activity: Create Grid Forms

" Grid forms are another simple type
of form. They are used when a table]]
has a limited number of columns and | Createanew form with the wizard.
rows. The columns should all fit on one | Table: SkiBoardStyle.
screen because users find it difficult to | Columns: AllL
edit data if they have to scroll horizon- | Select the Datasheet layout.
tally. The number of rows should be | Test the form.
limited because the grid form has few
methods for searching, and users should not be forced to scroll through thousands
of rows to change one piece of data. Figure 6.7 shows an initial grid form for the
SkiBoardStyle table. Notice that the data in this table is generally used only to
provide consistent values to other tables. This form will generally be used only
by an administrator once in a while to modify or add a style. The data all fit on
one screen, making it easy for you to find the items to be altered and to compare
the various entries across the rows. In practice, you will use grid forms for similar
tasks aimed at administration. Think hard before you use one of these forms for
general users. Although you have some control over the form design, your options
are limited, so users need to know what they are doing.

You create a grid form in much the same way as a main form. Start the wizard,
select the table, and choose the columns you want on the form. As shown in Fig-
ure 6.8, the different step is to select the Datasheet option. You could also choose
the Tabular style which provides a few more design options but tends to have
thicker lines between rows and columns. The datasheet style is similar to editing
data directly in a table, but you can impose more limits and controls on the user.
So, if you find that you want to give users the ability to edit data directly, create a
datasheet form instead.

Action

Chapter 6: Forms and Reports 92

Look closely at the data in Figure
6.7 and you will see that the Category . ; .
data actually comes from a second ta- il 9 o DEEm e
ble: ProductCategory. Of course, you | Delete the box for Category.
should also build a grid form to enable | Addacombo box.
administrators to update this table as | Select the first lookup option.
well. However, you also need to make | Choose the ProductCategory table.
it easier for people to enter data into | Choose the Category and
the Category column of the main Ski- CategoryDescription columns.
BoardStyle table. If users have to re- | Setcolumn widths.
type the data for every row, they might | Select the Category column.
abbreviate or misspell the entries— | Store value into the Category column.
leading to inconsistent data that is dif- | Repame the combo box.
ficult to search. Instead, you want to | get the tab order.
create a combo box on the form that
makes it easy for users to select the de-
sired category.

As shown in Figure 6.9, switch the form to Design view and you will see that
it looks much like a main form. However, the layout of the form is ignored when
it is displayed as a datasheet. In particular, the order of the columns is set by the
tab order and not by the position on the form. The goal is to replace the Category
text box with a combo box, so the first step is to delete the Category text box and
its associated label. Then, you can use the toolbox to place a combo box on the
form.

The combo box wizard supports three uses: to look up data from a second table,
to select from a fixed list of values, or to search the existing form for matching

Action

Run the form and test the combo box.

Figure 6.9
p— N =)
A] All Powder Board and Ski Shop Form Design Tools =
S g Creafe ExterpalData Databpse @
i
] = ey =
|B 7 | G| === = ~
View = — = Conditional || Gridlines = e Add Existing Property
- || === | I = = 2 Fields | Sheet |
Views Font Gridlines Tools
Forms * « || =2] SkiBoardStyle X | Property Sheet x
= customer ILH P ey Selection type: Form
= sk || % Form Header Form E
: Format | Data | Event [other [Al |
Add a ComboBox Caption SkiBoardStyle
Default View Datasheet |
R |/(HEHEEEHE| Allow Form View Yes W
Allow Datasheet View Yes
HEE e Allow PivotTable View No
L Allow PivotChart View No
Style Allow Layout View Yes
I et Picture [none)
StyleDescription Picture Tiling No
Picture Alignment Center
t ! Picture Type Embedded
: Catﬂegofy. - Picture Size Mode clip
‘ = ERBEIEP Width 50833
Form Footer — ||| |Auto Center Yes
Auto Resize Yes
Fit to Screen Yes
- Delete the text box | Eoraer e e
- Record Selectors Yes
- Navigation Buttons Yes
; Navigation Caption
', Dividing Lines No
- Seroll Bars Bath
- Control Box Yes
R + | |Close Button Yes
4 m » Min Max Buttons Both Enabled
Design View [EEEEET
L

Chapter 6: Forms and Reports 93

Combo Box Wizard \ Display

Microsoft Office Access can store the selected value from your ProductCategory
combo box in your database, or remember the value so you can
use it later to perform a task. When you select a value in your

combe box, what do you want Microsoft Office Access to do? Board
() Remember the value for later use. Boots
(@ Store that value in this field: E| Clothes
i Stle Electronic
StyleDescription
Glasses
Ski

