
Database
Management
Systems

Designing & Building Business Applications

Gerald V. Post

Fifth Edition

Oracle 11g

Database
Management
Systems
Designing and Building
Business Applications
With
Oracle 11g

Version 5.0.1 Gerald V. Post
University of the Pacific

Database Management Systems
Designing and Building Business Applications
With Oracle

Copyright © 2010 by Gerald V. Post
All rights reserved. No part of this publication may be reproduced or distributed
in any form or stored in any database or retrieval system without the prior written
consent of Gerald V. Post.

Students:
Your honesty is critical to your reputation. No company wants to hire a thief—
particularly for jobs as critical as application development and database adminis-
tration. If someone is willing to steal something as inexpensive as an e-book, how
can that person be trusted with billions of dollars in corporate accounts?

You are not allowed to “share” this book in any form with anyone else. You can-
not give or sell any information from this publication in any form to anyone else.

To purchase this book or other books: http://JerryPost.com/books

http://JerryPost.com

iv

Brief Contents
1	 Introduction

Part One: Systems Design
2	 Database Design
3	 Data Normalization

Part Two: Queries
4	 Data Queries
5	 Advanced Queries and Subqueries

Part Three: Applications
6	 Forms and Reports
7	 Database Integrity and Transactions
8	 Applications
9	 Data Warehouses and Data Mining

Part Four: Database
Administration
10	 Database Administration
11	 Distributed Databases
12	 Physical Data Storage

vContentsContents
Introduction, 1
Case: All Powder Board and Ski Shop, 2

Inventory, 3
Bindings and Boots, 4
Sales, 5
Rentals, 6

Lab Exercise, 6
Project Outline, 7
Project Plan, 7
 Feasibility, 9
The Database Management System, 9
Create a Table, 12
Create a Form, 15

Exercises, 22
Final Project, 24

Database Design, 25
Database Design, 26
Oracle Data Types, 26
Case: All Powder Board and Ski Shop, 28

Business Objects: First Guess, 28
Relationships, 29

Lab Exercise, 30
Database Design System, 30
All Powder Design, 31

Exercises, 38
Final Project, 40

Data Normalization, 41
Database Design, 42
Generated Keys: Sequences, 43
Case: All Powder Board and Ski Shop, 43
Lab Exercise, 44

All Powder Board and Ski Database
Creation, 44

Exercises, 56
Final Project, 57

Database Queries and SQL, 58
Database Queries, 59
Case: All Powder Board and Ski Shop, 59
Lab Exercise, 60

All Powder Board and Ski Data, 60
Computations and Subtotals, 69

Exercises, 75
Final Project, 76

Advanced Queries, 77
Advanced Database Queries, 78
Case: All Powder Board and Ski Shop, 79
Lab Exercise, 79

All Powder Board and Ski Data, 79
SQL Data Definition and Data Manipulation,
90

Exercises, 96
Final Project, 98

Forms and Reports, 99
Forms and Reports, 100

Model-View-Controller, 101
Case: All Powder Board and Ski Shop, 102
Lab Exercise, 103

All Powder Board and Ski Shop Forms, 103
All Powder Basic Reports, 131

Exercises, 136
Final Project, 137

Database Integrity and Transactions,
138
Program Code in Oracle, 139
Case: All Powder Board and Ski Shop, 144
Lab Exercise, 144

All Powder Board and Ski Data, 144
Database Cursors, Keys, and Locks, 168

Exercises, 172
Final Project, 174

Applications, 175
Applications, 176
Case: All Powder Board and Ski Shop, 176
Lab Exercise, 177

All Powder Board and Skip Shop Application,
177
Connecting Pages with Task Flows, 185
Testing Login Credentials, 190
A Report for One Customer Using the Login
Data, 194
Connect Table Row to Detail Report, 198

Exercises, 215
Final Project, 216

Data Warehouses and Data Mining, 217
Data Warehouse, 218

Tools and Downloads, 219

viContents

Case: All Powder Board and Ski Shop, 220
Lab Exercise, 220

All Powder Board and Ski Shop, 220
Introductory Data Analysis, 236

Exercises, 246
Final Project, 248

Database Administration, 250
Database Administration Tasks, 251
Case: All Powder Board and Ski Shop, 252
Lab Exercise, 253

All Powder Board and Ski Shop, 253
Security and Privacy, 261

Exercises, 268
Final Project, 269

Distributed Databases, 270
Location, Location, Location, 271
Case: All Powder Board and Ski Shop, 272
Lab Exercise, 272

All Powder Board and Ski Shop, 272
The Internet, 276

Exercises, 279
Final Project, 280

Physical Database Design, 282
Storing Data, 283
Case: All Powder Board and Ski Shop, 284
Lab Exercise, 285

All Powder Board and Ski Shop, 285
Data Clusters, 288

Exercises, 291
Final Project, 292

1

Objectives

•	 Identify the main elements of the case.
•	 Structure the work needed for the case.
•	 Create a feasibility analysis of the case.
•	 Create a new database.

Chapter Outline

Introduction
1Chapter

Case: All Powder Board and Ski Shop, 2
Inventory, 3
Bindings and Boots, 4
Sales, 5
Rentals, 6

Lab Exercise, 6
Project Outline, 7
Project Plan, 7
 Feasibility, 9
The Database Management System, 9
Create a Table, 12
Create a Form, 15

Exercises, 22
Final Project, 24

2Chapter 1: Introduction

Oracle is a complex product with many options. Databases reflect complex in-
teractions among data. These complexities make it challenging to learn to create
databases and to use the DBMS software. This lab workbook explains most of the
basic steps needed to design a database and build an initial database application.
However, it is difficult to remember all of the tasks that you will perform in an ac-
tivity. You should seriously consider keeping a lab notebook or journal. Whenever
you have to make a decision or solve a problem, write a note in the journal with
the basic information and explain your decision. Later, if you encounter a similar
problem, you can look at your notes to see which techniques worked and which
did not. This journal could be electronic—which will make it easier to organize
and search later. But, sometimes it is faster to keep a paper journal.

Case: All Powder Board and Ski Shop
The ski industry has been through many changes in the 50 years since Bill Shimek
founded the ski shop that is now run by his grandson. One of the biggest changes
is reflected in the prominence of “Board” in the shop name. Snowboards have
revolutionized the industry in several respects. They revived youth interest in the
sport, brought new designs to equipment and resorts, and increased sales dramati-
cally. On the other hand, the increased changes in ski and snowboard equipment
make it more difficult for shops to stock the hundreds of options and combinations
that enthusiasts might want. Shops have become larger, forcing small firms out of
business. Even large ski shops have had to identify their customers and forecast
customer demands carefully to make sure the high-demand equipment is in stock.
Tracking sales, trends, and buyer needs has become critical to survival.

Another factor in the industry is that the firms increasingly rely on rentals.
Partly because of the rapid changes in the industry, many people prefer to rent
equipment so they can avoid having to buy new boards and skis every year. Con-
sequently, the shop buys several relatively standard boards and skis every year
and rents them out. At the end of the year, the used equipment is sold at a discount
to make room for next year’s models.

Inventory

Snowboards
	 Manufacturer	 Mfg ID	 Size	 Description	 Graphics	 List Price	 QOH
Freestyle
Pipe
Standard
Extreme

Skis
	 Manufacturer	 Mfg ID	 Size	 Description	 Graphics	 List Price	 QOH
Cross country-skate
Cross country-trad.
Telemark
Jumping
Freestyle
Downhill/race

Figure 1.1

3Chapter 1: Introduction

Inventory
Monitoring inventory is a first critical step in the process of providing the selec-
tion demanded by customers. Figure 1.1 shows some of the detailed information
needed, as well as the diversity of equipment available. Note that because of the
variety of styles, there are many different types of snowboards and skis. Figure
1.1 shows the importance of the skill categories. Manufacturers produce special
boards and skis for each of these categories. Of course, it would be impossible
to stock all of the required sizes for rental purposes. Rental boards and skis tend
to be as generic as possible. Even for sales, some sizes of the high-end skis and
boards have to be special ordered.

Within a category, manufacturers tend to sell boards and skis targeted for dif-
ferent levels of skiers—from beginner to intermediate to expert (Type I, Type II,
and Type III skier). Even within the type classifications, All Powder salespeople
evaluate customers on the basis of their aggressiveness on the slope. Because of
the size of snowboards, along with the youthful image of the sport, manufacturers
place a high value on the graphics (images and colors) displayed on both sides of
the boards. Customers have often been known to choose a board because of the
graphics. Some of this emphasis on graphics has filtered down to skis as well.

Sizes of boards and skis are somewhat tricky and definitely present a challenge
to keeping adequate inventory. The length of the ski or board is a critical number,
but the customer’s choice is also based on several other ski measurements. Snow-
boards revolutionized board and ski design by adding a narrower waist to aid in
turning. This concept migrated to most varieties of skis as well. So customers of-
ten want to know the waist width, sideout depth, and effective edge length as well.
Generally, boards and skis with narrower waists are targeted for more advanced
skiers. Additionally, the construction of the board or ski, in terms of materials and
thickness, significantly affects its flexibility and handling. Customers generally
want to feel the ski to evaluate and compare its flexibility, but measures of stance
location (for boards) and the rider weight range provide some estimate of the han-
dling characteristics. Most skis and boards are also designed for a particular riding
weight. For cross-country skis it is particularly important to get the proper length

Boot-Binding Compatibility

	Manuf.	 Mfg. ID	 Board/Ski	 Binding/Style	 Color	 Price	 Cost

Size QOH
34

35

36

...

Figure 1.2

4Chapter 1: Introduction

for the weight of the skier. With cross-country skis, the central part of the ski, un-
der the skier’s foot needs to float above the snow when weight is balanced on both
skis. When the skier steps down, it pushes the kick area into the snow to provide
traction.

Bindings and Boots
Bindings and boots represent another common problem for All Powder and other
ski shops. Each ski and each board can technically be fitted with several types
of bindings. Each binding type generally requires a matching style of boot; and
some of the boots can work only with some bindings. For example, snowboards
can use clincher, strap, or plate bindings. Cross-country skis can use pin, strap,
or rod bindings. Most modern skis use the rod binding, but customers sometimes
want boots that fit the older pin bindings. Downhill, freestyle, and slalom skis use
similar bindings, and they are the most popular so the store usually stocks several
models focusing on skill levels.

Figure 1.2 shows an example of the card system that All Powder uses to help
salespeople select bindings and boots. Currently, the salespeople are supposed to
change the quantity on hand whenever a boot or binding is sold. Of course, the
cards are rarely kept up-to-date and the salespeople often have to go search the
physical inventory to see if a size needed by a customer is in stock. Note that
boots and bindings are specifically matched and a boot for one purpose can rarely
be used for a different application. For example, it would not be possible to use a
cross-country boot in a downhill binding. The binding is usually listed as a type
(rod, step-in, telemark/cable, and so on). On the other hand, it is possible to mount
bindings on different types of skis. For instance, you could mount a telemark
binding to a downhill ski. Some of the strange combinations should be avoided,
but this knowledge will not be needed in the database.

Sales
Customer		 Sale Date
First Name	 Last Name	 Salesperson
Phone	 E-Mail	 Department

Address	 Shipping Address
City, State ZIP	 City, State ZIP

Male/Female	 Ski/Board
Age/Date of Birth	 Style		 Skill Level

Item Description New/Used Size Quantity Price Subtotal

	 Item Total
	 Tax
	 Total Due			 Method of Payment

Figure 1.3

5Chapter 1: Introduction

Sales
The sales form shown in Figure 1.3 is fairly standard. All of the hard work in
terms of configuration was done by the salesperson. In some cases, the salesper-
son might ask the customer to initial some items that might present compatibility
issues to make sure the customer is aware of the potential problems.

Returns are usually accepted on most items as long as they have not been used
outside (e.g., scratched or worn boots cannot be returned). The description gener-
ally includes the manufacturer’s name and style. The SKU (stock keeping unit)
is a special number created within the store to code each item. It is important for
salespeople to identify the type of boarding/skiing and the skill level. This infor-
mation is used to send customers mailings about special sales. The owner also
has started thinking about keeping customer sizes in a database. This informa-
tion would be particularly helpful in clearing out last year’s inventory of special
sizes (very small or very large), because it would help pinpoint customers who
could use those special sizes. The catch is that the store owner is concerned about
consumer privacy and fears that customers may not want to have their sizes on
file at the store. If a customer has already purchased items in a specific category
and size, that data will be available. The difficulty lies in having salespeople ask
customers their sizes when they are not purchasing these products. For instance,
it might appear rude to ask a customer who only came in to buy ski wax for his or
her jacket size.

The store evaluates salespeople by the amount of sales they make, so it is im-
portant to track sales by each employee. Of course, the database should contain
additional information about each employee, such as his or her phone number,
address, and primary department assignment. Since clerks rarely write down the
department names properly, it makes sense to have a separate lookup table for the
department names.

Rentals
Customer		 Rental Date
First Name	 Last Name	 Expected Return
Phone	 E-Mail	

Address	 Shipping Address
City, State ZIP	 City, State ZIP

Male/Female	 Ski/Board
Age/Date of Birth	 Style		 Skill Level

Item Description Size Fee Return Date Condition Charges

	 Item Total
	 Tax
	 Total Due	 Added Charges

	 Method of Payment	 Signature

Figure 1.4

6Chapter 1: Introduction

Also, note that some of the best customers participate in several styles, even
crossing between skis and boards. A customer who is an expert at downhill skiing,
however, might be a beginner with snowboards.

Rentals
The form to handle rentals is similar to the sales form. But notice in Figure 1.4
that columns have been added for return date, condition, and additional charges.
The additional charges are imposed if an item is returned late or if it is damaged.
Additionally, customers are required to sign the form to indicate their agreement
with the skill level, rental conditions, and the release printed on the back of the
form. Katy, the current manager, has talked about capturing the customer signa-
tures digitally and storing them online, but it is not a high priority.

Observe that the current form requires that each rented item be checked off
separately when it is returned. Although store clerks often complain about having
to mark each row separately, about 20 percent of the time, a customer forgets to
return an item and has to bring it back later.

Renting ski equipment also raises the issue of reservations. On some holidays,
all of the equipment is rented out before 10:00 A.M. Some long-term customers
have suggested they would like to be able to reserve equipment. Currently, the
rental managers sometimes set aside equipment if a valuable repeat customer calls
in advance. This process works reasonably well, but the managers have talked
about creating a system that is available to everyone. One of the drawbacks is
that they are concerned that the general public might reserve items and then never
show up, leaving equipment unused that could be rented to someone else.

Lab Exercise
The first step in any project is to iden-
tify some basic elements of the system.
What are the goals? What is the scope?
What tools will be needed? What are
the benefits? What are the expected
costs? How much development time
will be needed? All of these questions are difficult to answer and rarely have a
single value. Instead, you need to create a project plan. The plan will include a
feasibility statement that describes the basic costs and potential benefits. As a real-
world project, the plan would also include a list of developers and a statement of
expected fees, so the owners can evaluate the decision to hire you.

Project Title: Sales System for Boards and Skis
Customer: All Powder Board and Ski Shop
Primary Contact: Katy
Goals:
Project Description:
Primary Forms:
Primary Reports:
Lead Developer:
Estimated Development Time:
Estimated Development Cost:
Date Prepared:

Figure 1.5

Action
Find information about skis and

snowboards on the Internet.
If necessary, install and upgrade the

DBMS.

7Chapter 1: Introduction

Project Outline
As a first step in developing the project plan, you need to summarize the overall
project. This summary should contain a brief description of the project, its goals,
and initial lists of primary forms and reports. Ultimately, this summary would also
include the scope and anticipated budget for the project.
Activity: Review the Case and Research the Industry
For the purposes of this lab, you will
prepare a project proposal for develop-
ing the sales system needed by the All
Powder Board and Ski Shop. The rental
component will be left for another ex-
ercise. You should begin by reviewing the description of the company. You should
also use the Internet to check out some of the manufacturers and some of the com-
petitors. You need to be sure that you understand the key factors in the industry.
Figure 1.5 provides a possible structure for your summary. You should review the
case and enter the basic information requested.

Project Plan
The project plan consists of a detailed breakdown of the steps needed to create the
final system. A common approach is to follow the steps of the systems develop-
ment life-cycle methodology: Initiation, Analysis, Design, Implementation, and
Review. Some organizations have rigid descriptions of each of the steps involved
in this process. Some organizations adopt a more flexible approach. Either way,
this plan should outline the basic steps that need to be completed and an estimated
schedule.

In the initial phase, it is also helpful to identify any potential risks to the project
development. At various stages, what might go wrong? If you are aware of the po-
tential problems, managers can monitor for them and can prepare solutions more
quickly.

1.	 Define the project and obtain approval.
2.	 Analyze the user needs and identify all forms and reports.
3.	 System Design
	 a.	 Determine the tables and relationships needed.
	 b.	 Create the tables and load basic data.
	 c.	 Create queries needed for forms and reports.
	 d.	 Build forms and reports.
	 e.	 Create transaction elements.
	 f.	 Define security and access controls.
4.	 Additional Features
	 a.	 Create data warehouse to analyze data as needed.
	 b.	 Handle distributed database elements as needed.
5.	 System Implementation
	 a.	 Convert and load data.
	 b.	 Train users.
	 c.	 Load testing.
6.	 System review

Figure 1.6

Action
Fill in the project milestone dates based

on your school calendar.

8Chapter 1: Introduction

Activity: Create the Initial Project Plan
Project plans and schedules are often
shown with Gantt charts to illustrate
how the various steps depend on each
other. If you have access to software
such as Microsoft Project, it is relatively easy to create the project plan. Figure
1.6 shows the basic steps that the labs will follow in building the application.
Ultimately, you would estimate the times required for each step. However, until
you have read the rest of the book and worked with the databases, it is difficult
to estimate the times needed for each step. For now, evaluate the steps and try to
identify any dependencies between the tasks. For example, is it possible to create
the forms without having the database tables and relationships? Assuming you

Assumptions

Annual discount rate 0.03

Project life/years 5

Costs Present Value Subtotal

One time
DBMS software

Hardware

Development

Data entry

Training

Ongoing
Personnel

Upgrades/annual

Supplies

Support

Maintenance

Benefits

Cost Savings
Better inventory control

Fewer clerks

Strategic
Increased sales

Other?

Net Present Value

Figure 1.7

Action
Create the feasibility plan for the project.

9Chapter 1: Introduction

have several people to help, reorganize the tasks so that as many tasks as possible
can be done at the same time.

 Feasibility
Feasibility studies are notoriously difficult. The concept is certainly simple: Iden-
tify the potential costs and potential benefits of a system and compare them. The
problem is that benefits might not be quantifiable, so it is difficult to attach mean-
ingful numbers. Nonetheless, it is useful to at least write down the anticipated
costs and expected benefits. Even if numbers are not available, at least managers
can see a concise statement of the analysis.
Activity: Create the Feasibility Analysis
Figure 1.7 shows the basic elements of a feasibility study. You need to create a
spreadsheet with these main categories. Use research to identify approximate
costs of the various components. For example, assume that the shop will need
to purchase a server to host the main database and two client computers for the
sales staff. With Oracle, several configurations are possible. Examine the software
license to determine the number of copies you will need and the approximate cost.
Other numbers, including benefits can be estimated. Remember that annual costs
and benefits should be discounted to compensate for the time value of money. Use
the present value (PV) function in Excel. Although the benefits are relatively well-
defined, they can still be difficult to estimate. For example, how will the system
reduce the need for sales clerks? How many or how many hours? How much do
clerks earn? Likewise, in terms of inventory control, how much money will be
saved by not having to slash prices at the end of the season to clear the unsold
inventory? You need to know or estimate the number and value of items typically
left at the end of the season. In practice, the managers might have answers to
some of these questions, but you will still have to do additional research. In this
example, be sure that you spell out your assumptions.