AN

N\
Cancel] [< Back I Next >][Finish \l
\

SleoardStyIé\

Style Desc Category‘
Downhill ... Ski

Select

Figure 6.10

data. In most cases, you want the first option. You should almost always avoid the
second option because it is difficult to change the values later. You generally want
to place the values within a separate table and build a form so they can be altered
later without having to modify this form. The third option is sometimes useful on
main forms but can be confusing because it is used to search for data instead of

Figure 6.11

=5| skiBoardStyle

Style v StyleDescription » Category -

Back-Country Back country and telemark Ski

Cross-Country-Skate Cross-country skate skis Ski

Cross-Country-Traditional Traditional cross-country Ski

Downbhill Basic downhill and racing Ski | Click the arrow

Extreme Board Crazy boards Board /

Freestyle Show, jumps, shorter skis Ski |Z|

Half-Pipe Turns and jumps Board All boards

Jump Ski jumps from structures Boots Alltypes of boots

Ride Basic board Clothes Basic skifboard cloth
* Electroni GPS and so on

Chosen value is

Glasses Goggles and sun gla
transferred to the form =2 S

Poles Skipoles
Rack Ski racks for cars

Ski All skis
Select the item Unknow Weird stuff

Wax Wax and products

Chapter 6: Forms and Reports 94

entering data. The first option is the one needed in this case, so select the table
that holds the data that will be displayed in the combo box list (ProductCategory).
Choose both the Category and the CategoryDescription columns to be displayed
in the combo box list. The wizard gives you the option to hide the key column,
which is commonly done for numeric AutoNumber keys. In this case, the key col-
umn is text, so make sure it is displayed.

Figure 6.10 shows the role of the combo box and one of the trickiest steps in the
combo box wizard. The purpose of a combo box is to display a list of predefined
items from a table or query (ProductCategory in this case). To enter data into the
SkiBoardStyle table, users select one of the items from the complete list, and the
chosen value is entered into the Category column of the SkiBoardStyle table. In
the screen of this wizard you specify the Category column of the SkiBoardStyle
table as the place to hold the chosen value. The screen immediately prior to this
one is where you select the key column in the display list—the Category column
in the ProductCategory. The screen in Figure 6.10 is the one that generally causes
the most problems. You must be sure to store the value in the appropriate column
or the combo box will not work. Once the wizard has completed, you should set
the properties of the combo box to give it a better name (cboCategory in this case),
and double-check the tab order of all of the controls.

As shown in Figure 6.11, when you run the form, the datasheet rows appear
similar to the original version. However, when you click on an entry in the Cate-
gory column, you will see the arrow box for the combo box. Clicking on the arrow
generates the list shown in the figure. Selecting an item transfers it to the form and
the table. It is important that you understand the role of the combo box in relation-
al databases. Remember that normalization splits the database into tables that are
connected through primary and foreign keys. Generally, these keys are numeric,
and often they are generated by the DBMS, so they have no overt business inter-
pretation. It would be difficult for users to remember these numbers, but they have
to be entered correctly into many tables. The combo box solves the usability prob-
lem by displaying a list of data. When an item is chosen, the matching key value is
entered into the foreign key column automatically. With numeric keys, you gener-
ally want to hide the key; users do not even need to know that it exists.

Activity: Create Main Forms and Subforms

Now that you understand the main and
grid forms, it is time to combine them))
into a main form and subform. Remem- | Create a new form with the wizard.
ber where this process began—with | Sale table, all columns.

business forms, particularly the sale | Customer table use name, phone, and
form. A typical business sale form has e-mail columns.

data for the sale (SaleID, SaleDate) and | Employee table, use the name.
customer (name, address, and so on). It | Saleltem table, all columns except
also has a section of repeating data to SalelD.

hold the specific items being purchased | ItemModel table, use Category,

by the customer. This repeating section | ModelID, and ListPrice.

was split into the Saleltem table, with | Finish the wizard and test the form.
some elements placed in the Inventory
and ItemModel tables. The purpose of
the main form and subform is to recombine these tables. Keep in mind that each
form can be associated directly with only one table. In this case, the sale form will

Action

Chapter 6: Forms and Reports

Form Wizard

N

How do you want to view your
data?

by Emplayee

by Customer
by Saleltem
by ItemModel

SalelD, SaleDate, CustomerID, EmployeelD,
ShipAddress, ShipGity, ShipState, ShipZIP,
SalesTax, PaymentMethod,

3K, QuantitySeld, SalePrice, Category,
ModelID, ListPrice

(@ Form with subform(s)

® Linked forms

Cancel

H < Back H MNext >][Einish

Figure 6.12

be based primarily on the Sale table,
and the subform will be based primarily
on the Saleltem table. Additional data
from the other tables can be displayed
on the forms, but only the primary keys
from those two tables will be used.