The Database Management System

Activity: Explore the DBMS
Although Oracle is one of the most popular database systems, it can be some-
what difficult to install and maintain. Generally, the Oracle DBMS is installed on
a server and the developer software is installed on the individual workstations.
In a production environment, separate servers are often used for the DBMS and
the Web or Application server. However, it is possible to install all of the current
Oracle components onto a single computer. If you are working in a classroom lab,
an Oracle server should already be configured, and your machines should have
the Oracle client software installed and tested. If you are working on your own

https://academy.oracle.com
	 Oracle academic initiative--software
http://www.oracle.com/technology
	 Oracle technology network--downloads
http://www.oracle.com/technology/documentation
	 Oracle documentation—requires OTN

Figure 1.8

10Chapter 1: Introduction

computer, Figure 1.8 shows where you can obtain the Oracle software through
two main programs: the academic initiative and the technology network. If your
school does not participate in the OAI program, the technology network enables
software developers to download the most recent software and the documentation,
but it requires a relatively fast Internet connection. Most of the labs in this book
can be completed using the enterprise 11g database, the SQL Developer, and the
JDeveloper tools. If you install Oracle yourself, be sure to follow the installation
instructions from Oracle completely. In particular, if you use DHCP to obtain your
network address (just about everyone), you need to install the Microsoft Loopback
Adapter. The process is spelled out in the Oracle Windows Installation Guide.
The Loopback Adapter can be installed from the Control Panel/Device Manager.
Right-click the computer name and choose the option to add legacy hardware. Do
a manual search, choose Network adapters, then Microsoft and pick the Microsoft
Loopback Adapter. It should not disrupt your normal network connection. Fol-
low the Oracle installation process and accept most of the default values unless
you need to store data in different locations on your computer. Write down any
changes you make and write down any messages you see.

If you install your own copy of Oracle, be sure to write down the SID, and port
numbers used—particularly the http URLs created for the administration tools.
You should also write down the password created for the sys account. Log into

Figure 1.9

http://servername:1158/em

Requires DBA role

Add connection
Name you
will recognize

Username
Password

Server name
Typical port
Typical SID

SQL Developer

11Chapter 1: Introduction

that account as sysdba and create a
new user account for yourself. Assign
the DBA role to that account and write
down the username and password. Use
the new DBA account for the exercises
in this book. Do not use the sys or sys-
dba accounts for development.

To access an Oracle database, the
machine you are using must have an
Oracle network configuration that de-
scribes how to reach the database. This
configuration file defines a name for each Oracle database that it knows how to
reach. To connect to an Oracle database, you need the database name, a user name,
and a password. This chapter assumes that you have already installed Oracle and
have an account to use.

Data in Oracle is stored in tables, and these tables are collected into a schema.
A schema is simply an organization structure assigned to each user. With a sche-
ma, your work stays separate from tables created by other users.
Not counting forms and reports and a couple of other tricks, you have three basic
ways to connect to an Oracle database: (1) SQL Plus, (2) Enterprise Manager (ad-
min), and (3) SQL Developer. SQL Plus runs as a command-line program on the
server and you are not likely to use it anymore. The Enterprise Manager requires
at least DBA permissions and is used to monitor and configure the database. It
provides a more graphically-oriented approach to several administrative tasks,
and provides assistance in creating common SQL commands. If you are running
your own copy of Oracle, you can play with the Enterprise Manager. If you are
using a shared copy of Oracle, you probably do not have DBA privileges, so you
will not be able to use it. It is examined in more detail in Chapter 10.

That leaves SQL Developer—a relatively new tool. It creates SQL Worksheets
to enter and run SQL commands on the server. This tool can be installed on cli-
ent computers that can connect across the network—it will not connect across a

Figure 1.10

Action
Start SQL Developer.
Connect to the database.
Enter the CREATE TABLE commands.
You can use the designer but need the

Advanced options to set NVARCHAR2.
Click the Run button.
Type DESCRIBE Customer to ensure

that the table was created correctly.

Type command.
Highlight/select.

Click Run

12Chapter 1: Introduction

standard Internet connection. (In a pro-
duction environment, you might set up
a virtual private network or VPN.) But
Oracle does not provide a Web-based
development or SQL tool.

The process of connecting to an Or-
acle server depends on which of the tools you will use. Figure 1.9 shows that
the startup screens for the EM and SQL Developer. The EM requires a specific
URL including the port number. The value used here is the standard default value
(1158). It is possible to change these values when the products are installed, but
you should keep these values to reduce confusion.

Create a Table
SQL Developer can be started from your computer’s main menu. It does not ask
for a username or password when it starts because it can be connected to multiple
data sources at the same time—including different versions of Oracle, or even Mi-
crosoft SQL Server and Access databases. When you add a Connection, you will
be asked to specify the name of the database server and it’s SID along with your
username and password.

To get a quick perspective of the various components of the DBMS, you need
to build a simple database. One of the first things you have to understand with Or-
acle is that it is heavily reliant on SQL—which will be covered in greater detail in
later chapters. Most administrators perform all tasks by writing SQL statements.
If you have DBA privileges, you can use the Enterprise Manager to perform many
tasks. However, most real Oracle DBAs use SQL, so you really should work with
SQL for now. For the most part, this book will use plain SQL statements.

To illustrate the process of creating a database, you need to start SQL Devel-
oper. The first step is to create a small table. This table will hold basic customer
data, so it needs columns for CustomerID, LastName, FirstName, Phone, Email,

Figure 1.11

Action
Insert three lines of data into the table

using SQL Worksheet.
Copy the resulting INSERT commands

and save them in your lab notebook.

13Chapter 1: Introduction

Address, City, State, and ZipCode. Figure 1.10 shows the CREATE TABLE com-
mand you should enter to build the table. The spacing and letter case are not im-
portant, but are used to make the command easier to read. Unless you put quotes
(“) around the table and column names, Oracle will convert all names to upper
case. The semi-colon at the end is critical—it tells Oracle you are finished typing
the command. If you forget the semicolon and just press the Enter key, you will
simply get new blank lines. That is OK, just put the semi-colon in the current line.

SQL Developer does have a visual method for creating tables, but the current
version has some limitations. You can right-click the Tables entry in the navigator
and choose New Table option. The tool enables you to enter column names and
choose data length in a grid. However, the base grid supports only a limited set of
data choices; that do not include the NVARCHAR2 options. But, NVARCHAR2
is used to store Unicode characters, so the default data type is too limited. Setting
the Advanced checkbox opens a more detailed editor, where additional options in-
cluding NVARCHAR2 can be specified for each column. It is also possible to see
the SQL statement. Once you learn the main data types, it is usually easier to just
type the CREATE TABLE command.

Figure 1.12

Figure 1.13

1. Right-click: Open

2. Insert row, enter data

3. Commit changes

INSERT INTO CUSTOMER(CUSTOMERID, LASTNAME, FIRSTNAME, PHONE, EMAIL,
ADDRESS, CITY, STATE, ZIPCODE)
VALUES (1, ‘Jones’, ‘Joe’, ‘111-222-3333’, ‘jones@msn.com’, ‘123 Oak’, ‘Walnut Grove’, ‘CA’,
‘95111’);

INSERT INTO CUSTOMER(CUSTOMERID, LASTNAME, FIRSTNAME, PHONE, EMAIL,
ADDRESS, CITY, STATE, ZIPCODE)
VALUES (2, ‘Smith’, ‘Sue’, ‘333-555-2222’, ‘smith@msn.com’, ‘333 Elm’, ‘Lockeford’, ‘CA’,
‘95333’)

INSERT INTO CUSTOMER(CUSTOMERID, LASTNAME, FIRSTNAME, PHONE, EMAIL,
ADDRESS, CITY, STATE, ZIPCODE)
VALUES (3, ‘Mason’, ‘Mike’, ‘444-222-3333’, ‘mike@msn.com’, ‘423 Palm’, ‘Lodi’, ‘CA’, ‘95222’)
commit;

14Chapter 1: Introduction

In any case, you should copy the
SQL command and save it in your
notes. You will encounter many cir-
cumstances where you need to recre-
ate a table or alter it slightly. It is much
easier to do when you can edit the SQL
statement and rerun it.

Figure 1.11 shows a useful trick with
Oracle SQL. The DESCRIBE command displays basic information about tables
and other objects. Simply type: DESCRIBE Customer (you can use all lower case
letters). With SQL Developer, you can also expand the list of tables and see the
column details of the specific table in the navigator list.

The next step is to enter some data for fake customers. You can use the SQL
Developer Worksheet. As shown in Figure 1.12, right-click the table and choose
Open. Click the icon to Insert Row. Enter the data in the worksheet. After entering
two or three rows, click the Commit changes icon. This action will save the data
and also show you the SQL statements used to insert the rows. Keep in mind that
everything you do in the designer is converted to SQL so that it can be submitted
to the DBMS for processing. It is often useful to copy and save the SQL state-
ments in an electronic notebook in case you have to run them again in the future.
Figure 1.13 shows the SQL INSERT commands. These commands are explored in
more detail in Chapters 4 and 5.

Go back and look at the CREATE TABLE command and you will see that each
column except CustomerID was defined as NVARCHAR2, which means it is a
text column. Text data must be surrounded by quotation marks. If you are curious,
the “N” in NVARCHAR2 stands for “National,” and means that you can enter

Action
In JDeveloper, select Application/New.
Name it AllPowder01.
Select Template: Fusion Web Application

(ADF).
Add the ADF Faces components.

Figure 1.14

15Chapter 1: Introduction

Unicode data. For example, you could
enter special language characters for
various languages, including Chinese
and Japanese ideograms. To enter na-
tional language characters, you might
have to install the appropriate editor
(IME). When using INSERT com-
mands, you should also use a special
notation to indicate the special characters. For example, N΄María΄ where the quo-
tation mark is preceded by the letter N.

Finally, note the use of the COMMIT command at the end. Whenever you
make changes to data tables in Oracle, you eventually need to write a COMMIT
statement. It tells the DBMS that you are finished making change and they should
all be written to the tables. In this example, you could have typed COMMIT after
each INSERT command, but it is time-consuming to type it that often when you
are entering data by hand.

Create a Form
You probably noticed that the INSERT command is a relatively painful method of
entering data into tables. You certainly cannot expect clerks to enter data this way.
Even entering data through the table editor is risky. In practice, you will rarely
enter data directly into tables. Instead, you will build forms that users can run to
enter and edit data. Oracle provides several tools to help build forms and reports.
This workbook focuses on the J2EE (Java) Web forms using the application de-
velopment framework (ADF).

Figure 1.15

Action
Open Step 2: Connect to a database.
Create a Database connection (button).
Enter the database name and password.
Verify the server name and SID.
Click the Test Connection button.

16Chapter 1: Introduction

You need JDeveloper installed on
your computer to use it to create new
forms and reports. JDeveloper is an
integrated development environment
(IDE) that contains wizards and other
tools that help create forms and gener-
ate code to build applications. It can be
downloaded from the Oracle Technol-
ogy network. Installation consists of
unzipping the files into a folder on your
computer. Remember the folder loca-
tion. Find the main file (folder/jdev/
bin/jdeveloper.exe), right-click it and choose the option to create a shortcut on
your desktop to make it easier to start. Also, the first time you run JDeveloper, you
will be asked to locate the main Java.exe program from the JDK (Java Develop-
ment Kit) folder. JDeveloper installs a version of the JDK into the Oracle folder,
for example: C:\Oracle\Middleware\jdk160_14_R27.6.5-32\bin\java.exe. Alterna-
tively, you can download a newer version of the JDK from Sun (www.sun.com/
java).

Once JDeveloper is installed, the built-in wizards help you create forms and re-
ports. When the system starts, accept the default option to include all wizards. The
process begins by creating an application. Ultimately, applications contain many
forms and reports, as well as business logic to connect the forms and take various
actions based on user input. For now, you will create a simple form to edit data in
the Customer table.

Figure 1.16

Action
Open Step 3: Build Business Services.
Open substeps.
Step 3.1: Add Entity
Choose the Model object.
At Entity Objects: Click Query button.
Select the Customer table.
Add it to the selected Updatable Views.
Skip the Read-only View objects.
Stick with default choices.

17Chapter 1: Introduction

In JDeveloper, select Application/
New and name it AllPowder01 or
something similar that you will recog-
nize later. For the most part, you can
use the default values for the directory
and package prefix. If you are running
on a shared lab computer, you might
have to select a different directory to
hold your files. The most important
step is to choose the Fusion Web Ap-
plication (ADF) template—which loads
some fundamental objects to help cre-
ate and run forms. Figure 1.14 shows the selection of the Fusion ADF.

Oracle has created several tools that add more features to Web pages. These
components are grouped into the ADF Faces collection. They might not be re-
quired for this simple form, but you will want to add them for most applications.
Figure 1.15 shows the setup where you find the ADF Faces and transfer them to
the right side.

Once the application is created, you will see a checklist of steps. Only a couple
of the steps are needed for this simple project. If you look through the list and ex-
pand a couple of steps, you will see that many have multiple substeps. You should
also note that the steps have links to help and additional details. Figure 1.16 shows
the start of the list.

One of the most important steps is to connect to the database—Step number
two on the list of tasks. Select Step 2 on the checklist and click the button to
Create a Database Connection. Figure 1.17 shows the basic form. Assign a name

Figure 1.17

Action
Return to the Checklist.
Open Step 5 and the substeps.
Open Step 5.2: Create Pages.
Create a JSF Page.
Project: ViewController.
Name: Customer.jspx
Quick Start Layout: One Column Header.
Use the defaults to finish.

18Chapter 1: Introduction

to the connection (such as AllPowder
or Chapter01). Enter the username you
were provided or one that you created
to use as a developer. Enter the associ-
ated password. For now, ensure that the
Save Password box is checked so you
can avoid having to log in constantly.
Check the server hostname. If JDevel-
oper is running on the same computer
as the Oracle database, you can use the
computer’s name or just localhost. En-
ter the SID—which needs to match the
SID value entered when the database
was created. Always run the Test Connection button to ensure you entered the data
correctly. If the connection fails, double check all of the data. When finished, click
the OK button to close the editor.

The next main step is to define an entity in the Model that will hold the data.
Oracle ADF uses an architecture known as Model-View-Controller (MVC). The
Model holds the data and interrelationships. It consists of objects that know how
to retrieve and store data in the database tables. The View holds objects to display
pages. The pages hold objects that exchange data with the objects in the Model.
The Controller (or Services) holds objects that contain logic to evaluate the data
and transfer from one page to another. One Model object (Customer) and one
View object (display page) are needed for this simple test project.

Open Step 3 (Build Business Services) and click the link to open the substeps.
Choose Step 3.1 (Add Entity), then select the Model project to hold the entities.
Figure 1.18 shows the form used to select the tables. Click the Query button to get
a list of all tables in your database schema. Your database probably holds only the
Customer table you created, unless you are using the full All Powder database.

Figure 1.18

Action
At the top of the page, type Customer.
Select/highlight it and choose the

Heading 1 style from the dropdown list.
Expand Data Controls navigator (on the

left-side).
Drag CustomerView1 onto the lower

page section.
Choose Form/ADF Form.
Check boxes for Navigation and Submit

buttons.

19Chapter 1: Introduction

Select the Customer table in the list on
the left side. Click the single arrow to
move it to the right side list of selected
tables.

Click the Next button to move to the
next screen. The goal is to create a page
that edits the Customer data, and this
page enables you to create updatable
views. Select the Customer table and
move it to the right-side list. Click the
Next button to move to the next set of
choices. This set of choices is similar,
but it refers to Read-only views. These
tables are typically used for lookup lists. None are needed at this time, so click
the Next button. Continue through the wizard, leaving the default values, until the
wizard finishes. Click the link near the top to return to the main checklist.

The next major step is to create a page to display the data. Open Step 5 and the
substeps. Open Step 5.2 (Create Pages). Choose the option to create a JSF page,
and store it in the ViewController project. Name it Customer.jspx, which creates
the page in XML format and supports additional options later.

Every page can be assigned a layout—in fact, you can create a special template
that can be used as the foundation for all pages to ensure a consistent look across
a project. For now, as shown in Figure 1.19, simply choose the Quick Start Layout
and pick the One Column which is a single-column page with a simple header.

The main objective is to put form controls on the lower section of the page that
display the columns (name, phone, and so on) so they can be edited by the us-
ers. Look at the JDeveloper layout and find the Data Controls window—probably
on the middle-left side by default. Expand the section and the entries within it.
Find the CustomerView1 object and drag it onto the form. Figure 1.20 shows the

Figure 1.19

Action
Right-click the form, choose Run.
Wait for the server to start.
If on a server, best to add the server to

the list of Trusted Sites in Options/
Security.

Probably want to resize the E-mail
input box in Properties: Appearance:
Columns.

Use bindings.Lastname… instead of
bindings.Email…

20Chapter 1: Introduction

resulting pop-up menu. Choose the Form/ADF Form menu options, which will
automatically create controls for all of the columns on the form—including the
labels. Before closing the fields page, click the two check boxes at the bottom left:
Include Navigation Controls and Include Submit button.

Figure 1.20

Figure 1.21

21Chapter 1: Introduction

Add a title to the top of the form by clicking the top/header section. Type Cus-
tomer as the header. Because the page is largely based on HTML, you can add
styles. Select the word Customer and choose Heading 1 from the style drop-down
list. You can also add a cascading style sheet (CSS) and define styles for any con-
trols on the form. Figure 1.21 shows the design layout of the page.

You are almost finished. Right-click the form and choose the option to Run it.
You will probably have to wait for the application to compile and the application
server to run. Note that if you are running the application on a server, you will
probably have to add the server to the browser’s list of trusted sites. In Microsoft
Internet Explorer, use the menu Internet Options/Security/Trusted Sites.

Figure 1.22 shows the actual form. Use the navigation buttons to check out
some of the data rows. You can edit some of the data and click the Submit button
to save the changes to the database.

Your initial version of the form probably has a relatively large text box for the
e-mail entry because that column was defined with more characters than the other
columns. An easy way to reduce the width is to change its properties. You can use
the red square on the JDeveloper menu to stop the form browser. Right-click the
E-mail box on the form and choose the Properties option. The properties browser
is typically displayed at the bottom right corner of JDeveloper. Expand the prop-
erties for Appearance until you find the Columns entry. Change the entry to use
bindings.Lastname… instead of bindings.Email… This change will set the width
of the text box to match that used for the LastName column instead of the Email
column. You could also replace the entire entry with a fixed number. Re-run the
form. When you are finished, save everything. You can close JDeveloper and ac-
cept the options to stop the Web server. If you look at the source for the form in
the browser, you will see that Oracle created relatively standard HTML and Javas-
cript code to build the page. Once an application is built and deployed to a produc-
tion server, almost any browser can access and display the page. Of course, secur-
ing the application and building an application process require additional work.

Figure 1.22

22Chapter 1: Introduction

Because of the large number of options, it takes many steps to create a form.
In the end, the process is not too complex, but it is somewhat confusing the first
few times through. This example is only a small step, but it begins to illustrate the
power of building Web forms.

Exercises

Many Charms
Madison and Samantha, friends of yours, have a small business selling charms for
bracelets and necklaces. They buy some of the charms they sell; others they make.
So far, they have run the business as a hobby, selling primarily to friends and rela-
tives. But they have recently established a website to display pictures and prices
of some of the charms. You have agreed to build a database for them to track their
inventory, customers, and sales. Any orders they receive through the website will
be e-mailed, so the website does not have to be connected live to the database.
The database is a relatively traditional sales system, but it is slightly complicated
by the nature of the charms. Charms come in a variety of shapes, sizes, and mate-
rials. For example, customers who want a quarter-moon charm have a choice of 4
mm or 8 mm; and of silver, gold, gold plate, bronze, or painted ceramic. Charms
are also offered in categories such as animals, hearts, birthdays, and so on. Addi-
tionally, the duo offers a variety of chains and pins to hold the charms. Eventually,
they want to track the sales by all of these categories, so they will know which
items are selling the best and which make the most profit. Costs and prices tend to
fluctuate. If they purchase items in large bulk, the per-piece cost is lower, but they
need to know they can sell the entire shipment. If an item sits around too long,
they find that they have to significantly cut the price just to clear out the stock. Of
course, gold items are more expensive, making them more difficult to sell, and
they are reluctant to tie up their money in high-priced merchandise.
1.	 Research similar sites on the Internet. Describe or sketch the major forms and

reports that the company might use.
2.	 Create the initial proposal and feasibility study.

Standup Foods
Laura runs a catering company that focuses on Hollywood movie studios. Her
chefs prepare hors d’oeuvres, sandwiches, and other food items that are served to
the cast and crew of various movies and studios. To be fresh, the food is prepared
each day in the main kitchens, and meals are then assembled and displayed on-
site. For some clients, the company vans deliver fresh food every few hours. To
hold costs down, many of Laura’s employees are part time—only a few chefs and
managers are full-time employees. Some of Laura’s clients call at the last min-
ute, so she maintains a large list of potential workers who can perform a variety
of tasks, from driving to food preparation and display, as well as cleanup. The
chefs and managers evaluate workers after each job in terms of timeliness, appear-
ance, friendliness, and the ability to take orders and accomplish tasks. Workers
often perform many tasks at a given event. For instance, a driver might also be a
server. But some tasks require specific certifications. Not all workers are licensed

23Chapter 1: Introduction

to drive, and only a few have been trained to perform some tasks such as cutting
meats. Most of the employee ratings are somewhat informal at the moment, but
she would like to computerize them to help her select the best workers for future
jobs. At some point, she would like to offer bonuses or higher pay to workers who
routinely perform well. Another challenge Laura faces is that some clients are fin-
icky about certain types of food. In particular, some movie clients have special
preferences as well as some items that cause allergic reactions. The chefs current-
ly keep these two lists in paper folders for some major performers and actors. But
to be safe, Laura wants to computerize the lists and, ultimately, the recipe ingredi-
ents. Then when a chef plans the meals, the computer could check the list of main
guests and their allergies against the recipe list to identify potential problems.

1.	 Research similar sites on the Internet. Describe or sketch the major forms and
reports that the company might use.

2.	 Create the initial proposal and feasibility study.

EnviroSpeed
Brennan and Tyler are owner/managers of a consulting firm that specializes in
environmental issues. In particular, the company’s scientists are experts in clean-
ups for chemical spills. For example, if a tanker crashes and spills chemicals on
a highway, the company can quickly evaluate the potential problems and identify
the best method to clean up the spill and prevent problems. The company itself
does not clean up the spill, but it has contacts with several crews around the globe
that it can call if local emergency workers need additional help. The primary focus
of the company is to provide expert knowledge in the time of a crisis. This task re-
quires specialized scientists, good communication systems, and in-depth training
and practice. Brennan wants to improve the existing information system to main-
tain a database of case histories. Then, if a similar problem arises in the future,
the scientists can quickly search the database and identify secondary problems to
examine which solutions and ideas were successful and which ones caused more
problems. Tyler has explained that at a minimum, the database has to hold the
contact information for all of the scientists and emergency crews. It must also
list the specialties, training, and skill levels of each person in a variety of areas.
In terms of actual situations, the database should track the identities and roles of
the various people and the key time frames (when reported, response time, and so
on). Scientists also need the ability to list all of the chemicals involved and details
about the terrain (hills, water, soil composition). More subjective data must also
be captured, including comments by the onsite team and a description of the prob-
lem and secondary factors. All proposed solutions should be entered into the da-
tabase, along with comments regarding their strengths and weaknesses as well as
the final selections and an evaluation of the result. It is important to track potential
solutions that were discarded. Even if they did not apply to the original problem,
they might be useful for a future event with different circumstances.

1.	 Research similar sites on the Internet. Describe or sketch the major forms and
reports that the company might use.

2.	 Create the initial proposal and feasibility study.

24Chapter 1: Introduction

Final Project
The main textbook has an appendix with several longer case studies. You should
be able to work on one of these cases throughout the term. If you or your instruc-
tor picks one, do the following.

1.	 Research similar sites on the Internet. List the major forms and reports that

the company might use.
2.	 Create the initial proposal and feasibility study.

Objectives

•	 Design the initial tables for the case.
•	 Create the design in the database design system.
•	 Determine the initial relationships for the case.
•	 Identify the data types needed for the attributes.

Chapter Outline

Database Design
2Chapter

Database Design, 26
Oracle Data Types, 26
Case: All Powder Board and Ski Shop, 28

Business Objects: First Guess, 28
Relationships, 29

Lab Exercise, 30
Database Design System, 30
All Powder Design, 31

Exercises, 38
Final Project, 40

26Chapter 2: Database Design

Database Design
You can design a database using paper and pencil. As you gain experience and
become more skilled at the task, using pencil and paper will be relatively easy.
However, when you are learning, using pencil and paper is tedious because you
often need to remove items from potential classes or even alter the entire diagram.
As an alternative, you might consider going directly to the DBMS and defining
the tables or classes off the top of your head. This approach will not work with
Oracle because Oracle limits the changes you can make to tables—particularly
after relationships have been built and data has been added.

A few computer-assisted software engineering (CASE) tools remain that can
help you define classes in a graphical environment. They are relatively powerful,
and many have the ability to generate the final tables based on the class diagram.
However, they are also expensive, hard to install, and cumbersome to learn. But if
you work for a company that has invested in these tools, they are an excellent way
to define the database classes. Oracle 11g does have a designer to build entity-re-
lationship diagrams (Oracle SQL Developer Data Modeler). This system is useful
because it will generate the tables from the diagrams. But it has limited advice and
design checking facilities. It requires a separate download and installation from
the technology network. Still, it can be useful for creating diagrams from existing
databases to help you visualize the relationships.

There is a better tool to learn database design. The database design system is
an online expert system that enables students to create class diagrams graphically
in a Java-enabled Web browser. The system makes it easy for you to create class-
es (entities) and build associations (relationships). More importantly, it provides
immediate feedback on the design, which is the expert system part. The system
runs on a custom Web server and diagrams are stored in a central database. This
approach means that you can access your diagrams from almost any computer.
Changes you make in class or in your instructor’s office are saved and available
when you return to a lab or your own computer. From an instructional perspec-
tive, the best part is that the system contains some complex rules to provide feed-
back on your diagram. The system recognizes most design errors and points them
out with suggestions to improve the design. Your instructor can obtain the data-
base design system for your class. If it is available, you should use it to get the
benefit of the immediate feedback. If it is not available, you can draw the class
diagrams with paper and pencil or with a graphics package such as Visio or even
PowerPoint.

Oracle Data Types
As a database designer, your job is to define the database tables that efficiently
store the organization’s data and support the business rules. In this process, you
will define the tables in terms of the data columns (attributes) and the table re-
lationships (associations). You will also need to know what type of data will be
stored in each column. Also, for some columns, you will want to identify specify
constraints (such as salary cannot be negative).

Selecting the proper data type can sometimes be a difficult step. Any DBMS
supports only a limited number of domains and you have to understand the ca-
pabilities and limitations of each type. You must also understand the underlying
business data—both the values collected today and the potential values that may
be collected in the future. For example, workers may only use integer values to

27Chapter 2: Database Design

Name Data Bytes

Text (Characters)
 Fixed
 Variable
 National/Unicode
 Memo

CHAR or NCHAR
VARCHAR2
NVARCHAR2
LONG

2000 bytes
4000 bytes
4000 characters
2 gigabytes

Fixed
Variable
Variable
Variable

Numeric
 Byte (8 bits)
 Integer (16 bits)
 Long (32 bits)
 (64 bits)
 Fixed precision
 Float
 Double
 Currency
 Yes/No

NUMBER(38)
NUMBER(38)
NUMBER(38)
NUMBER(38)
NUMBER(p,s)
NUMBER
NUMBER
NUMBER(p,4)
NA

38 digits
38 digits
38 digits
38 digits
p: 1...38, s: -84...127
38 digits
38 digits
38 digits

2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21

Date/Time
Interval

DATE, TIMESTAMP,
INTERVAL YEAR/MONTH

1/1/-4712 to 12/31/9999
(sec)

7/11/13

Image LONG RAW or BLOB 2 gigabytes, 4 gigabytes Variable

Generated Key SEQUENCE Long (+/- 2 billion) 4

represent a quality rating. But, in the future, it is likely that the company will want
to use fractional values as well. Although database types are becoming more stan-
dardized over time, each DBMS uses its own type names. Even more confusing,
the actual values supported can be different even if the data type name is the same.
The numeric data type is variable length in Oracle, because you can specify the
number of significant digits. A full 38 digits requires 21 bytes of storage.

Figure 2.1 shows the main data types available in Oracle 11g. The types you
will use most often are NVARCHAR2, DATE, and NUMBER. When you need
to store date or time values, be sure to use the DATE or TIMESTAMP type. It
supports date arithmetic so users can subtract two dates to obtain the number of
days between them. The LONG RAW and BLOB types can hold pictures or even
spreadsheets or documents. Note that Oracle also supports the ANSI SQL key-
words. In many cases, it is easier to use those instead of the Oracle types, but
ultimately Oracle converts them into native types. For instance, SQL defines the
INTEGER data type, which Oracle converts to NUMBER with a scale of zero.

Oracle essentially uses one numeric type for every type of number. This ap-
proach is relatively easy to use, but might not yield the most efficient use of stor-
age space. On the other hand, storage space is cheap today, and no one really
knows how many product item numbers the application will eventually need. So,
using some extra storage space now is probably not a major problem.

The issue of precision and scale is sometimes confusing. Precision represents
the total number of significant digits supported in the value—regardless of any
decimal points or size of the number. For example, a number with a precision of 5
digits would include 12345 as well as 12.345. If the scale is specified, it indicates
a fixed number of decimal points and controls round off to that value. It is particu-
larly useful for handling currency values. Oracle automatically allocates a number
of physical bytes for storing numbers based on the specified precision. The space
required to store a number can range from 1 to 22 bytes.

Figure 2.1

28Chapter 2: Database Design

The other confusing issue in modern databases is the use of Unicode or “na-
tional” character sets. The older VARCHAR2 data type assigns one character to
one byte and can only handle ASCII codes or essentially English-language char-
acters. If your database needs to store text in additional languages, it will have
to use Unicode character sets that typically assign two bytes to any character
or ideogram. In this case, use the NVARCHAR2 data type, but note that it cuts
the maximum length of text in half. VARCHAR2 can handle strings up to 4,000
bytes. NVARCHAR2 can also handle 4,000 bytes, but that is only 2,000 Unicode
characters.

Case: All Powder Board and Ski Shop
With any database project, the first step is to understand the various elements of
the organization and the components that will become part of the database ap-
plication. This knowledge is critical, because the database design must reflect the
business rules. In an actual work environment, you can ask workers about the pro-
cesses and underlying assumptions. With a written case, it can be more challeng-
ing to determine all of the necessary rules. On the other hand, real life is messier,
and people often give inconsistent answers. It takes experience to learn how to
talk with users to identify exactly which components are the most important, and
how the pieces relate to each other. Cases avoid this design complication but gen-
erally require you to make assumptions on your own. Because the goal is to make
reasonable assumptions, you should search the Internet or read a few articles on
snowboards and skis before you tackle the database design.

Business Objects: First Guess
One of the first steps in designing the database is to identify the business objects.
In many ways, this case is a fairly typical business problem, so you would expect
to see many of the traditional business objects, such as Customer, Employee, and
Sale. Because the store also rents equipment, there will be a Rental object similar
to the Sale object. Figure 2.2 shows initial versions of these four classes. These
objects are relatively standard, but some issues arise in this case. Notice that you

Figure 2.2

Sale
SaleID
SaleDate
CustomerID
EmployeeID

Employee
EmployeeID
TaxpayerID
LastName
FirstName
Address
City
State
ZIP

Customer
CustomerID
LastName
FirstName
Phone
Address
City
State
ZIP

Rental
RentID
RentDate
CustomerID
ExpectedReturn

29Chapter 2: Database Design

must also begin to think about primary keys. In each of these four tables, the pri-
mary key is a new value that will be generated by the DBMS. In Oracle, you have
to assign this column a NUMBER or INTEGER data type. Later, you can create
a sequence that will generate the values needed. In terms of the design, you will
choose an integer data type and set it as a generated key column. In most situa-
tions, the actual key values will be hidden from the users, and they will see only
the relevant names.

Notice that several attributes are missing from these initial classes. The main
reason is that it is important to ensure that the columns you include at this stage
are correct. If there is any doubt about a column in a potential class, leave it out
and think about it. A few other classes should be relatively obvious for this case.
In particular, several support tables are used to provide look up data for other
tables. Ultimately, you will have to define all of the objects, identify the columns
for each table, and specify the data type for each column.

Your goal at this stage is to identify the primary entities needed in the case. Be
sure you specify a primary key column. Then think about the main attributes that
belong to each entity. For example, customers will be identified by an internal
CustomerID, and data is collected on LastName, FirstName, Phone, Email, Ad-
dress, City, State, and so on. Each of these attributes are single-valued and depend
only on a specific customer. That is, once you are given a value for CustomerID,
there will be only one matching name, phone number, and e-mail address.

Relationships
Classes or entities are related to other classes. For example, notice that the Sale
table contains a CustomerID property. Values in this column match entries in the
Customer table, which is keyed by CustomerID. So, if you found a CustomerID
value of 112 in the Sale table, you could look up the matching customer data by
finding the row in the Customer table that has a primary key value of 112. This as-
sociation also expresses several business rules. In particular, (1) each sale can be
placed by only one customer, (2) a sale must be identified with a customer, (3) any
given customer can participate in many sales, but (4) a customer might not have
bought anything yet.

Relationships are displayed on the diagram by drawing connecting lines be-
tween the two tables involved. The business rules are shown as annotations at the
end of each connection. Each side of the connection displays minimum and maxi-
mum values. Figure 2.3 shows the association between the Sale and Customer

Figure 2.3

Customer
CustomerID
LastName
FirstName
Phone
Address
City
State
ZIP

Sale

SaleID
SaleDate
CustomerID
EmployeeID

0…*

1…1

30Chapter 2: Database Design

tables. Notice that the annotations match the four business rules described in the
previous paragraph. The 1…1 notation on the Customer side represents rules 1
and 2. At a minimum, each sale requires at least one customer, and at a maxi-
mum, a sale can have no more than one customer. Likewise, the 0…* annotation
represents rules 3 and 4. A customer can participate in zero to many sales. There
is no maximum (*), so a customer can participate in any number of sales, and the
zero means that a customer might not have bought anything yet. As a database
designer, your job is to identify the entities and relationships needed for this case.

Lab Exercise

Database Design System
The database design system was built
as an instructional tool, so your instruc-
tor should have already registered to
obtain an instructor account. The in-
structor also chooses and schedules as-
signments for the class. You will need an Admit code to register for a class, so
be sure you get the correct admission code from your instructor. When you pur-
chased the Database book, you created a login account on the server to download
the books. This account also gives you access to the DBDesign system. If your in-
structor chooses not to use the DBDesign system, you can still work with a couple
of problems in the World/Open class. The Admit code is blank for that class, and
the problems are not monitored—although work might be deleted eventually.

Figure 2.4

Action
Browser: http://JerryPost.com/dbdesign
Login in with your DB Book account.

Select a country
or state to narrow
the school list.

Select your
university and
class.

Enther the admit
code.

31Chapter 2: Database Design

Activity: Getting Started
Use your browser to navigate to the
database design Web site and log in
with your database book account. You
should use the Personal Data link to
ensure that your name, e-mail address,
and Student ID number are correct.
Your instructor will use the name and
ID number to correctly identify you so
you receive credit for working on assignments. Note that your ID and password
are encrypted on the Web site database to protect them. However, if your univer-
sity still uses your Social Security number as an identifier, you might want to enter
only a portion of the number—and then go ask your university to wake up and
create a safer number. Your e-mail address is important so the system can send
you the username and password in case you forget what you selected.

Once you have successfully created the new account, you must register for the
specific class. As shown in Figure 2.5, you simply choose your university and
your correct class. Enter the admission code provided by the instructor and click
the button to register for the class. If you do not have the proper code and are un-
able to register, you can get the code and return later. If you did not register for a
class when you first created the account, you need to do that now. Scroll down to
the bottom of the DBDesign page and click the link at the bottom to register for a
class. In fact, once you get to the design page, if you try to open a problem (File/
Open) and the list is empty, it is most likely because you are not registered for a
class.

All Powder Design

Activity: Create Tables and Columns
When you log into the system you are ready to begin designing the database. Fig-
ure 2.5 shows the main elements of the system with the beginning of the solution.
When you begin, the various windows will be empty. You must first open a prob-
lem using the File/Open menu and select the All Powder Workbook case. When
the problem loads, the right-hand window will display a list of available columns.
Initially, it will probably not include the key columns. You will add those in a
minute.

You create a table (class/entity) by clicking the right mouse button on the main
screen where you want the table located. Then select the Add Table option. Re-
name the table by typing “Sale” as the new name, and pressing the Enter key.

Now you get to add columns to the table. All columns are added to a table by
dragging them from the right-hand window and dropping them onto the desired ta-
ble. In the case of the Sale table, you will need to generate a new primary key col-
umn (SaleID). To create a generated key column, drag-and-drop the top label for
Generate Key. Then, rename the newly created column. You rename columns by
double-clicking the name either in the table or in the right-hand window. Be care-
ful: Do not give two columns the same name, even if they are in different tables.
You will not be able to tell them apart in the main list of the right-hand window.
You might want to use an abbreviation and separator, such as Cust_LastName.
Later, the system can remove the prefix when it generates Oracle tables. Now you
can add some of the other columns needed in the Sale table. Look through the

Action
File/Open, choose All Powder case.
Right click/Add Table.
Type “Sale” as the new table name.
Drag columns from right onto table.
Right click name/set data type.

32Chapter 2: Database Design

right-hand window to find the SaleDate and SalesTax entries. You can simplify
your search if you sort the list by right-clicking on it and selecting Sort. Drag the
desired column onto the Sale table. Once a column is in the table, you can change
the order by dragging and dropping it higher or lower in the list.

At this point, you should set the data types of the columns in the table. The de-
fault type is Text, so in many cases you will not have to change it. However, you
should choose Date/Time for the SaleDate, and Currency for the SalesTax col-
umn. Double-click on the column name within the table to open the column edi-
tor. You can select the data type and change the data size if desired. You can also
add a constraint and default value, but you should probably do those later. The
default value is straightforward, but the constraint has to be expressed in Oracle’s
format. Be sure to save your work every few minutes in case you lose the Internet
connection or the server times out.
Activity: Create Relationships
Associations or relationships are a key element of database design. In a relational
database, columns in one table are connected to columns in other tables through
common data. In the case, the Sale table needs to connect to a Customer table.

Figure 2.5

Menu

Class
(entity)

Status line

Corrections

Available
columns

33Chapter 2: Database Design

Eventually, both tables will contain a
CustomerID column. First, you have
to create the Customer table, so right-
click on the design screen, add a new
table, and rename it. Again, to ensure
that each customer is assigned a guar-
anteed unique identifier, add a Gener-
ate Key column to it. Rename this new
column as the CustomerID. It is critical
that you understand that this key value
will be generated for each new custom-
er added to the table. This value can only be generated in the Customer table. You
would never create another generated key column and call it CustomerID. Notice
that the column is marked with a solid (red) star to indicate that it is a key with
values generated in this table. Before attempting to build the relationship, add the
other customer properties to the Customer table by dragging them from the right-
hand window. You can use the Shift or Ctrl key to select multiple columns at a
time, but moving them takes a little practice. You can double-click the table head-
ing to automatically resize the table design box to fit the columns it contains. Set
the appropriate data types.

How do you get CustomerID into the Sale table? Scroll the right-hand window
to the bottom and notice that CustomerID has been added to the list of available
columns. You could also sort the list and find it alphabetically. You can now drag
this new column into the Sale table. Make sure its data type is Integer32 (Long).
Now that you have both the Sale and Customer tables, and they both have a Cus-
tomerID column, you can build an association or relationship between them. Fig-
ure 2.6 shows how to create this relationship in the design system. This relation-
ship and the edit window are automatically created when you drag the foreign key
CustomerID into the Sale table. You can edit relationships by double-clicking the
slanted relationship line, or right-clicking the line and choosing the Edit option.
You can also create new relationships by dragging a column from one table and
dropping it onto a column in the second table. For example, if you delete the rela-
tionship between Sale and Customer, you can click on the CustomerID column in
the Customer table and drag it to the Sale table. Release the mouse button to drop
the cursor onto the CustomerID column in the Sale table.