The wizard is again used to start the
forms. Begin by selecting all of the col-
umns from the Sale table. Then select

95

Action
Switch to Design view/

Replace CustomerID, EmployeelD, and
PaymentMethod with combo boxes.

Use the Row Source property of the
combo boxes to set a sort order.

Set tab order and run the form.

the LastName, FirstName, Phone, and Email columns from the Customer table.
Remember, do not use the Customer.CustomerID column. Also, you should add
the Employee LastName and FirstName so they can be displayed on the form for
the salesperson. Next, use all of the columns from the Saleltem table except the
SaleID column, because you do not want to have it repeated on every row of the
subform. From the ItemModel table, bring the Category, ModellD, and ListPrice
columns so they can be displayed as a description on each row of the subform.

Figure 6.13
= sae | x
Fix layout Sale
and sizing ||
»
salelD 1027 Customer_LastNan [Jernigan
salepate 11/27/2006 Customer_FirstNan [ishel
CustomeriD 1683 Phone 213-572.6081
EmployeelD i Email Jemigani7a@msn.com
3453 Deer Park Lane
Sheiton Employee_LastNan [Killy Multlply prlce
= Employee_FirstNar lean-Claude]
o by quantity
$43.33
Need Y camenvetros wastras
ComboBox
saleitem - [Quantitysold - [saleprice - | Category - | Modelib - | ListPrice -
300051 1 $353.00 Clothes, NYB-570 $353.00
700006 1 $266.00 Rack SAF-43 $266.00
*
Compute subtotal
[Reorai Loz \SV]
I
Record: 1 1 1500 Search I

Chapter 6: Forms and Reports 96

The next step in the wizard is to
make sure that it recognizes the main/
subform relationship by Sale. Figure
6.12 shows the step where you can tell
the wizard how to organize the form
layout. If your database relationships
are correct, it generally picks the cor-
rect layout, but sometimes you have
to override this choice. Here, the Sale
is the main form, and the repeating
sections are moved to the subform.
You can use the default options for
the other choices in the wizard.

Action
Open the sub form in Design view.
Insert a combo box for the SKU.

Add a text box to compute
Value=QuantitySold*SalePrice.

Add a text box to the footer to compute the
subtotal: =Sum(QuantitySold*SalePrice).

Set tab order.
Test the sub form calculations.
Open the main form in Design view.

Add subtotal text box and use the
expression builder to copy the subtotal

value from the subfrom subtotal.

The initial form generated by the
Test the form.

wizard will work, but it usually needs
some work. You will have to fix the
layout, the widths of the text boxes, and add combo boxes. For subforms that con-
tain numeric data (price and quantity), you will also want to compute the subtotal
of the value and display it on the main form. Figure 6.13 shows the initial form.
Before trying to improve the form, take a minute to run the form and see how the
subform works. Notice that as you switch to a different sale, the subform picks
up the items for just that sale. The subform is linked to the main form through the
SalelD, and the form processor knows how to retrieve and display just the match-
ing data.

To improve the form, begin by replacing the foreign key ID text boxes with
combo boxes. Make sure that you assign a new name using the combo box proper-
ties. Note that all of the controls on the form are contained within a layout group.
When you delete a textbox, the others immediately move to cover the space. Do
not worry about it yet. Simply add the combo box and enter the details. When fin-

Figure 6.14

Bring Sen:
owest || tg Frant to Back
Position

Sl right 1
Contral Alignment size

NCEMES Al Powder Board and Ski Shop Form Design Tool | (5.
3 :
Home Creat Exte Database Tool: Acrobat Design @
I Wil &
- &l B3 e Le
AutoFormat | Tabular Stacked R
utoForm