The relationship window asks you to specify the minimum and maximum val-
ues for each side of the relationship. These values specify the business rules, and
are often the most difficult items to identify. In the sale case, the typical assump-
tions are that exactly one customer can place an order, and a customer can place
from zero to many orders. So, on the Sale side of the window, select the Optional
and Many buttons. On the Customer side, choose the One option for both Min and
Max values. In most cases, the system will automatically attempt to create the cor-
rect relationship for you when you add the CustomerID column to the Sale table.
But, this method only works if the other keys are set correctly.

Remember that relationships generally involve at least one side in a primary
key. The column names are often the same on each end, but they can be different.
However, the data types do have to match, and the relationship has to be logical.
For example, it would never make sense to connect an ItemID to a CustomerID,
because that relationship would imply that a customer can also be an item and
vice versa. Finally, notice that the integrity and cascade boxes are selected as the

Action
Add Customer and Sale tables.
Add GenerateKey to Customer table.
Rename it to CustomerID.
Drag new CustomerID from right side

into Sale table.
Drag CustomerID from Customer and

drop it on CustomerID in Sale table.
Fill out relationship box.

34Chapter 2: Database Design

default. You should almost always leave these checked. In the database, cascade
on delete means that if you delete a particular customer, all of the orders placed
by that customer will also be deleted. If you do not specify the cascade, then you
could end up with orders that contain a CustomerID, which has no matching cus-
tomer data. After you close the relationship window with the OK button, you
might have to refresh the display screen by right-clicking the design window and
selecting Refresh.
Activity: Evaluate the Design
One of the most powerful aspects of
the database design system is that it
contains an expert system to help ana-
lyze your design for errors. You can
quickly obtain comments by selecting
the Grade/Grade and Mark option on
the menu. At this point, you have only
two tables partially created, so the most important comment you should receive is
that overall, you are missing several tables. The system might also point out that
you are missing columns from the Sales table, because you have not yet added the
salesperson (employee) and the shipping information.

To illustrate the power of the system, you will add a new table (Item), and then
build a new relationship that is incorrect. Add a new table for Inventory, and add
the SKU column (a common retail abbreviation for stock-keeping unit) used to
identify individual products. Right-click the SKU column in the Inventory table
and set it as a key. Add the Size and QOH columns to the Inventory table. Set their
data types to Single and Integer16 respectively. Now add the SKU column to the
Sale table as an intentional error. Create a relationship from Inventory to Sale us-
ing the SKU columns.

Choose the Grade/Grade and Mark menu option to save the changes and ob-
tain comments on the design. Again, the design is not finished, so focus on the
other error messages. In particular, find the message “For each value of SaleID

Figure 2.6

Action
Choose Grade/Grade and Mark.
Click messages in window.
Fix errors by removing columns and

adding new tables.

Drag-and-
drop column

Select min and
max for both
sides of the
relationship

35Chapter 2: Database Design

in table Sale, can there be more than one SKU?” and click it. Figure 2.7 shows
the resulting diagnostic screen. The SKU column in the Sale table is highlighted
as a potential problem. Indeed, it is an issue, because placing SKU into the Sale
table as shown would mean that for each Sale, only one item (SKU) can be sold.
You can usually double-click the comment to receive additional information about
database design. In this case, notice that SKU is not part of the primary key. A
primary key has a many-to-one relationship with the rest of the data. So a table of
the form: SaleID, SKU means that there can be many SaleID values (keyed), but
only one SKU for each sale.

You might try to fix the problem by making the SKU part of the primary key:
SaleID, SKU. This action will solve the first problem, but it creates new ones. If
you set SKU as a key and resubmit the problem for grading, it will return several
messages. One of them will be the question “Does SaleDate in table Sales really
depend on SKU?” That is, your table now includes SaleID, SKU, SaleDate, Cus-
tomerID. The system is asking whether the SaleDate (and CustomerID) actually
depend on the SKU. That is, are the different items (SKU) sold to different people
on different days; or do they really depend on just the SaleID?

Notice that sometimes a table has many errors, so you must carefully review
the entire table to make sure you fix the primary problems first. The Grade menu
also contains an option to generate a separate HTML file that lists all errors by
table. This listing is easier to print.

Figure 2.7

Add SKU
to the Sale
table

Connect the
Inventory table to
the Sale table Errors are

highlighted
Click or double-click the
diagnostic message

36Chapter 2: Database Design

Primary keys are one of the most difficult things for students to understand
when they first start designing databases. In particular, generated keys are tricky.
In terms of the database design system, primary keys are critical because they
are used to identify the tables. If you make major mistakes in the primary keys,
the system will give confusing feedback because it cannot correctly identify your
tables. For this reason, it is always best to begin with one or two tables, test them,
and then slowly add more tables and relationships.

You still need to fix the problem with the Inventory and Sale table association.
In a broad sense, it seems that there should be some type of connection between
Inventory item and Sale to indicate which items were purchased by the customer.
But placing the SKU attribute into the Sale entity appears to be a bad idea. The
reason is straightforward. If there is an association between Inventory and Sale,
it must be many-to-many. That is, a Sale can include many items (SKUs), and an
Inventory item (SKU) can be sold many times. Relational databases do not handle
many-to-many relationships directly. Instead, you must create an intermediary or
junction table.

Figure 2.8 shows the creation of the intermediary table. It contains the key col-
umns from both the Inventory (SKU) and Sale (SaleID) tables. Both columns are
keyed in the new SaleItem table. Examining the keys within the SaleItem tables
reveals that each sale can contain many items, and each item can appear on many
sales. This is exactly the many-to-many relationship needed. The additional col-
umns of QuantitySold and SalePrice indicate the number of items being purchased
and any discounts applied—for an individual item on a specific sale. The dashed
many-to-many line is never created, it is simply used here to show the goal of the
two relationships.

The new SaleItem table corresponds to the repeating lines of items that you
would see listed on a paper sale form. Examining the two new relationships re-
veals how the table works. Reading from the Sale to the SaleItem table, each sale
can contain from one to many items, and in reverse, each SaleItem line (SaleID
and SKU) refers to exactly one sale. Essentially the same association exists from
Inventory to SaleItem. However, since items might not have been sold, each item
can appear on zero to many sales lines, and a given sales line refers to exactly
one item. All many-to-many relationships must be split and joined with a junction
table that contains the keys from both of the original tables.

Figure 2.8

Sale

SaleID
SaleDate
CustomerID
EmployeeID

Inventory

SKU
Size
QOH

Many-to-Many

SaleItem
SaleID
SKU
QuantitySold
SalePrice

1…1

0…*

1…*

1…1

37Chapter 2: Database Design

Activity: Fix Inventory Design
Return to the database design system
and delete the association between In-
ventory and Sale. Then remove the
SKU column from the Sale table. Now
you can create the SaleItem table.
Simply drag the two keys (SaleID and
SKU) into the table from the right-hand
window—do not attempt to re-create
them with a generate key. Double-click to the left of both names to add the simple
key icon (unfilled blue star). Build the two new relationships in the Figure 2.8
example and add QuantitySold and SalePrice to the SaleItem table. Make sure
the SalePrice data type is Currency and that the data size does not exceed 38, the
maximum number of digits allowed in an Oracle number.

If you grade this version, you will see that the detail issues have been corrected.
However, some design issues still exist in terms of handling inventory. The inven-
tory for a ski shop is somewhat more complicated than for a typical retail store.
In particular, snowboards and skis are sold in varying lengths to match the indi-
vidual customer. Figure 2.9 shows the two concepts. A manufacturer produces
a model line that exhibits certain characteristics such as color, width, flexibility,
and side cut. For each model type, several different lengths are available. From
the perspective of the All Powder store, the database has to keep information on
each model, but the actual inventory must refer to a specific item or length within
the model type. Each item will receive a different SKU. For example, SKU 1173
might refer to a Rossignol Axium ski that is 196 cm in length, while SKU 1174
references a Rossignol Axium ski of 181 cm.

The catch is that it would waste considerable space to repeat all of the model
data for every possible size of ski or board. Consequently, it is important to create
two entities to handle the details: ItemModel and Inventory. Figure 2.10 shows
the basic tables and the resulting relationships. Observe that each model results
in many inventory items (multiple sizes of boards or skis), but each item can be

Figure 2.9

Model information
refers to the overall
type of board or ski

Inventory information
refers to an individual
ski or board; defined by
its length

Action
Create the SaleItem table.
Create the ItemModel table.
Include the proper columns.
Set the keys.
Set the data types.
Grade/Grade and Mark.

38Chapter 2: Database Design

only one model type. At this point, you should be able to add more attributes and
more tables to the design, but the completion of the design will be left to the next
chapter.

Exercises

Crystal Tigers
Crystal Tigers is a service club with about 150 members. The club primarily spon-
sors events such as community pancake breakfasts, local concerts, and sporting
competitions. The club successfully uses the events to raise money for various
charitable organizations. The club needs a database to help track the roles of the
various members, both in terms of positions within the organization and their
work at the events. The following form represents the basic data that needs to be
collected.

Last Name, First Name
Phone, Cell Phone
Adderss
City, State, ZIPCode

Year Position/Title Comment

Event title
Start Date End Date
Charity
Charity contact
Phone
Amount raised

Member Activitie for Event

Date Hours Activity Comment

1.	 Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Figure 2.10

39Chapter 2: Database Design

Capitol Artists
Capitol Artists is a partnership among several commercial artists that work on
freelance and contract jobs for various clients. Some jobs are contracted at a fixed
price, but complex jobs require billing clients for the number of hours involved in
the project. To help the artists track the time spent on each project, the firm wants
you to build an easy-to-use database. On a given day, the artist should be able to
select the time slot, then choose a category and a job. All jobs are given internal
numbers, and each job has only one client. But, it is helpful to list the client infor-
mation on the form once the job has been selected. The artist then enters a short
task description, the billing rate, and any out-of-pocket expenses. The billing rate
is somewhat flexible and depends on the client, the job, the task, and the artist. For
example, the company can charge higher rates for an artist’s creative work time,
but lower rates for copying papers. The following form contains the basic infor-
mation desired.

Employee
Last name, First name
Date

Time Category Client Job# Task Description Hours Rate Expenses
8:00 AM Meeting Name

+
Phone

1173

8:30 AM

9:00 AM

9:30 AM

...

1.	 Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Offshore Speed
The Offshore Speed company sells parts and components for high-performance
boats. Some of the customers modify the boats for racing, others simply want
faster boats for informal races. The engine parts tend to be highly specialized and
new variations are released each year by manufacturers. Compatibility of parts is
always a major issue, but most are tested by the manufacturers with data available
from their websites. Customers tend to order parts through the store, but some-
times they will buy off-the-shelf components. The store also keeps many spare
parts in stock because customers tend to break them often and the profit margins
are good. The store also has arrangements with other firms that can help custom-
ers redesign and upgrade interiors and cabins, for example, provide new uphol-
stery for seats and complete systems for beds and sinks for cabins. Lately, the
store has been successful in selling and installing high-end GPS and communica-
tion systems. The form below is used to place custom orders for the clients. Dis-
counts are given to customers based on several subjective factors that will not be
entered into the database.

40Chapter 2: Database Design

Customer
Last name, First name
Phone, E-mail
Address
City, State, ZIP

Employee

Sale date
Estiamted receive date

Boat: Brand, year, # engines, length
Engine 1: Brand, year, out drive, year
Engine 2: Brand, year, out drive, year

Manuf. Mfg Part No. Category Description Quantity List Price Extended

Subtotal
Tax
Discount
Total Due

1.	 Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following task.
1.	 Analyze the forms and create the main classes and associations needed to

maintain the data for this organization.

41

Objectives

•	 Understand how to use generated keys.
•	 Create tables and specify data types.
•	 Create relationships and specify cascades.
•	 Establish column constraints and default values.
•	 Create lookup lists for columns.
•	 Estimate the data volume for the database.

Chapter Outline

Data Normalization
3Chapter

Database Design, 42
Generated Keys: Sequences, 43
Case: All Powder Board and Ski Shop, 43
Lab Exercise, 44

All Powder Board and Ski Database Creation, 44
Exercises, 56
Final Project, 57

42Chapter 3: Data Normalization

Database Design
This chapter continues the concepts from Chapter 2 and adds a set of rules that
specify when a column belongs in a table and when it does not. The main objec-
tive of database design is to define the tables, relationships, and constraints that
describe the underlying business rules and efficiently store the data. The normal-
ization rules are critical to properly identifying the columns that belong in each
table. The first step is to make sure the keys are correct. A key uniquely identifies
the rows in the table. If multiple columns are part of the key, it indicates a many-
to-many relationship between the key columns.

Generated keys are guaranteed to be unique in the table in which they are cre-
ated. For example, a generated key of CustomerID in the Customer table automat-
ically creates a new key value for each customer row that is created. Hence, the
generated key is always the only key column in that table. It would never make
sense to add another key column to a table with a generated key—the generated
key is always unique. So, in the designs, you should never have tables with both a
generated key (solid red star) and any other key (open blue star). Other issues with
keys are trickier and require the designer to understand the underlying business
rules.

If you are uncertain about which columns should be keyed, write them down
separately and evaluate the business rules between the two objects. Figure 3.1
shows a typical situation with orders and customers. First ask yourself, For a giv-
en order, can there ever be more than one customer? If the answer is “yes” based
on the business rules, then you would mark the CustomerID column as key. But
most businesses have a rule that each order is placed by only one customer, so
CustomerID should not be keyed. Second, reverse the question and ask yourself,
For a given customer, can there be more than one order? Obviously, most busi-
nesses want customers to place repeat orders, so the answer is “yes.” So you mark
the OrderID as key. Since only OrderID is keyed, both columns belong in the Cus-
tomerOrder table, which is keyed by OrderID and contains the unkeyed Customer
ID column.

Once the keys are correct, you need to check each nonkey column to ensure
that it follows the three main normalization rules. First, each column must contain
atomic or nonrepeating data, for example, a single phone number, but not multiple
values of phone numbers. Second and third, each non-key column must depend on
the whole key and nothing but the key. You need to examine each potential table,
determine that the keys are correct, and then check each column to ensure that it
depends on the whole key and nothing but the key. If there is a problem, you gen-
erally need to split the table. Remember that any time you make a change to the
keys in a table, you have to reevaluate all of the columns in that table.

Figure 3.1

OrderID	 CustomerID

CustomerOrder(OrderID, CustomerID, …)

43Chapter 3: Data Normalization

Generated Keys: Sequences
Key columns play a critical role in a relational database. The key values are used
as a proxy for the rest of the data. For instance, once you know the CustomerID,
the database can quickly retrieve the rest of the customer data. That is why you
only need to place the CustomerID column in the CustomerOrder table. However,
the database requires key values to be unique. Guaranteeing that key values are
never repeated can be a challenging business problem. In some cases, businesses
have separate methods to create key values. For instance, the marketing depart-
ment might have a process to assign identifier numbers to customers and products.
But the process must ensure that these values are never duplicated. In many situ-
ations, it is easier to have the database generate the key values automatically. In
particular, orders often require keys that are generated quickly and accurately.

Oracle has a sophisticated sequence process to generate new key values. You
assign a NUMBER type to the primary key in a table where you want the key
value created. This data type does not actually create the number. To create num-
bers, you need to define a sequence that will generate the numbers on demand.
The sequence generator is relatively flexible and you can specify a starting value
and an increment. The final step is to create a database trigger that automatically
gets a newly generated key value and places it into the primary key column. This
step is a little trickier since database triggers are covered in a later lab. However,
sequences really should be set up when you define the table so that you remember
to do it. One of the activities in this lab will show you how to set up an automati-
cally generated key value; you can copy the process for your other projects.

For now, you must carefully identify the key columns that might need generat-
ed values. For instance, the CustomerID column in the Customer table, or the Or-
derID in the Order table might be assigned a generated value. But the CustomerID
column in the Order table would never be a generated key. It would be given the
same numeric data type, although the actual key generation can take place only
in the original (Customer) table. Make sure you understand the difference. The
CustomerID is the only column that is a primary key in the Customer table, and
it is the source table for customers. Consequently, it is acceptable to generate key
values for CustomerID in the Customer table. On the other hand, the CustomerID
is a placeholder in the Order table—it represents the customer placing the order.
The customer is not created in the Order table, so the CustomerID value cannot be
generated in the Order table. The CustomerID must already exist in the Customer
table before it can be assigned to a row in the Order table.

Case: All Powder Board and Ski Shop
When you first approach a database design problem, you will often experience
one of two perspectives: the project seems immensely complicated, or the project
seems too easy. Usually, both perspectives are wrong. Even a difficult project can
be handled if you divide it into small enough pieces; and few projects are as easy
as they first appear. The main issue is to correctly identify the business rules. And
there always seem to be complications with some of the rules. For the All Powder
case, consider the issue of customer skill level. Whether a customer is renting or
buying a board or skis, the salespeople need to match the person to the proper
board or ski based on the customer’s skill level. In terms of business decisions,

44Chapter 3: Data Normalization

managers need to identify the types of customers to plan for the models and in-
ventory decisions for next season.

As shown in Figure 3.2, consider what happens if you try to place the Style
(downhill, half pipe, and so on) and SkillLevel directly into the Customer table.
The problem is that the business rules state that each customer can have one skill
level in many styles, and each style can apply to more than one customer. For
example, customer Jones could be an expert downhill skier, but only a beginner
in half-pipe snowboard. However, customer Sanchez is an expert at half pipe, but
has never tried any type of skiing. If you place Style and SkillLevel in the Cus-
tomer table, you might try keying only CustomerID. But that action would state
that each customer participates in only one style, with one skill level. On the other
hand, if you key just the Style column, you would be indicating that each style can
be performed by only one person. The only solution is to key both the Custom-
erID and the Style columns. Then, each customer can participate in many styles
(with one skill rating per customer per style), and each style can apply to many
people (with possibly different skill ratings). But you cannot leave the Style and
SkillLevel columns in the main Customer table along with columns such as Last-
Name. It is clear that a customer’s last name does not change for each different
style. A customer’s last name depends only on the CustomerID, so you need to
split the tables.

Figure 3.3 shows the resulting design. The Customer table is keyed only by
CustomerID and contains attributes that describe each customer. The Style and
SkillLevel tables are used as lookup tables to ensure that clerks select from the
defined list of choices. Without them, the database would quickly become a mess
because everyone would use different spellings and abbreviations for the entries.
The CustomerSkill table contains the CustomerID and Style as key columns to
support the business rules.

Lab Exercise

All Powder Board and Ski Database Creation
You should use the database design system to refine your table definitions. The
system is designed to check the main design rules and ensure that your tables
meet the requirements of good database design. However, if you make different
assumptions about the underlying business rules, you can create slightly different
tables than those recommended by the design system.

Figure 3.2

Consider what happens if you (incorrectly) try to place Style and SkillLevel in
the Customer table:

CustomerID, LastName, … Style, SkillLevel
CustomerID, LastName, … Style, SkillLevel

Business rule: Each customer can have one skill in many styles.
Business rule: Each style can apply to more than one customer.
Need a table with both attributes as keys.

CustomerID, LastName, … Style, SkillLevel

But you cannot include LastName, FirstName and so on, because then you
would have to reenter that data for each customer skill.

45Chapter 3: Data Normalization

Activity: Create Tables
Technically, Oracle has two methods for creating tables: (1) SQL and (2) the SQL
Worksheet (in SQL Developer and Enterprise Manager). SQL Developer has a
visual tool for entering column names and selecting data types. It then generates
the matching SQL CREATE TABLE commands. For beginners, the visual tool is
relatively easy to use because you do not have to worry about syntax issues such
as where to put the commas. However, the visual designer requires you to switch
to Advanced mode to use the NVARCHAR2 (Unicode) data type, and you should
always use this data type instead of the older VARCHAR2. But, advanced mode
is cumbersome, so most designers ultimately just write the complete list of SQL
statements. Even if you use the visual table designer, you need to switch to the
SQL (DDL) and copy the CREATE TABLE command to your lab notebook. This
way can recreate or modify the database design later.

Figure 3.4 uses the Customer table to show the basic structure of the CREATE
TABLE command. Note that the entire description is contained in parentheses,
and you need the semicolon at the end to tell Oracle you have finished entering

CREATE TABLE Customer
(
	 CustomerID	 INTEGER,
	 CustFirstName	 NVARCHAR2(50),
	 CustLastName	 NVARCHAR2(50),
	 CustPhone 	 NVARCHAR2(50),
	 CustEMail 	 NVARCHAR2(50),
	 CustAddress 	 NVARCHAR2(50),
	 CustCity 	 NVARCHAR2(50),
	 CustState 	 NVARCHAR2(50),
	 CustZIP 	 NVARCHAR2(50),
	 CustGender 	 NVARCHAR2(50),
	 CustDateOfBirth 	 DATE,
	 CONSTRAINT pk_Customer PRIMARY KEY (CustomerID)
);

Figure 3.4

Figure 3.3

Primary key

Column name

Data type

Additional
data type
information

Table name

Customer

CustomerID
LastName
FirstName
Phone
Address
City
State
ZIP

CustomerSkill

CustomerID
Style
SkillLevel

Style
Style
StyleDescription

SkillLevel
SkillLevel
SkillDescription

46Chapter 3: Data Normalization

the command. Generally, each column
is listed on a separate row followed by
its data type. The NVARCHAR2 (text)
data type requires a value for the maxi-
mum number of characters. Note that
column descriptions are separated with
a comma. The constraint row defines
the primary key column. If you need
to define multiple columns in the key,
simply add the column name and separate it with a comma.

For text data you should generally use NVARCHAR2 instead of the older
VARCHAR2. You never know when someone will want to store names or other
data using a different language alphabet. Some data types have size limits. For ex-
ample, you should specify the maximum number of characters expected in a text
column. Oracle will efficiently store the data even if it takes less than the speci-
fied number of characters, but it will not allow anyone to enter a value with more
than the number entered. Oracle will allow up to 2,000 characters for the NVAR-
CHAR2 data type, but try to be somewhat conservative because Oracle uses those
values to set default format widths.

Columns have additional options, such as NOT NULL, which forces the user
to enter a valid value for the column. You can also provide default values that
will be entered if the user does not specify a particular value. In general, the NOT
NULL statement is automatically applied to primary key columns. You should
avoid it for other columns because it forces users to enter data, and sometimes
they need more flexibility.

Primary keys are a little tricky in SQL, since they are entered as constraints on
the table. Every constraint needs a name and you should choose a name that is
recognizable later. Using pk_table is a useful convention. If you receive an error
message later, it will include the name of the constraint. If you see the primary
key constraint name, you immediately know that either the key value is missing,
or someone tried to enter a duplicate value that already exists.

Although Oracle handles all numerical data with the NUMBER data type, you
must still be careful about selecting the size and scale of the number. In particular,
you have to make a decision about decimal places. If the column will contain only
integer values, you enter a zero for the scale since there are no digits to the right of
the decimal point. If the column will hold currency data, you will usually specify
a scale of 2, but you could use additional digits if you want to examine round-off
issues. To get floating point numbers, enter zero for both the size and scale values.

In the All Power case, most skis and boards are measured in centimeters, so the
numbers are not overly large. However, some manufacturers might choose to use
fractional lengths, so the single-precision floating point is appropriate. This step
is sometimes difficult for beginners to catch. If you forget to choose the single- or
double-precision subtype, you will not
be able to enter fractional values (with
decimal points). If you ever encounter
that problem, simply return to the De-
sign view and set the proper size and
scale values.

Action
Start SQL Developer and type in the

CREATE TABLE Customer command.
Enter column names and data types.
Assign the primary key.
Make sure the command runs with no

errors.

Action
Write the CREATE TABLE commands

to build the ItemModel table.
Be sure to include the CHECK

constraint.
Test the constraint with sample data,

using a INSERT INTO statements.

47Chapter 3: Data Normalization

Activity: Create Constraints and Default Values
In many cases, you will want the database to enforce the business rules. Placing
the rules in the database means that they will be enforced in all situations, without
relying on other programs. Figure 3.5 shows the statements for setting a condition
to ensure that cost values are always positive. Pay particular attention to the com-
mas—there are no commas within a column definition, only at the end of each
column. The condition must be entered in parentheses and must represent a valid
SQL WHERE statement. Almost any SQL condition can be used and they will be
explained in detail in Chapter 4.

As a more complex example, you might want to return to the Customer table
and add a constraint that limits the values that can be entered for Gender. The
easiest approach would be to drop the existing table (DROP TABLE Customer;)
and create it again; adding a new CHECK constraint. However, you could also
use the ALTER TABLE command. In either case, you want people to enter data
from a fixed list of items (female, male, and unidentified). You could probably
get by without the “unidentified” op-
tion by using null values for that pur-
pose, but it is a litter easier for users
if you specify it as a possibility. The
condition that enforces this constraint
is UPPER(Gender) IN (‘FEMALE’,
‘MALE’, ‘UNIDENTIFIED’). The
UPPER function converts whatever
text is entered into all uppercase char-
acters because the comparison is case
sensitive. The three acceptable items
are entered in the list with single quotes
around each word or phrase and sepa-
rated by commas.

Notice that it is straightforward to
specify default values. These are val-
ues that you want entered whenever the
user does not provide a value for the

Figure 3.5

CREATE TABLE ItemModel
(
	 ModelID	 NVARCHAR2(50),
	 Color	 NVARCHAR2(50),
	 Cost	 NUMBER(50,0)
	 CONSTRAINT ck_ItemModel_Cost CHECK (Cost>0),
	 Graphics	 NVARCHAR2(50),
	 ModelYear	 INTEGER,
	 Style	 NVARCHAR2(50),
	 SkillLevel	 NVARCHAR2(50),
	 CONSTRAINT pk_ItemModel PRIMARY KEY (ModelID)
);

Create unique name

Specify constraint type

Write condition

Action
Write the CREATE TABLE statement for

Department.
Be sure the Department column is keyed.
Write the CREATE TABLE statement for

Employee.
Set EmployeeID as a primary key

constraint.
Create a new foreign key constraint.
Name it fk_EmployeeDept.
Specify the Department table as a

reference.
Add the Cascade On Delete option.
Run the two CREATE statements and fix

any errors.
Insert a Department row, then an

Employee row.

48Chapter 3: Data Normalization

specified column. The user can override the default value and enter something
else, but it is often convenient to display a commonly used value to save time for
users entering data. For example, a SaleDate can be set to the SYSDATE function
so that the current date is automatically entered. For example, to specify a default
value of 1 for Cost, simply add the line; DEFAULT 1 (with no commas or equal
sign).

Figure 3.6

Reference Table Foreign Key

Figure 3.7
CREATE TABLE Department		
(
	 Department	 NVARCHAR2(50),
	 Description	 NVARCHAR2(150),
	 CONSTRAINT pk_Department PRIMARY KEY (Department)
);
CREATE TABLE Employee
(
	 EmployeeID	 NUMBER(12),
	 TaxpayerID	 NVARCHAR2(50),
	 LastName	 NVARCHAR2(25),
	 FirstName	 NVARCHAR2(25),
	 Address	 NVARCHAR2(50),
	 Phone	 NVARCHAR2(25),
	 City	 NVARCHAR2(50),
	 State	 NVARCHAR2(15),
	 ZIP	 NVARCHAR2(15),
	 Department	 NVARCHAR2(50)
	 DEFAULT ‘Sales’,
	 CONSTRAINT pk_Employee PRIMARY KEY (EmployeeID),
	 CONSTRAINT fk_DepartmentEmployee FOREIGN KEY (Department)
	 REFERENCES Department(Department)
	 ON DELETE CASCADE
);

Employee

EmployeeID
TaxpayerID
LastName
FirstName
Address
Phone
City
State
ZIP
Department

Department
Department
Description

1…1

1…*

49Chapter 3: Data Normalization

Relationships

Activity: Define Relationships
Relationships in Oracle and SQL can
be somewhat difficult to see, since
there is no visual representation. In the
database design system class diagram
or an entity-relationship diagram, rela-
tionships are shown as a line between
two tables. Figure 3.6 shows a typical
relationship between the Department
and Employee tables. Employees are
assigned to a department, but the department comes from a list in the Department
table. In this example, the Department column in the Employee table is a foreign
key because it refers to a primary key in a second table. The Department table is
the reference table because it supplies the data to the Employee table.

Relationships are created in Oracle by defining foreign key constraints. In this
example, any department value entered into the Employee table must already ex-
ist in the Department table. Any other value would be invalid and an error mes-
sage will be presented to the user. Creating a foreign key constraint has the same
requirement: You must first define the reference table before you can create the
foreign key relationship. In this case, you must first create the Department table.
At a minimum, the Department table should have a Department column as the pri-
mary key. You might also consider adding a Description column in case the names
of the departments need a longer explanation. You can create this table with the
designer or with SQL. Just remember that it must be created before the Employee
table is defined!

You create foreign key relationships within SQL when you define the Employ-
ee table that holds the reference to the Department table. Figure 3.7 shows the
definitions of the Department and Employee tables. Foreign key relationships are
the main reason that it is often easier to create tables within a text file first and
then execute the text file. Remember that the tables must be created in a specific
order. In this example, the Department table has to be defined before the Em-
ployee table. With a text file, you save the entire database structure and re-create
it almost instantly. The foreign key constraint is straightforward, but you have to
enter the keywords in the specified order. You begin with the CONSTRAINT key-
word followed by the name of the constraint as usual. The FOREIGN KEY phrase
specifies the type of constraint, and it is followed by the name of the column (or
columns) in the Employee table that is affected by the constraint. The keyword
REFERENCES is followed by the name of the reference table (Department), and
the column referred to is listed in parentheses. You can include multiple columns
in both the FOREIGN KEY list and the REFERENCES list, and the relationship
will pair-match all of the columns.

 Note the use of the ON DELETE CASCADE command to set the Cascade op-
tion. This option helps ensure the data remain consistent, and it makes it easier to
delete items from the database. In this example, if you delete a department from
the Department table, all employees assigned to that department will also be re-
moved from the database. Because cascade deletes can remove substantial chunks
of the database, you will eventually need to impose some strict security limits on
who can delete departments.

Action
Choose the Generate/Set DBMS option

on the main menu.
Choose Oracle and click Save.
Choose Generate/Generate Tables.
Copy the SQL commands and paste them

into WordPad.
Save the file as AllPowder.sql.
Start SQL Developer and run the file

with @<location>\AllPowder.sql.

50Chapter 3: Data Normalization

 One table can have several relationships with other tables. You simply list each
one as a new foreign key constraint. However, make sure that each reference is
valid.

Figure 3.7 also shows how to specify a default value for the Department col-
umn. In this case, employees will be assigned to the Sales department if no other
value is entered. Of course, you should make sure that the Sales department is
listed in the Department table.
Activity: Create Tables with Database Design
The basic syntax of the CREATE TABLE command is not too difficult, but the
typing becomes tedious after a couple of tables. And the foreign key relationships
require some thought. Also, if you make a mistake, you usually have to drop the
tables and start over. That is why it is so important to keep the CREATE TABLE
commands in a separate file. For example, if you name the file something like All-
Power.sql, you can run it from within SQL Developer with the command: Start
location\AllPower.sql, where location is the full drive and file location on your
computer.

But, it would be nice if there were an easier way to create the tables. So, you
should be happy to learn that the current version of the database design system
generates the SQL statements for you. The Generate option on the main menu has
two selections: Set DBMS and Generate Tables. The Set DBMS choice specifies
the target DBMS. It also controls which data types are displayed in the column

Figure 3.8

Drop existing tables

51Chapter 3: Data Normalization

edit box. You should use the menu to set the target database to Oracle. Then run
Generate/Generate Tables.

Your results will depend on which tables you have created, but Figure 3.8
provides an example. Notice that the system first writes commands to drop any
existing version of the tables. Oracle does not have a way to replace tables, so
the CREATE TABLE commands would crash if you had older versions with the
same name. On the other hand, if you do not have older versions of the tables, the
DROP statement will issue a warning message. You can ignore those messages.

The database design system automatically adds any CHECK constraints and
DEFAULT value items you entered into the system for a column. It also creates
the primary key constraints and defines any sequences used to generate key val-
ues. More importantly, it builds the foreign key constraints for all of the relation-
ships. In fact, remember that with foreign key constraints, you have to create the
referenced tables first (such as Department before Employee). The design system
automatically sorts the tables and writes the CREATE TABLE statements in the
proper order. It also writes the DROP TABLE statements in the reverse order.
From this point, you can copy the text from the screen (Ctrl-A, Ctrl-C), start a text
editor (WordPad), and paste the SQL statements into the editor. Then save the file
with the SQL suffix. Start SQL Developer and run the new file. All of your tables
will be created. You could also paste the commands directly into SQL Developer,
but it is better to save them as a file so you have a backup copy.

As shown in Figure 3.9, the generator has some options that might be useful to
you. Scroll to the bottom of your browser to see the three options and the Rebuild
button. First, go back and look at the columns used in the Customer and Employee
tables. Since they both represent people, those tables have columns for LastName
and FirstName. To tell a customer LastName apart from an employee LastName
in the right hand listing, the columns were originally named CustLastName and
EmpLastName. But, when you create the tables, you will be able to identify them
simply by the table in which they appear (Employee.LastName and Customer.
LastName). So, it would be nice to drop the prefixes (Cust and Emp). You could

Figure 3.9

Specify a prefix
delimiter

Add quotation
marks for names

Change the
DBMS

52Chapter 3: Data Normalization

edit the table lists by hand and manu-
ally delete each prefix. Or, you can go
back to the design screen and add an
underscore (or any other separator) to
each name. As you can see with the
Employee table, you end up with col-
umn names similar to Emp_LastName.
Now, you simply enter the underscore
character (_) into the Remove column
prefix box. When you click the Rebuild
button, any characters found before the
underscore will be removed from the
name. They will remain within the design system; this change only applies to the
generated names.

The second option is one you can consider, but it carries a cost in the future.
By default, Oracle converts and stores all table and column names in uppercase
letters. If you want mixed case names, you can enclose the names within dou-
ble quotes (“) when you create the table. The Delimiter for names box provides
a shortcut to making all of the changes by hand. Simply enter the double-quote
character into the box and click the Rebuild button. Note that SQL Server and
Access use square brackets, so you can also enter a square bracket character ([).
However, before you decide you really like mixed case names, note that for every
future SQL command, you will have to enclose the name in double quotes. You
have not yet seen how many times you will have to type table and column names,
but it is substantial. So, although mixed case names are easier to read, they might
not be worth the additional work.

You can also change the target DBMS from this screen when you rebuild. This
option is merely there to save you a step in case you forgot to set the correct

Action
Start the Enterprise Manager.
Click the Administration tab, then the

Tables link under the Schema section.
Enter the columns for the Employee

table, but name it Employee2.
Create the primary key constraint.
Create the foreign key constraint.
Look at the SQL and create the table.
Delete the table.

Figure 3.10

Constraints

Table name

Columns

53Chapter 3: Data Normalization

DBMS back in the design screen. The selected value is not saved with your de-
sign, so you can experiment and see that the other system use similar syntax.

Finally, note that Oracle supports many more options in the CREATE TABLE
command. Most of them control where and how the table is stored. A DBA would
use these options to adjust the performance of the database. However, they are
highly specialized and not required, so you can worry about them later.
Activity: Create Tables with Enterprise Manager
Although the Enterprise Manager requires DBA privileges, it is worth examining
some of the tools it provides to create and organize the database. If you do not
have DBA permissions at the moment, you can just read this section for an over-
view. After logging into the Enterprise Manager (EM) (http://yourserver:1158/
em), you will see the three main tabs: Performance, Administration, and Mainte-
nance. To create or alter tables, you need to select the Administration tab. On that
page, look for the Schema section and click the link for Tables. When you click
the Create button, you can follow the prompts to create a new table.

As shown in Figure 3.10, you basically fill out a form to create the table. Make
sure you provide the name for the table. Then enter each column name and select
the appropriate data type. It is also easy to specify a default value for each column.

Creating the primary key and foreign key constraints takes a few more steps.
Begin by clicking the Constraint tab for the table. You then select the type of con-
straint (Primary, Foreign, Check, and so on). For a primary key constraint, you
need only select the columns that make up the primary key. The process is similar
to the first step in the creation of a foreign key.

As shown in Figure 3.11, creating a foreign key requires several steps. First
you select the columns in the main table that are the foreign key. For the sample
Employee table, select the Department column and move it to the next window.
The next step is to choose the table that is being referenced. In this case, you need
to choose the Department table. The trick is to click the flashlight icon to ini-

Figure 3.11

Choose column

Select reference table

Choose reference
column

54Chapter 3: Data Normalization

tiate a search. A window pops up that
shows you a list of available tables.
Choose the department table and return
to the main constraint screen. You will
probably have to click the Go button to
load the table columns for the selected
table. Then choose the Department key
column and move it to the selected
window. You can now add more con-
straints or return to the column-list window by clicking the appropriate tab. As a
DBA, one of the nice features of the EM is its ability to help you configure storage
options for each table.

On the main table design page, you can click the Show SQL button to see the
SQL CREATE TABLE command. When you are finished with the design, you
should look at this code and copy it to a text file so you have it available in the
future. Then you can click the OK button to execute the statement and create the
table.

The visual approach to creating tables is useful—especially for beginners—
because you do not have to memorize the CREATE TABLE syntax details. Just
remember to copy the SQL statement and store it in a text file to make it easier to
rebuild the table later. Eventually, as you become more familiar with SQL, you
will find it easier to use straight SQL to create tables. Or, you will use a graphical
designer that generates the SQL statements with even less effort.
Activity: Estimate the Database Size
At some point, you need to estimate the size of the database project. Of course,
any estimate at this early stage will be very rough. Your goal is not to be perfect,
but to be able to categorize the overall project size. The information will help you
identify the basic category of database server and perhaps narrow your choice of
tools. In particular, it will help you determine how much disk space you need to
purchase, and whether you will need more servers and faster processors. Note that

Action
Create a spreadsheet.
Enter table names as rows.
Add columns for: Bytes, Rows, Totals.
Calculate the bytes per table row.
Estimate the number of rows.
Compute the table and overall totals.

Figure 3.12

CustomerID	 NUMBER(12)	 8
LastName	 NVARCHAR(50)	 30
FirstName	 NVARCHAR(50)	 20
Phone	 NVARCHAR(50)	 24
Email	 NVARCHAR(150)	 100
Address	 NVARCHAR(50)	 50
State	 NVARCHAR(50)	 4
ZIP	 NVARCHAR(15)	 20
Gender	 NVARCHAR(15)	 20
DateOfBirth	 Date	 7

Average bytes per customer	 283
Customers per week (winter)	 *200
Weeks (winter)	 *25
Bytes added per year	 1,415,000

55Chapter 3: Data Normalization

with Oracle, the database administrator has to set aside table space files to hold the
data, so it helps to have some idea of the storage requirements early in the process.

To estimate the database size, you begin by estimating the size of each data
table. You must already know which columns belong to each table. Figure 3.12
shows the process for the Customer table. Some of the column size estimates are
straightforward. Look back to Chapter 2 for a reminder that a NUMBER data
type can use 8 bytes of storage in Oracle. The text columns are a little trickier. For
instance, although the database will allow up to 50 characters of text for the last
name, almost no names will actually be that long. Instead, you need to estimate
the average length of customer last names. You could use existing data, or perhaps
a sample from a phone book. Perhaps an average last name is 15 characters long.
But the DBMS stores text in Unicode format, which requires 2 physical bytes of
storage for each character, so the average storage space needed for a last name is
30 bytes. Use a similar process to estimate the number of bytes needed to store an
average row of customer data.

Next, you need to estimate how many new customers will arrive each year. In
a real case, you could look at past records or talk with the expert users. Here, as-
sume it is about 200 per week, but there are only 25 weeks of the ski season; so
there are about 5,000 new customers a year. Multiplying the estimated number
of customers by the size of an average row yields the initial data size of the Cus-
tomer table to be about 1 million bytes.

You need to follow a similar process for all of the tables in the case. Figure 3.13
lists some of the basic assumptions you can use. You should build a spreadsheet
that lists each table, the average number of bytes per row, the estimated number
of rows, and the total estimated size for the table. There is still some flexibility in
the final number, but your estimate should be around 5 to 6 megabytes. Remember
that this is data for only one year. Also, additional space will be required for in-
dexes, overhead, queries, forms, and reports. But even if the final number is closer
to 20 megabytes, Oracle can easily handle this database on a PC-based server. If
you look closely at the Oracle table designer in the Enterprise Manager, you will
see a button that performs most of the estimation for you. It asks you to estimate
the number of rows in the table, then it computes a quick estimate of the storage
size required for that table. You still need to get good estimates of the number of
rows in each table.