1 23Teb Order

Property Sheet
P

Saleltem Subform

El satettem subform ||| -
E skisoardstyle

4 m | >

[EEET|

Chapter 6: Forms and Reports 97
-=| Sale X
All Powder Board and Ski Shop Sale
] R ;
Employee Killy : Jean-Claude
Customer Jerign 7] ship Adress
FrstName [anel | ship City
Phone 213-572-6041 Ship State
EMail Jerniganl73@msn.com Ship ZIP
Sale Item
SKU - |QuantitySold - | SalePrice - | Category - ModellD - | ListPrice -| Value -
300051 =1 $353.00 Clothes NYB-570 $353.00 $353.00
700006 1 $266.00 Rack SAF-43 $266.00 $266.00
*
Record: 4 1of2 |k M b [& [search
Record: W+ 1of500 | » b b [[searcn Kl m] »

Figure 6.15

ished, you can drag the combo box to the desired location until it gets joined into
the layout group. However, the layout group makes it difficult to arrange the items
aesthetically. For more flexibility, you should remove the controls from the layout
group. Simply select them and use right-click to choose Layout/Remove. You can
select all of them and then use right-click to save time. You should now be able to
drag the controls on the main form to better locations.

Figure 6.14 gives you an idea of how to rearrange and resize the main form
controls. Be sure that you set the tab order. You also might consider adding com-
mand buttons to delete and add sales. Also, set the default value for the SaleDate
to be =Date() so that the current day will always be entered for new sales. Run the
form and check that the combo boxes work correctly and that you sorted the data
correctly when you created them. If you need to adjust them, you can simply de-

Figure 6.16

Expression Builder o m
[Saleltem Subform].Form! [Subtotal] Ok
Cancel
\ Formula to copy undo_|
Open the Sale form the subtotal value =
p N +—I‘|ﬂ=><<>|a‘-md Or Help I
N T T
(=1 5ale & |ListPrice_Label » | |=Nalue= o~
Select the subform > =T | |ListPrice Afterlpdate K
(&1 Tables SKU_Label AfterUpdateEmMac—
& . =| |SKU AggregateType
- +] Queries Label17 AllowAutoCorrect
Double click the Forms Value —| | AutaTab
(#1 Reports Label19 BackColor
subtotal control = _ . e = Backstyie
Functions ik
o Form Header BeforeUpdate
Constants Detail BeforelUpdateEmMz
< | n | » Form Footer = || BorderCalor -
|

Chapter 6: Forms and Reports 98

=) sale |, x
All Powder Board and Ski Shop Sale

hd

1027 Employee Killy E Jean-Claude
saleDate 11/27/2006

Ship Addi 3453 D Park L.
Customer Jernigan |Z| P ress SerParkLane

First Name Ishel ship ciey shelton
Phone 213-572-6041 ShipState |CT

EMail Jernigani73@msn.com Ship ZIP 06484

Sale Item

SKU - |QuantitySold ~ | SalePrice - [Category - | ModellD - | ListPrice ~| value -
300051 1 $353.00 Clothes NYB-570 $353.00 $353.00
700006 1 $266.00 Rack SAF-43 $266.00 $266.00

*

Record: 4 ([Llof2 | » Wb [& | search
$619.00

payment Method |Mastercard [=] Sales Tax $43.33

[Record: T2 0f500 [» M b [& Search

Figure 6.17

lete one and start over. Or, adjust the properties for the combo box. For example,
the Row Source property contains a SELECT query and you can edit it by adding
an ORDER BY LastName, FirstName to the end of the query. You can use the El-
lipses button (...) to open the query in Design view to add the sort order.

The next step is to improve the subform. It is a little challenging because it is
difficult to get all of the columns to fit horizontally on the form. You might have
to widen the form and the subform box. You set the column widths while the form
is running by dragging or double-clicking the column dividing lines. You can also
use the layout view to help align items while the form is displaying data. The next
changes are often easier if you close the main form and open the subform alone
in Design view. First, you should replace the SKU box with a combo box to mini-
mize data entry errors. Next, add a text box to the bottom of the form, and enter “=
SalePrice * QuantitySold” as the Control Source. Give it the name “Value” in its
properties. Next, expand the form footer and add a new text box to it. It’s formula
should be “= Sum(SalePrice * QuantitySold)”, and give it the name “Subtotal.”
Format them both as Currency with two decimal places. Figure 6.15 shows how
the forms will appear when you run the main Sale form.