Figure 3.13

200 customers per week for 25 weeks
2 skills per customer
2 rentals per customer per year
3 items per rental
20 percent of customers buy items
4 items per sale
100 manufacturers
20 models per manufacturer
5 items (sizes) per model

56Chapter 3: Data Normalization

Exercises

Many Charms
Samantha and Madison want you to build the database for their charms sales.
They emphasized that the system has to be easy to use. They also pointed out
that a key element of their business is tracking all of the products and the various
suppliers, then monitoring the costs so they can set their prices accurately. They
are also concerned about monitoring how quickly their charms sell. They figure
they will need to start with at least 200 basic charms, but most charms come in
two sizes, along with the different metals and finishes. When asked, the women
indicate they are uncertain how many customers they will have but would like to
get at least 50 sales a week. Although some of the sales might be small, they hope
to build a solid list of clients who return for new purchases on a monthly basis.
To encourage return customers, they are thinking about offering some type of fre-
quent-buyer program, where customers receive discounts or maybe a free charm,
after purchasing a specified number of charms.

1.	 Define the final tables needed for this case.
2.	 Create the database.
3.	 Estimate the size of the database for one year of operation.

Standup Foods
Laura’s business has been established for several years. Many of her clients are
old customers, and she has a couple of thousand in her files—although some have
gone out of business. Her business has grown considerably based on referrals
from existing clients. She gets so many good comments and referrals, she is think-
ing that she needs to track which customers pass her name on to others so she can
call them or send thank-you gifts. But, her more immediate concern is tracking
employees. Over the course of a year, she has a relatively high turnover in some
positions. Other employees have been with her for years. In total, she probably
deals with 400 to 500 employees a year. Employees are rated after each job, and
typically employees work 15 to 20 jobs a year for her. On average, employees
tend to have three tasks per event. For instance, a driver will also be a server, and
possibly also a busboy or dishwasher. They are evaluated on 10 items for each
task they perform, as well as given an overall rating. Client food preferences are
somewhat more complex, so Laura wants the capability to add free-form com-
ments to cover extreme cases. For common elements, such as allergies to nuts, she
wants to keep itemized lists—both for desired items and forbidden items. Some
clients are easy going, but this is Hollywood, so many have long lists of items—
often ranging to 50 or even up to 100 items.
1.	 Define the final tables needed for this case.
2.	 Create the database.
3.	 Estimate the size of the database for one year of operation.

57Chapter 3: Data Normalization

EnviroSpeed
For good or bad, Tyler and Brennan have been busy. Their firm has been averag-
ing four to five cleanups a week. Although there are not many permanent em-
ployees (fewer than 100), they have close associations with about 200 experts in
various areas. All of these people need access to the environmental documents and
other information. Additionally, about 400 crews around the world are called in to
work on various problems. The crews consist of 10 to 20 people. Initially, experts
contribute the most information. Sometimes an expert will contribute hundreds of
pages of documents and comments. Once an incident is opened, most of the new
data and the searches come from the emergency crews. Time schedules, environ-
mental factors, and comments can arrive quickly from all of the crew members.
Some of the notes are on paper and saved until the emergency is over, when clerks
enter the basic data to the database. A typical incident can generate dozens of pag-
es of notes and schedules from each crew member. Although there are hundreds
of possible chemicals, the firm has found that only about 50 major chemicals are
typically involved in critical incidents. One important aspect of this case is the
need for experts and crew members to search through documentation based on
key words. For example, crews will need to search for certain chemicals, possibly
in combination with other chemicals, and often include the type of problem, such
as water or road spill. Brennan estimates a typical document needs to include at
least 20 keywords to identify the exact purpose of the document.
1.	 Define the final tables needed for this case.
2.	 Create the database.
3.	 Estimate the size of the database for one year of operation.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following instructions.
1.	 Finalize your database design.
2.	 Create the tables in the DBMS.
3.	 Estimate the amount of data that might be generated for one year.

Objectives

•	 Create or import sample data into a database.
•	 Create basic queries to answer common business questions.
•	 Use joins to create multitable queries.
•	 Use queries to perform simple calculations.
•	 Answer business questions involving totals and subtotals.

Chapter Outline

Database Queries and SQL
4Chapter

Database Queries, 59
Case: All Powder Board and Ski Shop, 59
Lab Exercise, 60

All Powder Board and Ski Data, 60
Computations and Subtotals, 69

Exercises, 75
Final Project, 76

59Chapter 4: Database Queries and SQL

Database Queries
Relational databases are designed to efficiently store data. Efficiency results in
splitting the data into many tables, interconnected by the data. Consequently, you
need a good query system to retrieve data. SQL is a powerful standard designed
to perform several tasks in retrieving and manipulating data in relational database
systems. Most modern systems implement some version of SQL. The catch is that
the standard continues to evolve, and it takes time for the DBMS vendors to catch
up. Also, vendors tend to include proprietary extensions to provide additional fea-
tures. At one time, Oracle included a visually oriented QBE system, but as of 9i,
it no longer exists as a standalone system. So you really need to learn and under-
stand the straight-text SQL. The logic of SQL is the same as for QBE, but it can be
cumbersome because you have to type more text. Also, the JOIN statements are a
little more confusing in SQL.

Oracle has two related methods to enter SQL commands: (1) SQL Plus, (2) and
SQL Developer. Both require you to type SQL statements and have limited or no
graphical or QBE features. Of the two, SQL Developer has a better editor and is
easier to use. The current (11g) version of SQL Plus runs from command mode
with limited editing features. SQL Developer also displays a list of tables and
columns in a navigation tree. The tree also shows the syntax for built-in functions.

There is one other important issue you need to know about Oracle SQL. You
often need to issue a COMMIT command to ensure that your changes are written
to the database. It is part of the transaction processing system that is explained in
more detail in Chapter 7.

This chapter focuses on the data retrieval aspects of queries. SQL can also be
used for data definition (e.g., CREATE TABLE), and for data manipulation (e.g.,
UPDATE and DELETE). These features and more complex queries are covered in
Chapter 5. Once you learn the foundations of queries presented in this chapter, the
other topics are easier to understand.

In any database, when you are writing queries, it helps to have a copy of the
class (relationship) diagram handy. One of the more difficult aspects to creating a
query is to find which tables hold the data you need. This problem is one of the
reasons it is so important to label your tables and columns carefully when you
create the database. Managers need to be able to identify the tables and columns
that match the business questions. With dozens or even hundreds of tables with
confusing or abbreviated names, it can be difficult to find the correct data.

Case: All Powder Board and Ski Shop
Before you can build queries, you need data in the tables. Even with a small num-
ber of tables, it is time-consuming to create reasonable data. You have to match the
foreign keys across the relationships. For instance, it is straightforward to create
basic customer data, although it would take a while to type in data for a thousand
customers. Then, when you want sales data, you have to select CustomerID values
from the existing list. You also have to create ski and board models, generate data
for items with appropriate attributes, and then choose the proper ID values for the
sales and rentals. In a typical business project, you can test the database with a
few dozen examples, and then wait for the business to generate real data to ana-
lyze. In a class setting, it is better to use sample data. For that reason, sample data
is available for the tables in the All Powder case. The one catch is that your tables
might not contain exactly the same columns. This data was randomly generated

60Chapter 4: Database Queries and SQL

with specially built generators. You could edit the data to match your tables, but it
is easier to delete (or rename) your tables, then run the build script that creates and
loads the new tables.

Lab Exercise

All Powder Board and Ski Data
At this point, the main tables of your database should be similar to those in Figure
4.1, although several supporting tables have been removed from the figure. The
Manufacturer, Customer, Sale, and SaleItem tables are common to most business
databases. The Rental and RentItem tables simply mirror the sale aspects. The
Inventory and ItemModel tables arose because of the characteristics of the board
and ski products. To save time and effort, sample data files are provided on the
Web site for each of these tables, plus the common supporting tables.
Activity: Import Data
Oracle supports importing data from
flat files, but the process requires some
advanced permissions. The scripts for
this book use this method, and require
that you have the role: CREATE ANY
DIRECTORY. Another method of
loading data is to write text files with
hundreds (or thousands) of lines of IN-
SERT INTO statements. This process
is somewhat inefficient and relatively
slow—because each row contains extra
characters and each row is processed separately. It is reliable and works with any
version of Oracle, but it takes time to build the INSERT INTO statements—even

Figure 4.1

Action
Download the initial All Powder

database.
Start SQL Developer.
Drop or rename conflicting tables:
Start <path>\0DropAllPowderTables.sql.
Edit the csv_dir path in the 1Build… file.
Start <path>\1BuildOracleAllPowder.sql.
Wait a few minutes for the data to load.

61Chapter 4: Database Queries and SQL

with a program to generate them. The CSV files also might have to be stored on
the Oracle server. A load version of the initial database exists using INSERT com-
mands if you need to use that one instead of the main one.

In any case, you should download a copy of the Build statements that will cre-
ate the initial All Powder database from the Web site. You should rename your
existing files if you want to keep them. Then you should run the DropAllPow-
derTables.sql script to ensure that the script does not crash because of tables with
duplicate names.

Copy all of the files in the BuildAllPowder folder to a directory on the comput-
er running Oracle Developer. Edit the main file (1BuildOracleAllPowder.sql) in a
text editor (such as Notepad). Change the name of the csv_dir so that it matches
the location of your data files. Currently, it is set to c:\Books\OracleWorkbook.
Save the file and close the editor. From within SQL Developer, run the modified
file with: Start <location>1BuildOracleAllPowder.sql, where <location> is the
full path name of the directory holding the file. For instance:

start c:\Books\ORacleWorkbook\1BuildOracleAllPowder.sql

Figure 4.2

Start D:\Books\Chapter04\BuildAllPowderCh04.sql
Starting...
Tables Created
Loading Employee...
Loading Manufacturer...
Loading ItemModel...
Loading SaleItem...
Loading Rental...
Analyzing Data...
Finished.
 COUNT(*)
 3953
1 row selected.
SELECT table_name FROM user_tables
WHERE table_name Not Like ‘BIN%’ ORDER BY table_name;

TABLE_NAME
CUSTOMER
CUSTOMERSKILL
DEPARTMENT
EMPLOYEE
INVENTORY
ITEMCATEGORY
ITEMMODEL
MANUFACTURER
PAYMENTMETHOD
PRODUCTCATEGORY
RENTAL
RENTITEM
SALE
SALEITEM
SKIBOARDSTYLE
SKILLLEVEL
16 rows selected.

62Chapter 4: Database Queries and SQL

After a few minutes, the tables should be created, the data copied, and the ta-
bles analyzed to improve performance. As shown in Figure 4.2, you can query the
underlying metadata view to see if the tables were created, using the command:

SELECT table_name FROM user_tables
WHERE table_name Not Like ‘BIN%’ ORDER BY table_name;

Activity: Create Basic Queries
Creating a query requires that you
translate a business question into a
format the query system can process.
Sometimes this step is straightforward;
at other times it is difficult. It helps if
you format your query in terms of the
four main questions: (1) What do you
want to see? (2) What do you know
or what are the constraints? (3) What
tables hold the data? (4) How are the
tables connected? In Oracle, these questions are all entered using SQL text com-
mands. As shown in Figure 4.3, you type these commands in a SQL Worksheet
within SQL Developer. You enter SQL statements in the top half of the screen.
When you click the Execute arrow button, the results of the query and any mes-
sages show up in the bottom window of the form. You can use the History button
to retrieve earlier queries. You use standard mouse editing actions to edit the SQL
statements. Queries that retrieve many rows are automatically paginated and data
is displayed in columns.

If you know that a query is going to contain a large number of rows and you
need to see only a few of them, you can use the built-in rownum to limit the re-
sults. Just include a WHERE (rownum < 20) or whatever count number you want
to see. The rownum is displayed in a column on the left side.

Figure 4.3

Action
Run the query:
SELECT Category, ListPrice,

WeightMax, Color, Graphics
FROM ItemModel
WHERE Category=’Board’
AND ListPrice<300
AND WeightMax>150;

Execute query

SQL statement

Prior commands
history

Results

63Chapter 4: Database Queries and SQL

Another shortcut available in SQL
Developer is that you can use the
mouse to drag a table into the edit win-
dow. Choose the SELECT option and
the developer will write the simple SE-
LECT statement that contains a list of
all of the columns from that table.

As you work through the queries in
this lab, you will want to keep two things handy: (1) the list of tables in the data-
base and (2) the syntax chart for SQL statements. Both of these are available in
the navigation window on the left side of SQL Developer, but sometimes it helps
to have a copy of the database diagram.

Begin with a straightforward query: Display the snowboards with a list price
under $300 for riders over 150 pounds. The potential buyer wants to know what
color and graphics are available for boards that meet those conditions. The most
difficult step in this query is to identify the table and columns that match the con-
ditions. For example, snowboards are identified by the Category column in the
ItemModel table. If you examine the data, you will see a “Board” entry for each
item that is a snowboard. The list price, maximum weight, color, and graphics col-
umns are also in the ItemModel table.

Figure 4.4 shows the basic query and the results. To create the query, first enter
the main three SQL keywords on separate lines: SELECT, FROM, and WHERE.
Now you can build the query simply by filling in the blanks after those keywords.
Generally, determining what you want to see (SELECT) is straightforward, so en-
ter the column names on that row: Category, ListPrice, WeightMax, Color, and
Graphics. Next, enter the criteria given for the problem on the WHERE line:
Category=’Board’ AND ListPrice<300 AND WeightMax>150. Note that text
qualifiers (Board) have to be enclosed in single quote marks (‘). Also remember to
put the semicolon (;) at the end of the statement. Finally, check the column names

Figure 4.4

Action
Format the ListPrice column using the

TO_CHAR function
SELECT Category,
 to_char(ListPrice,’$9999.00’) As List_

Price, …

Question Display snowboards with a list price under $300 and max
weight over 150 pounds.

SQL COLUMN Category Format A10
COLUMN Color Format A10
COLUMN Graphics Format A15
SELECT Category, ListPrice, WeightMax, Color, Graphics
FROM ItemModel
WHERE Category=‘Board’
AND ListPrice < 300
AND WeightMax > 150;

CATEGORY LISTPRICE WEIGHTMAX COLOR GRAPHICS
---------- ---------- ---------- ---------- ---------
Board 292 188 Orange Fade
Board 263 181 Magenta Geometric
Board 262 179 Purple Space
Board 290 194 Blue Abstract
Board 294 158 Red Sunrise
Board 270 191 Yellow Landscape
Board 255 239 Red Gothic
Board 256 171 Magenta Sunrise
Board 283 226 Blue Gothic
Board 277 163 White Gothic
Board 259 223 Magenta Linear

64Chapter 4: Database Queries and SQL

in the SELECT and WHERE statements and see which tables they fall in. In this
case, all of them are in the ItemModel table, so simply enter that table name on the
FROM line. Run the query to see the 11 boards that meet the conditions.

SQL Plus uses COLUMN commands to format output on the screen, but these
are not used in the SQL Worksheet results. Instead, you have to format each col-
umn within the SELECT statement—typically by using the TO_CHAR function
of Oracle.

As shown in Figure 4.5, the TO_CHAR formatting function can be used in
any SQL statement. You can find additional formats and more details about the
TO_CHAR command in the Oracle documentation. It is commonly used for cur-
rency and date data types.
Activity: Create and Test Multiple Boolean Conditions
Interpreting business questions can sometimes be difficult because of the ambigu-
ity of natural languages. It is one of the reasons SQL remains so important. SQL
requires you to specify exactly what you want to see and to write the conditions
mathematically. Of course, these conditions can become relatively long when the
business question is complex. Consider a customer who wants skis for jumping.
She wants them made from composite materials, and the main color can be red or
yellow. She does not want to spend more than $300, but if they are red, she is will-
ing to pay up to $400.

Begin with a new query, and again recognize that all of the attributes are in the
ItemModel table. Looking through the data, the first three conditions are straight-
forward: the Category is Ski, the ItemMaterial is Composite, and the Style is
Jump. The colors appear to be straightforward, except that the choice is connected
with Or. Whenever a query contains both And and Or conditions, you must be
careful, so start with basic conditions and check the results as you go. Figure 4.6
shows the initial query with the three main conditions that must always hold (Ski,
Jump, and Composite). Note that whenever an item is placed in quotation marks,
Oracle treats it as case sensitive. Hence, you must type the condition values care-

Figure 4.5

Format currency

65Chapter 4: Database Queries and SQL

fully. Since the rest of the SQL state-
ment, such as the table name, is not in
quotation marks, it is not case sensitive.

Now you can think about how to
add the other two aspects of the ques-
tion. Yellow skis are required to cost
less than $300, so what happens if you
add both conditions to the query? Fig-
ure 4.7 shows the query and the results.
Since all of the conditions are on the
same Criteria row, all five must be true
at the same time. So, the query returns
only yellow skis, and only one row
matches the price condition.

To see the red skis, you have to add
the option of Red as a color, but you
also have to establish the higher ac-
ceptable price for red skis. The solution
is to use parentheses. Anytime you en-
counter a query that contains both And
and Or connectors, you will have to use parentheses to specify how the conditions
are grouped. Remember from algebra that conditions inside the innermost paren-
theses are evaluated first. The key in this example is to group the color yellow

Figure 4.6

Action
Clear any existing SQL and results.
Enter the keywords SELECT, FROM,

WHERE.
SELECT Category, Color, ItemMaterial,

Style, ListPrice.
Enter ItemModel as the table on the

FROM line.
Enter conditions: Category=’Ski’

And Style=’Jump’ And
ItemMaterial=’Composite’.

Run the query to ensure it works.
Add the conditions for Color=’Yellow’

and ListPrice<300.
Test the query.
Add the conditions for Color=’Red’ and

ListPrice<400.
Add the correct parentheses.
Run the query and test it.

Question List jumping skis made from composite materials.
SQL SET PageSize 24

COLUMN Category Format A10
COLUMN Color Format A10
COLUMN ListPrice Format $9999.00
COLUMN ItemMaterial Format A15
COLUMN Style Format A10
SELECT Category, Color, ItemMaterial, Style, ListPrice
FROM itemModel
WHERE Category=’Ski’ AND ItemMaterial=’Composite’ AND
Style=’Jump’;

CATEGORY COLOR ITEMMATERIAL STYLE LISTPRICE
---------- ---------- --------------- ---------- ---------
Ski Red Composite Jump $223.00
Ski Orange Composite Jump $386.00
Ski Blue Composite Jump $229.00
Ski Black Composite Jump $410.00
Ski Turquoise Composite Jump $99.00
Ski White Composite Jump $142.00
Ski Yellow Composite Jump $357.00
Ski Purple Composite Jump $177.00
Ski Black Composite Jump $233.00
Ski Yellow Composite Jump $340.00
Ski Magenta Composite Jump $372.00
Ski Turquoise Composite Jump $248.00
Ski Red Composite Jump $294.00
Ski Magenta Composite Jump $425.00
Ski Red Composite Jump $137.00
Ski Yellow Composite Jump $345.00
Ski Red Composite Jump $431.00
Ski Turquoise Composite Jump $119.00
Ski White Composite Jump $178.00
Ski Yellow Composite Jump $70.00

66Chapter 4: Database Queries and SQL

with its price condition and group the color red with its price condition. As shown
in Figure 4.8, you also need to put parentheses around both of these new groups.
If you leave out these last major grouping parentheses, the query will return yel-
low jumping skis or any red ski less than $400. The final query shows that four
skis match the conditions. Check them carefully to ensure that all conditions are
met. Even if al of the skis in the result are acceptable, how do you know if the
query found all of the matches? This question highlights one of the difficulties of
any query language. The only way you know if the query is right is if you care-
fully build it step-by-step and test the individual steps. In this example, the first
query was straightforward and ignored color and price constraints. It returned 20
matches, so the four matches returned by the final query seem like a reasonable
number. In this case, the two sets are small enough that you can check the results
by hand.
Activity: Use Multiple Tables in a Query
Relational databases require the tables to be carefully designed so that the DBMS
can efficiently store large amounts of data. This process entails placing data into
multiple tables. Consequently, a key feature of SQL is its ability to join the tables
to make it easy to retrieve data from many tables with one query. Oracle 9i sup-
ports the SQL standard for joining tables. As it is the easiest to understand, it will
be used here. The older Oracle syntax is shown at the end of this section because
you will still see many queries in Oracle that use it.

To understand the join process, create a new query using just the Sale table. The
objective is to find all of the sales in May that were made with a cash payment.

Figure 4.8
Question List jumping skis, made from composite materials

(Yellow And ListPrice < 300)
OR (Red And ListPrice < 400)

SQL SELECT Category, Color, ItemMaterial, Style, ListPrice
FROM ItemModel
WHERE Category=’Ski’ AND ItemMaterial=’Composite’ AND
Style=’Jump’
 AND ((Color=’Yellow’ AND ListPrice<300)
 OR (Color=’Red’ AND ListPrice<400));

CATEGORY COLOR ITEMMATERIAL STYLE LISTPRICE
---------- ---------- --------------- ---------- ---------
Ski Red Composite Jump $223.00
Ski Red Composite Jump $294.00
Ski Red Composite Jump $137.00
Ski Yellow Composite Jump $70.00

Figure 4.7

Question List jumping skis, made from composite materials.
And Yellow And ListPrice < 300

SQL SELECT Category, Color, ItemMaterial, Style, ListPrice
FROM itemModel
WHERE Category=’Ski’ AND ItemMaterial=’Composite’ AND
Style=’Jump’
AND Color=’Yellow’ AND ListPrice<300;

CATEGORY COLOR ITEMMATERIAL STYLE LISTPRICE
---------- ---------- --------------- ---------- ---------
Ski Yellow Composite Jump $70.00

67Chapter 4: Database Queries and SQL

Figure 4.9 shows the initial query. Note
the use of the Between clause to speci-
fy the month of May. Also observe the
date format carefully. It is generally
easiest to use the standard Oracle date
format (dd-Mon-yyyy). If you want
to use a different format, you need to
use the TO_DATE function to specify
the conversion method. For example,
each date could be replaced with TO_
DATE(‘01/05/2010’, ‘mm/dd/yyyy’).

Observe that the query returns the
CustomerID. But no one is going to memorize CustomerID numbers. Instead, you
need to look up the matching customer names. If you look at the relationship dia-
gram (part of it is shown in Figure 4.1), you find that the CustomerID and match-
ing names are stored in the Customer table. Now you could take each of the ID
values returned by the Sale query and create a new query on the Customer table
and manually enter the values to find the names. However, the table JOIN com-
mand is much easier and more powerful to use.

In the SQL query, add the INNER JOIN line that adds the Customer table and
specifies how it is connected to the Sale table: INNER JOIN Customer ON Sale.
CustomerID = Customer.CustomerID. You will also have to add the table prefix to
the CustomerID column in the SELECT statement: Sale.CustomerID. Finally, add
the Customer LastName and FirstName columns to the SELECT phrase.

Figure 4.10 shows the basic query design. Once the tables are joined correctly,
you can add any column to the other clauses. In this case, place the Customer
LastName and FirstName columns in the SELECT clause. Run the query to see
that the DBMS automatically looks up the names that match the ID values. If you
want to double-check the lookup, you can add the CustomerID column from the
Customer table and see that it matches the CustomerID values from the Sale table.
Just be sure to specify the table name (Customer.CustomerID).

To see the power of the SQL joins, consider a slightly more challenging busi-
ness question: Which customers bought Atomic skis in January or February? Note
that Atomic is the name of a ski manufacturer. Before leaping into the SQL, it
is best to think about the query and look at the relationship screen for a minute.
As shown in Figure 4.11, begin with what you want to see: the names of the cus-
tomers. These are in the Customer table. Now, what facts do you know? In this
case, you are given the name of the manufacturer, the ItemModel.Category, and

Figure 4.9

Action
Start with a blank query.
Add SELECT, FROM, WHERE.
Set SaleID, SaleDate, CustomerID, and

PaymentMethod.
Use only the Sale table.
Set the SaleDate between 01-May-2010

AND 31-May-2010.
Set PaymentMethod to Cash.
Run the query to test it.

Question List customers (ID) with sales in May who paid with Cash.
SQL SELECT SaleID, SaleDate, CustomerID, PaymentMethod

FROM Sale
WHERE SaleDate Between ‘01-May-2006’ AND ‘31-May-2006’
 AND PaymentMethod=’Cash’;

 SALEID SALEDATE CUSTOMERID PAYMENTMETHOD
---------- --------- ---------- ---------------
 1495 13-MAY-06 645 Cash
 1304 07-MAY-06 1309 Cash
 1356 02-MAY-06 314 Cash
 1376 10-MAY-06 69 Cash

68Chapter 4: Database Queries and SQL

the range for the SaleDate. You should
also begin writing down the tables you
need to provide these facts: Customer,
Sale, ItemModel, and Manufacturer so
far. When you examine the relation-
ships for the database, you will see that
these four tables are not enough—they
do not connect together. You will also
need the SaleItem and Inventory tables.

Figure 4.12 shows the final query in
Design view. Notice the large number
of tables involved. But, you need to
verify that each connection is correct for the specific problem. Once the tables
have been selected and joined, you can quickly place the columns you need on the
query grid, and then enter the desired conditions. Running the query reveals the
two people who meet the desired conditions. The join statements are the key to
creating this query. Begin with one table, then add each new table after an INNER
JOIN command. Be sure to specify the table links using a collection of ON condi-
tions. Once the tables and links have been defined, you can use columns from any

Figure 4.10

Question List customers with sales in May who paid with Cash.
SQL SELECT SaleID, SaleDate, Sale.CustomerID, LastName,

FirstName, PaymentMethod
FROM Sale
INNER JOIN Customer ON Sale.CustomerID = Customer.
CustomerID
WHERE SaleDate Between ‘01-May-2006’ AND ‘31-May-2006’
 AND PaymentMethod=’Cash’;

 SALEID SALEDATE CUSTOMERID LASTNAME FIRSTNAME PAYMENTMETHOD
------- --------- ---------- ------------- ------------ ------
 1495 13-MAY-06 645 Alexander Marvin Cash
 1304 07-MAY-06 1309 Pratt Adrian Cash
 1356 02-MAY-06 314 Rich Manuel Cash
 1376 10-MAY-06 69 Forbes Horace Cash

Action
Add the INNER JOIN line after FROM.
Add the Customer table.
Add the join condition: ON Sale.

CustomerID = Customer.CustomerID.
Change to Sale.CustomerID on the

SELECT statement.
Add Customer LastName and FirstName

to the SELECT statement.
Run the query to test it.

What do you want to see? Customer names, SaleDate

What do you know? Manufacturer name, SaleDate
range, Category is Ski

What tables are involved?
How are they joined?

Customer ... Sale ... ItemModel,
Manufacturer

SELECT LastName, FirstName, SaleDate
FROM Customer, ..., Sale, ..., ItemModel, Manufacturer
INNER JOIN ...
WHERE Manufacturer.Name=”Atomic”
 AND Sale.SaleDate BETWEEN 1/1/2004 And 2/29/2004
 AND ItemModel.Category=”Ski”

Figure 4.11

Which customers bought Atomic skis in January or February?

69Chapter 4: Database Queries and SQL

of the tables. Just remember that if a column by the same name exists in more than
one table, you refer to that column with its full Table.Column name.

INNER JOIN commands can seem daunting at first. The key is to build them in
pairs. Start with one table in the FROM command, then identify a table that can
be joined to the first one. For example, FROM Manufacturer INNER JOIN Item-
Model; then write the ON statement that specifies which columns are connected:
ON Manufacturer.ManufacturerID = ItemModel.ManufacturerID. Move on by
finding a table that has something in common with one of the existing tables, add
the INNER JOIN newtable command and the ON statement. Continue until the
statement contains all of the tables needed to answer the question.

Older Oracle queries are based on the older SQL syntax. Join conditions repre-
sent one of the greatest differences in this syntax. To see the difference, the Sale/
Customer query will be rebuilt. Figure 4.13 shows the difference. Begin the query
with the SELECT, FROM, and WHERE clauses. Enter the columns to be dis-
played, then the date condition in the WHERE clause. List the Sale and Customer
tables in the FROM clause separated by a comma. Finally, add the join condition
(Sale.CustomerID = Customer.CustomerID) to the WHERE clause. There are no
INNER JOIN or ON statements. When you run the query, you should receive the
same results as earlier.

Computations and Subtotals

Activity: Compute Values with Queries
In general, it does not make sense to store some columns in the database. In par-
ticular, the DBMS query system has the ability to perform common calculations.
Figure 4.14 shows how the query system can easily calculate the profit margin
for each item. In this case, the table holds the item’s list price and the acquisition
cost. The profit is simply the difference between the list price and the cost. In the
SELECT clause you enter the calculation and give it a name using the AS key-

Figure 4.12

Question Which customers bought Atomic skis in January or February?
SQL COLUMN LastName Format A10

COLUMN FirstName Format A10
COLUMN Category Format A10
SELECT LastName, FirstName, ItemModel.Category, Name, SaleDate
FROM Manufacturer INNER JOIN ItemModel
 ON Manufacturer.ManufacturerID = ItemModel.ManufacturerID
 INNER JOIN Inventory
 ON ItemModel.ModelID = Inventory.ModelID
 INNER JOIN SaleItem
 ON Inventory.SKU = SaleItem.SKU
 INNER JOIN Sale
 ON SaleItem.SaleID = Sale.SaleID
 INNER JOIN Customer
 ON Sale.CustomerID = Customer.CustomerID
WHERE ItemModel.Category = ‘Ski’ AND Name=’Atomic’
 AND SaleDate BETWEEN ‘01-Jan-2006’ AND ‘28-Feb-2006’;

LASTNAME FIRSTNAME CATEGORY NAME SALEDATE
---------- ---------- ---------- ---------- ---------
Patterson Gene Ski Atomic 15-FEB-06
Mahoney Francis Ski Atomic 23-JAN-06

70Chapter 4: Database Queries and SQL

word: ListPrice-Cost AS Profit. Notice that the query is sorted by Category and
ListPrice. Simply add an ORDER BY clause at the end of the command with the
columns you want sorted. The DESC option specifies a descending order.

Calculations written in this form are always performed on data on the same
row. It does not calculate across rows. You can use the standard mathematical
operators (add, subtract, divide, and multiply). You can also use several standard
functions built into Oracle. Figure 4.15 shows some of the commonly used func-
tions. Most are straightforward, but the date functions require a little explanation
and practice. The TO_CHAR function enables you to specify detailed formats for
date and numeric columns. This list is only a tiny fraction of the functions avail-
able in Oracle. The Oracle documentation contains a complete list with explana-
tions and examples.

To illustrate the power of some of the date functions, create a new query using
the Sale table and display the SaleID and SaleDate columns. Now, as shown in
Figure 4.16, add a new column TO_CHAR(SaleDate,’yyyy-mm’) AS SaleMonth.
Be sure to enter the quoted format correctly—it controls the way the date will
be converted to character format and displayed. In this case, it will display the
four-digit year, followed by a two-digit number for the month. You often want
to format months in this way to ensure that they sort correctly. The TO_CHAR
function has many options, and you can consult the Oracle Help documentation
for details. Search for TO_CHAR or Format Models in the SQL Reference book.
Later, you will see that this date conversion is useful for computing subtotals. By
formatting the sale date as year and month, you can easily compute the total sales
by month—a feature that is commonly requested by business managers.

SQL automatically performs
data arithmetic with days. Adding
or subtracting a number from a date
results in a new date that is differ-
ent by the specified number of days.
Figure 4.17 shows how easy it is to
add 30 days to a SaleDate to produce
a common billing late date. Notice
that the date arithmetic is correct in
that it automatically handles months,
years, and even leap years. If you
want to add or subtract in increments

Figure 4.13

Question List customers (ID) with sales in May paid with Cash. (Older syntax.)
SQL SELECT SaleID, SaleDate, Sale.CustomerID, LastName, FirstName,

PaymentMethod
FROM Sale, Customer
WHERE Sale.CustomerID = Customer.CustomerID
 AND SaleDate BETWEEN ‘01-May-2006’ AND ‘31-May-2006’
 AND PaymentMethod=’Cash’;

 SALEID SALEDATE CUSTOMERID LASTNAME FIRSTNAME PAYMENTMETHOD
---------- --------- ---------- ---------- ------------ --------------
 1495 13-MAY-06 645 Alexander Marvin Cash
 1304 07-MAY-06 1309 Pratt Adrian Cash
 1356 02-MAY-06 314 Rich Manuel Cash
 1376 10-MAY-06 69 Forbes Horace Cash

Action
Create a new query using only the

ItemModel table.
In the SELECT row, add a new pseudo

column to compute ListPrice-Cost As
Profit.

Add the ORDER BY line to sort by
Category and List Price descending.

Use the WHERE clause to limit the
number of rows returned.

Run the query.

71Chapter 4: Database Queries and SQL

other than days, you need to use Oracle’s ADD_MONTHS function. To subtract
dates in terms of months, use the MONTHS_BETWEEN function. Both the day
and month arithmetic can use fractional values. For example, you could add 1.5
months to a date. You will often see fractional values if you subtract a date from
today’s date, which is given by SYSDATE. Since SYSDATE also includes the
time of day, you will get noninteger results. If you only want the integer portion,
you can use the Floor or Round functions. The Floor function truncates fractional
values by throwing away all digits to the right of the decimal point. The Round
funtion performs standard rounding to the specified decimal place.

Figure 4.14

Question Compute the profit (Price - Cost) for items with price over $575.
SQL SELECT Category, ItemMaterial, ListPrice, ListPrice-Cost As

Profit
FROM ItemModel
WHERE (ListPrice > 575)
ORDER BY Category, ListPrice DESC;

CATEGORY ITEMMATERIAL LISTPRICE PROFIT
------------ --------------- --------- ---------
Board Wood $649.00 $227.15
Board Wood $647.00 $226.45
Board Wood $646.00 $226.10
Board Wood $644.00 $225.40
Board Fiberglass $642.00 $224.70
Board Wood $642.00 $224.70
Board Composite $633.00 $221.55
Board Wood $633.00 $221.55
Board Fiberglass $629.00 $220.15
Board Composite $626.00 $219.10
Board Composite $613.00 $214.55
Board Composite $608.00 $212.80
Board Wood $582.00 $203.70
Board Composite $579.00 $202.65
Board Composite $576.00 $201.60

Lower	 To lowercase
Length	 Length/number of characters
Substr	 Get substring
Trim	 Remove leading and trailing spaces
Upper	 To uppercase

SYSDATE	 Current date
ADD_MONTHS	 Add days, months, years to a date
MONTHS_BETWEEN	 Subtract two dates
TO_CHAR	 Highly detailed formatting
TO_DATE	 Format dates
SYSDATE	 Current date and time

Abs	 Absolute value
Cos	 Cosine, all common trig functions
Floor	 Integer, drop decimal values
Round	 Round-off

Figure 4.15

72Chapter 4: Database Queries and SQL

Activity: Calculate Totals and Subtotals
Business managers often need to
compute totals across rows of data.
SQL provides several aggregation
functions to perform these tasks. The
most commonly used functions are
Sum, Average, and Count. Of the
three, the Count function can be the
most confusing. Just remember that
it simply counts the number of rows,
while Sum adds up the numbers with-

Action
Create a new query.
Use only the Sale table.
SELECT SaleID and SaleDate.
Add 30 days to the SaleDate to get

LateDate.
Use ADD_MONTHS to add one month to

the SaleDate to get SaleMonth.
Run the query.

Figure 4.16

Question Convert sale date into the year and month.

SQL SELECT SaleID, SaleDate, TO_CHAR(SaleDate, ‘yyyy-mm’) AS
SaleMonth
FROM Sale
WHERE rownum < 15;

 SALEID SALEDATE SALEMON
---------- --------- -------
 1121 19-NOV-06 2006-11
 1122 26-NOV-06 2006-11
 1123 13-JUL-06 2006-07
 1124 20-APR-06 2006-04
 1125 07-NOV-06 2006-11
 1126 18-AUG-06 2006-08
 1127 16-JUN-06 2006-06
 1128 08-JUN-06 2006-06
 1129 28-JUN-06 2006-06
 1130 11-SEP-06 2006-09
 1131 16-NOV-06 2006-11
 1132 04-JAN-06 2006-01
 1133 26-MAY-06 2006-05
 1134 16-DEC-06 2006-12

Figure 4.17

Question Compare date calculations by day and month arithmetic.

SQL SELECT SaleID, SaleDate, SaleDate+30 As LateDate,
	 ADD_MONTHS(SaleDate,1) As LateMonth
FROM Sale
WHERE rownum < 15;

 SALEID SALEDATE LATEDATE LATEMONTH
---------- --------- --------- ---------
 1121 19-NOV-06 19-DEC-06 19-DEC-06
 1122 26-NOV-06 26-DEC-06 26-DEC-06
 1123 13-JUL-06 12-AUG-06 13-AUG-06
 1124 20-APR-06 20-MAY-06 20-MAY-06
 1125 07-NOV-06 07-DEC-06 07-DEC-06
 1126 18-AUG-06 17-SEP-06 18-SEP-06
 1127 16-JUN-06 16-JUL-06 16-JUL-06
 1128 08-JUN-06 08-JUL-06 08-JUL-06
 1129 28-JUN-06 28-JUL-06 28-JUL-06
 1130 11-SEP-06 11-OCT-06 11-OCT-06
 1131 16-NOV-06 16-DEC-06 16-DEC-06
 1132 04-JAN-06 03-FEB-06 04-FEB-06
 1133 26-MAY-06 25-JUN-06 26-JUN-06
 1134 16-DEC-06 15-JAN-07 16-JAN-07

73Chapter 4: Database Queries and SQL

in a row. The challenge is to identify
when you need to use Count instead
of Sum.

The Sum function is straightfor-
ward. For example, how much sales
tax does the company owe to the
state of California? Begin by creat-
ing a new query based on the Sale
table, because it has the ShipState
and SalesTax columns. As a criterion
for ShipState, enter the CA abbrevia-
tion for California. Ignoring totals for
the moment, run the query, and you
should see two columns: each row
will have CA in the state, and a value for the SalesTax. To compute the total, re-
turn to SQL. Remove the SaleState from the SELECT statement and add the Sum
function around the SalesTax: Sum(SalesTax) AS SumOfSalesTax. Figure 4.18
shows the total you should receive when you run the query. Why was it important
to run the query first without the total? Because the total shows you only one num-
ber. How do you know the number is correct? You should always run a straight
retrieval to ensure that the correct rows are being selected before you perform
calculations on them. Of course, most aggregation queries will also use multiple
tables—which makes it even more important that you check the detail rows first.

To understand some of the power of SQL, what if you want to see the total tax
owed to each state? Of course, it would be possible to edit the CA condition and
replace it with each state, but there is an easier way. As shown in Figure 4.19, start
a new query the same way as the last one. Use the Sale table and select the Ship-
State and SalesTax columns, but do not specify any limiting conditions. Use the
Sum function to total the SalesTax column and be sure to set the alias name. Do
not include a WHERE statement. The tricky part is the next line: Add a GROUP
BY clause at the end of the command. Tell it to compute the totals for each state
with GROUP BY ShipState. When you run the query, you will get a list of all
of the states with sales followed by the total sales tax collected for that state. Of
course, you could compute the average or count the number of items in a group
just as easily. In fact, you can compute multiple functions at the same time, just by
including multiple copies of the desired column and selecting a different aggrega-
tion function.

For practice, you should compute the total value of sales to customers in Colo-
rado (the state code is CO). Create a new query and add the Sale and SaleItem
tables. Use the ShipState column from the Sale table. To compute the total value
of the actual sale is slightly trickier. You need to multiply the QuantitySold by

Action
Create a new query.
Add the Sale table.
SELECT ShipState and SalesTax
WHERE ShipState = ‘CA’.
Run the query.
Verify the correct states are displayed.
Remove ShipState from SELECT.
SELECT Sum(SalesTax) AS

SumOfSalesTax.
Run the query.