Notice that the subtotal is not displayed on the main form. To get it there, you
need to copy its value from the subform. Return to the main form in Design view
and add a text box beneath the subform. The copy is made dynamically by using
a formula, but the formula is slightly complex. Instead of trying to memorize the
formula syntax, you can use the Expression Builder to create the formula for you.
On the properties for the Sale form Subtotal text box, click the Ellipses button to
open the Expression Builder. Figure 6.16 shows the rest of the steps. Open the
Sale form and select the subform to see its controls. Find the Subtotal control and
double-click it. The proper formula will be entered into the edit box. Click the OK
button to return to the properties. Set the format to Currency and run the form to
test it. You should also add one more text box to compute the total. Enter the for-
mula as “= Subtotal + SalesTax” and set its format to currency.

Chapter 6: Forms and Reports 99

=3 (‘hslnmu\ Form properﬁes % | Property Sheet x
|L”" I \ .5 A Selection type: Form
|| # Form Header Farm |Z|

|[Format| Data [Event | other| AN

Add Record Record Source Customer [gfm] =
Caption Customer |
Pop Up Mo
Modal Mo

Display on SharePoint 5il Follow Table Setti
Default View Single Form
Allow Form View Yes

Allow Datasheet View Mo

Allow PivotTable View Mo

Allow PivotChart View Mo

Allow Layout View Yes
Picture [none}
Ficture Tiling Mo
Picture Alignment Center
Picture Type Embedded
Picture Size Mode Clip
Width 5.1667"
Auto Center Yes
Auto Resize Yes
Fit to Screen Yes
Border Style Sizable
Record Selectors Yes
Mavigation Buttons Yes
MNavigation Caption
Dividing Lines Mo
scroll Bars Both
1 Control Box Yes

| # Form Footer L Close Button Yes

Min Max Buttons Eoth Enabled -
4 m | > e — -
Figure 6.18

;2

Figure 6.17 shows the final form. Your version should be similar to this one,
but there is always room for flexibility within a design. Notice that some of the
text boxes are disabled to prevent clerks from changing the data. In particular, the
SalelD and totals are generated by the system and should not be modified by the
users. The controls have an Enabled property that you can set to False.

Activity: Customize Form Properties

The form wizards are easy to use .
and do a decent job. However, you G UL

eventually will want to customize the | Make a copy of the Customer form.
forms to improve the layout or add Set the background color of the header to
more features. In some cases, you srellons

might need to make major changes to
the data connections, or you might even want to build a form from scratch. Prop-
erties are the key to all of these issues. Once you know where to look, you will
see that the wizards simply take the answers to your questions and assign values
to properties on the form. Once you understand these various properties, you can
edit them yourself to obtain more control over the forms.

Figure 6.18 shows the basic Customer form in design view. Right-click the
small square in the upper left-hand corner of the form and choose the Properties
option to open the Properties window that is also displayed. The Record Source
property is one of the most important properties affecting the overall form. This
property defines the data that will be displayed and edited on the form. Currently,
it is set to the simple Customer table. If you select that property, you will see a
small ellipses button (...). Click that button and the designer will open a query
edit window. You can add items to the query or you can sort the data to control the
order in which it will be displayed. Be careful with adding tables to the query—

Chapter 6: Forms and Reports 100

some queries are not updateable, and the form will no longer be able to collect
data. However, this trick is useful when you want to display additional data on a
form. The Sale form is a common example. The main Sale form would be based
on the Sale table, but you could also include the customer name and phone num-
ber columns from the Customer table.

Once you modify the data source, the form will have access to the additional
columns. However, they will not be displayed on the form. There are two ways to
add text boxes to a form: (1) You can click the Text Box icon in the Toolbox and
click a location on the form, or (2) You can open the Field List box on the forms
toolbar and drag the desired column onto the form. The advantage of the second
approach is that it automatically applies the appropriate styles if you are using
a template. If you use the first method, you will have to set the text box display
properties yourself. However, the Format Painter simplifies the task. Simply click
a text box that has the properties you want, click the paint brush in the toolbar, and
finish by clicking the new text box to paint it with those properties. To get more
information about any property, simple select it in the Property window and press
the F1 key for help. Using the form’s Record Source, and the text box (or List
Box) you can build a form from scratch and customize it anyway you want. How-
ever, it takes considerable time. Remember to use the Format/Align commands to
ensure everything lines up properly.

The form has three sections (header, detail, and footer), and you can set fore-
ground and background colors separately for each section. Each control item on
the form also has its own collection of properties. The properties vary depending
on the type of control, but most have a Control Source property that links them to
a specific column, along with visual properties such as fonts, location, and colors.

For practice with properties, in the Customer form set the background color of
the header section to yellow. Right-click the header background and select Proper-
ties. Select the Background propert