Figure 4.18

Question Compute the sales tax total for California.
SQL SELECT Sum(SalesTax) AS SumOfSalesTax

FROM Sale
WHERE ShipState=’CA’;

SUMOFSALESTAX

 5332.11

74Chapter 4: Database Queries and SQL

the SalePrice from the SaleItem table
then compute its sum. To be safe,
first do the multiplication and check
your progress. Create the formula on
the SELECT row with the command:
QuantitySold * SalePrice AS Sale-
Total. To select the state, enter ‘CO’
as the criteria in the WHERE clause.
Run the query and check the results
to see if they make sense. You might
want to list the QuantitySold and SalePrice separately, and then use a calculator
or spreadsheet to verify some of the calculations. Returning to the SQL, you need
to compute the total. As shown in Figure 4.20, simply add the Sum function and
place the parentheses around the multiplied values.

There is one more trick you need to learn before finishing this lab. You need to
be able to save a query so that you can use it in other queries or reports. In Oracle,
a saved query is called a View. Figure 4.21 shows how to save a query as a view.
Using the query you just finished, simply add one line at the top, CREATE VIEW
ColoradoSales AS, and run this query. You now have a view called ColoradoSales

Figure 4.19

Question Compute the sales tax total for each state.

SQL COLUMN ShipState Format A10
SELECT ShipState, Sum(SalesTax) AS SumOfSalesTax
FROM Sale
GROUP BY ShipState’

SHIPSTATE SUMOFSALESTAX
---------- -------------
AK 0
AL 784.77
AR 313.25
AZ 510.93
CA 5332.11
CO 347.48
CT 254.38
DC 285.95
DE 0
FL 1404.34
GA 470.61
HI 175.49
IA 164.01
ID 330.12
IL 1200.57
IN 952.35
KS 302.96
(other states not shown)

Figure 4.20

Question Compute the total value of all sales to Colorado.
SQL SELECT Sum(QuantitySold*SalePrice) As SaleTotal

FROM Sale
INNER JOIN SaleItem ON Sale.SaleID = SaleItem.SaleID
WHERE Sale.ShipState=’CO’;

SALETOTAL

 4964

Action
Create a new query.
Use the Sale table.
Select columns: ShipState and

Sum(SalesTax) AS SumOfSalesTax.
Add a row at the bottom: GROUP BY

ShipState.
Run the query.

75Chapter 4: Database Queries and SQL

that performs the SELECT statement. To test it, clear the SQL window and cre-
ate the simple query: SELECT * FROM ColoradoSales. Run this query and it
will execute the stored query to compute and display the total sales in Colorado.
You can delete views that you create with the DROP command: DROP VIEW
ColoradoSales.

Exercises

Crystal Tigers
Enter sample data for the Crystal Tigers service club database. You can make up
data, but remember that it has to be consistent. You might want to share data with
other students so that everyone has a larger database to work with. Then create
queries to provide the following business information.
1.	 List all of the members who have been president of the organization.
2.	 List the charities for which the club has raised more than $1,000.
3.	 Pick an event and list all of the members who worked at that event.
4.	 Count the number of events and the amount of money raised for each charity.
5.	 List the total number of service hours provided in the latest year.
6.	 List the number of service hours provided by each member.
7.	 List the members who have held the most number of officer positions.

Capitol Artists
Enter sample data for the Capitol Artists business. You can create random data,
but remember that it has to be consistent. You might want to share data with other
students so that everyone has a larger database to work with. Then create queries
to provide the following business information.
1.	 Pick a date and an employee and list all of the tasks by that person on that

date.
2.	 List all of the tasks performed for a specific job (e.g., Job #1173).
3.	 List all of the client jobs that had active tasks on a specific date.
4.	 Count the number of meetings held regarding one client (pick any client).
5.	 List the employees who have attended the most number of meetings.
6.	 Pick a job and compute the amount of money billed (hours * rate).
7.	 List the clients in order of the ones that have provided the greatest revenue

(billing + expenses).

Offshore Speed
Enter sample data for the Offshore Speed company. You can create random data,
but remember that it has to be consistent. You might want to share data with other
students so that everyone has a larger database to work with. Then create queries
to provide the following business information. If you have not created data that
matches these questions, either add more data, or change the query to match your

76Chapter 4: Database Queries and SQL

data. For instance, if you do not have any sales of propellers, pick a category of
item that you have sold several times.
1.	 Pick a month and list all of the customers who purchased propellers

(Category).
2.	 List all of the parts sold on a particular day.
3.	 What is the most expensive steering wheel we have sold?
4.	 List the manufacturers sorted by the number of parts we sell from each one.
5.	 List the employees to identify the best salespeople in terms of value.
6.	 List the brands of boat for which we sell the most oil pumps (Description).
7.	 For a given order, compute the total value of the order and the sales tax,

assuming a 6 percent tax rate.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.
1.	 Create a few rows of sample data for all of the tables.
2.	 Identify at least five business questions that a manager would commonly

ask and provide the queries to answer those questions. At least two of the
questions should involve subtotals or averages.

3.	 Exchange three business questions with other students in your class and write
the queries for the questions you receive.

77

Objectives

•	 Create more complex SELECT queries using subqueries.
•	 Understand the role of INNER and LEFT joins.
•	 Create theta joins using inequalities to match categories.
•	 Use a UNION statement to merge rows of data.
•	 Use DDL to CREATE and DROP tables.
•	 Use DML to INSERT, UPDATE, and DELETE data.

Chapter Outline

Advanced Queries
5Chapter

Advanced Database Queries, 78
Case: All Powder Board and Ski Shop, 79
Lab Exercise, 79

All Powder Board and Ski Data, 79
SQL Data Definition and Data Manipulation, 90

Exercises, 96
Final Project, 98

78Chapter 5: Advanced Queries

Advanced Database Queries
SQL is a powerful language. For many queries, you will not need the full power of
SQL, but some seemingly innocent business questions can be tricky to answer. In
these cases, you need some additional capabilities. Some of these capabilities can
be challenging to understand, but if you follow the examples carefully, you should
be able to use the ideas to create similar queries in the future.

Subqueries are one of the more interesting features of SQL. A subquery is a
query that calls a second query to obtain additional data. Instead of looking up
a second set of numbers yourself, you can add a second query to do the work
automatically.

Joins offer other powerful options. Joins are commonly used as a lookup link
between tables, making it easy for you to build a query that uses data from mul-
tiple tables. However, joins have several options to help you answer even more
complex questions. It is especially important that you understand the difference
between inner and outer joins.

One of the strengths of SQL is that it operates on sets of data. Instead of think-
ing in terms of individual rows, you can concentrate on collections of rows that
meet specified conditions. SQL offers some interesting set-operation commands
that provide detailed control over rows of data. For example, the UNION state-
ment combines rows of data from multiple SELECT statements.

Advanced queries generally rely exclusively on text-based SQL. Even if you
have a visual QBE system available, it is much safer to use straight text to create
difficult queries. One of the most dangerous aspects of any query is that the sys-
tem will almost always return some type of data. You need to make sure the sys-
tem is returning the correct data by ensuring that the query is actually asking for
exactly what you think it is asking. Most of the data definition statements (such as
CREATE TABLE, INSERT, DELETE, and UPDATE) will often be stored in text
files that can be run as separate batches later to accomplish some larger task. Just
remember to test all of them first.

Figure 5.1

79Chapter 5: Advanced Queries

Case: All Powder Board and Ski Shop
As the queries become more complex, it is better to work from a common set of
data. Figure 5.1 shows the primary tables for the All Powder Board and Ski Shop.
Your tables and sample data should be very close to these tables. Note that several
supporting tables are not displayed in this diagram, but you will also need those in
your database. As explained in Chapter 4, you can import the sample data to these
tables. If you add more data, your query results may be slightly different from
the ones shown in this chapter. While the query is more important than the actual
results, the results are useful to help you decide if you have constructed the query
properly.

One of the greatest challenges with any database query is that most queries
return values, but they might not be answers to the question you thought you were
asking. You must learn to carefully build the queries and test each intermediate
step so that you can be sure the final result is an accurate answer to the question
being asked.

Lab Exercise

All Powder Board and Ski Data
Subqueries are used to create a second (or more) query to look up additional data
that can be used in the primary query. The value is often used within a WHERE
clause to make comparisons in more depth. For example, Katy, the manager,
wants to identify the best customers of the shop. In particular, she would like to
know which customers have placed the most sales. You could just give her the
complete list of customers and the sales made by each. However, eventually this
list would be too long. Instead, she wants a list that displays the customers whose
total purchases are larger than the average number of purchases per customer. Al-
though the business question is reasonable, this question is slightly tricky because
you have to build the query in pieces. Note that the WHERE clause restriction is
used to temporarily reduce the number of rows returned.

Figure 5.2

Question Compute total purchases by customer.
SQL SELECT Customer.CustomerID, LastName, FirstName,

	 Sum(QuantitySold*SalePrice) As SalesValue
FROM Customer
INNER JOIN Sale ON Customer.CustomerID=Sale.
CustomerID
INNER JOIN SaleItem ON Sale.SaleID=SaleItem.SaleID
WHERE Customer.CustomerID<41
GROUP BY Customer.CustomerID, LastName, FirstName;

CUSTOMERID	 LASTNAME	 FIRSTNAME	 SALESVALUE
7	 Rice	 Charlotte	 94
40	 Gentry	 Arturo	 1690
21	 Jantzen	 William	 477
32	 Hansen	 Adam	 845
19	 Bell	 Leslie	 1110
22	 Reynolds	 Connie	 692
33	 Richmond	 Hershel	 323
18	 Embry	 Jahala	 252

80Chapter 5: Advanced Queries

Activity: Create a Subquery
The first step in the query is to rec-
ognize that you need to compute
total sales by customer. The phrase
“by customer” is an indication that
you need to compute subtotals using
the GROUP BY clause. Figure 5.2
shows the initial query that computes
these subtotals. Of course, it lists the
sales for every customer, and Katy
only wants the sales of greater than
average amount. But this query is an
important step and needs to be saved
as CustomerSales: CREATE VIEW
CustomerSales AS SELECT ….
Make sure you remove the WHERE clause constraint.

The next step is to use this first query to compute the average amount of sales
for customers. This computation is straightforward. You simply build a new query
using CustomerSales as the only table, and calculate the average of the sales col-
umn. Figure 5.3 shows the basic query and the result based on the current data.
Notice that the SQL is straightforward. In this case, the SQL is critical for the next
step. It is not necessary to save this query, but you might want to leave the SQL
window open for the final step.

The last step is to create a new query that answers the overall question to de-
termine which customers spend more than average. The new query will also be
based on the CustomerSales query created in the first step, so just add that query.
This time, select the LastName, FirstName, and SalesValue columns. If you ran
the query at this point, you would get the same results as in the first query. Instead,
you want to add a criterion to only display the customers with a SalesValue greater
than the average. The simple approach is to enter the value 942.11 as a condition
in the query. Although this approach works this time, it does not work very well
over time. It would require the owner to run the average query first, then copy the
value into the Design view of the main query. It makes more sense to automate
the entire process. So instead of entering the actual number as the condition, you
need to enter the subquery calculation within parentheses. Figure 5.4 shows the
final query that you can give to Katy. Notice that it is sorted in descending order
by SalesValue so the customers with the largest total purchases are listed at the
top. Also, always remember to put the subquery inside parentheses—otherwise
the query will not run at all. If you want to save some typing and reduce errors,
you should create the subquery first in a separate query to test it. When it is cor-
rect, you can copy the SQL statement and paste it into the WHERE clause for the
final query. Again, remember to add the parentheses around the subquery.

Figure 5.3

Action
Create a new query.
Tables: Customer, Sale, SaleItem.
Columns: CustomerID, LastName,

FirstName, Sum(QuantitySold*SalePrice)
AS SalesValue

Group By the other columns.
Run the query.
Save as a view CustomerSales.
Create new query.
Table: CustomerSales query.
SELECT Avg(SalesValue) …
Run the query.

Question Compute average total purchases for customers.
SQL SELECT Avg(SalesValue) As AvgOfSalesValue

FROM CustomerSales;
AVGOFSALESVALUE
 942.114155

81Chapter 5: Advanced Queries

Activity: Build Outer Joins
Joining tables is one of the more com-
plex issues in SQL. Up to this point,
the joins have been simple equality
joins designed to show how a column
in one table links to data stored in a re-
lated table. It is important that you un-
derstand the effect of this join. Jim, the
sales manager, and David, the rental manager, want to know if customers who rent
equipment also purchase items for sale. As with many questions, there are several
different ways to build this query. Figure 5.5 shows the effect of an inner join.
Build a new query and add the Rental and Sale tables. Join these tables by match-
ing the CustomerID value from each table. When you display both CustomerID
values in the query and run it, you can see that they are the same. The effect of this
join is that the results show the customers (ID only) who participated in a sale and
a rental—at any time.

If you want to know which custom-
ers made a purchase on the same day
as the rental, you could add a condition
that RentDate equals SaleDate. Or you
could add a second join that connects
RentDate and SaleDate. Figure 5.6
shows the query with the second join
condition. Notice the use of the AND
in the join statement. This query dem-
onstrates the effect of the inner join.

Figure 5.4

Action
Create a new query.
Table: CustomerSales query.
Columns: LastName, FirstName,

SalesValue.
Criteria for SalesValue
>(SELECT Avg(SalesValue) FROM

CustomerSales).

Action
Create a new query.
Tables: Rental and Sale.
Columns: RentDate, SaleDate, and

CustomerID from both tables.
Join the tables on CustomerID.
Run the query.
Add a join between the tables on

RentDate=SaleDate.
Run the query.

Question List customers who purchased more than the average
customer.

SQL SELECT LastName, FirstName, SalesValue
FROM CustomerSales
WHERE SalesValue >
 (SELECT Avg(SalesValue) FROM CustomerSales)
ORDER BY SalesValue DESC;

LASTNAME FIRSTNAME SALESVALUE
Lyons	 Chester	 3569
Hines	 Arlene	 2815
Dixon	 Carol	 2789
Gillespie	 Audrey	 2703
O’Connor	 Carlos	 2674
Ford	 Manuel	 2661
Nash	 Joseph	 2600
Rush	 Bonita	 2485
Warden	 Jewell	 2406
Turner	 Guy	 2358
Harvey	 Simon	 2314
Peck	 Burt	 2260
Crowe	 Chelsea	 2254
McCartney	 JoAnne	 2237
Crowe	 Vicky	 2165
More rows...

82Chapter 5: Advanced Queries

In many respects, it is equivalent to a
WHERE clause. The inner join restricts
the rows that you will see by forcing
values to be equal.

On the other hand, perhaps Jim
would like to see a list of all of the cus-
tomers who participated in sales, and
then check to see which of those have
rented items. You need to build a new
query. This time include the Customer
table so their names can be displayed.
Then add the Sale and Rental tables.
Do not include a join from Customer to Rental. That join would force all of the
CustomerIDs to be equal, which is not what Jim wants. Instead, connect Rental to
Sale by CustomerID, but with a different type of join. Figure 5.7 shows the basic
query. As shown in the SQL, this query uses a LEFT JOIN, which displays all
values in the Sale table (the left table in the SQL query list), even if the customer
never rented items. You often need to include parentheses in a JOIN statement to

Figure 5.6

Figure 5.5

Question List rental customers who also purchased items, at any time.
SQL SELECT RentDate, Rental.CustomerID, Sale.CustomerID,

SaleDate
FROM Rental
INNER JOIN Sale ON Rental.CustomerID = Sale.CustomerID;

RENTDATE CUSTOMERID CUSTOMERID SALEDATE
28-MAR-10	 1535	 1535	 25-JAN-10
02-DEC-10	 1455	 1455	 17-SEP-10
12-NOV-10	 1642	 1642	 25-DEC-10
04-NOV-10	 1186	 1186	 30-APR-10
19-NOV-10	 51	 51	 28-OCT-10
01-NOV-10	 1602	 1602	 25-AUG-10
11-MAR-10	 1452	 1452	 30-AUG-10
06-NOV-10	 1455	 1455	 17-SEP-10
27-NOV-10	 1645	 1645	 12-MAR-10
03-JAN-10	 1992	 1992	 28-JUN-10
11-DEC-10	 1861	 1861	 19-JUN-10
More rows...

Question List rental customers who also purchased items on the same
day.

SQL SELECT RentDate, Rental.CustomerID, Sale.CustomerID,
SaleDate
FROM Rental
INNER JOIN Sale ON (Rental.CustomerID = Sale.CustomerID
 AND Rental.RentDate = Sale.SaleDate);

RENTDATE CUSTOMERID CUSTOMERID SALEDATE
09-NOV-10	 930	 930	 09-NOV-10
07-JAN-10	 1291	 1291	 07-JAN-10
10-NOV-10	 1629	 1629	 10-NOV-10

Action
Create a new query.
FROM (Customer INNER JOIN Sale
ON Customer.CustomerID=Sale.

CustomerID)
LEFT JOIN Rental ON Sale.CustomerID

= Rental.CustomerID.
Columns: LastName, FirstName, and

CustomerID from Sale and Rental.
Run the query.

83Chapter 5: Advanced Queries

force the left join to be performed first. Even so, if you have problems running
a LEFT JOIN query, you might have to remove tables until you have only two
tables or views in the query. Sometimes you have to build the left join with only
two tables, save the query, then create a second query based on the saved query
and any other tables needed.

Figure 5.7 also shows some of the results from running the query. Notice that
several of the rows show missing values for the Rental.CustomerID. These are
the customers who purchased items but have never participated in a rental. If you
want to see only this list of people, you can add the condition that Rental.Custom-
erID Is Null. Observe that the full list from the main query might not include all of
the customers. To review your knowledge of joins, you should be able to identify
the customers that might not be in this list. Looking at the design, notice that there
is still an inner join between the Customer and Sale tables. Consequently, custom-
ers who have not participated in sales at all will not be displayed in this list. If
you truly wanted a list of all customers, you would have to use a left join from
the Customer to the Sale table. However, you will probably have to do one of the
joins at a time, save the query, and then do the second join.

Recall the question of listing the customers who have purchased items but have
not rented anything. With the left join, it is straightforward to get this list by add-
ing the Is Null condition. But you must be very careful when creating this query.
If you forget to specify the left join and stick with the standard inner join, the
query will indicate that no customers match that condition. The reason is because
an inner join automatically leaves out the customers you are searching for. This
question can also be answered with a subquery. Figure 5.8 shows the subquery
approach. Start a new query and add the Customer and Sale tables. Sort the col-
umns by LastName and FirstName. Then add the condition CustomerID Not In
(SELECT CustomerID FROM Rental). As always, remember to put the subquery

Figure 5.7

Question List all customers who rented and did or did not make a purchase.
SQL SELECT LastName, FirstName, Sale.CustomerID, Rental.CustomerID

FROM (Customer INNER JOIN Sale ON Customer.CustomerID=Sale.
CustomerID)
 LEFT JOIN Rental ON Sale.CustomerID=Rental.CustomerID
ORDER BY LastName, FirstName;

LASTNAME FIRSTNAME CUSTOMERID CUSTOMERID
Abel Marshall 1406 1406
Abel Marshall 1406 1406
Abel Melinda 1467 1467
Abrams Marc 603	 (null)
Adkins April 413 413
Adkins Manuel 1499 1499
Aldrich Jewell 142 142
Aldrich Jewell 142 142
Aldrich Jewell 142 142
Aldrich Jewell 142 142
Alexander Marvin 645 645
Allen Laura 1085	 (null)
Allen Orson 1928 1928
Allen Orson 1928 1928
Baez Agnes 302	 (null)
Bailey Takao 879 879
Baker Hazel 1664 1664

84Chapter 5: Advanced Queries

in parentheses. This query will retrieve
all Customers who have participated
in sales but have not rented any items.
You should compare the results from
this version to the left join version to
ensure that both queries return the same
results.

Most systems support either method
to answer the question, but there can be
performance differences between the
two approaches. Oracle optimizes all queries, so you can write the query as either
a subquery or a left join and Oracle will rewrite it to achieve the best performance.
In fact, Oracle examines statistics about the various tables to help make the best
choices. Depending on the data within a table, it might be faster to apply a where
condition first, Oracle examines the distribution of data to build the best query
method. Particularly on large tables, you should run scripts to tell Oracle to gener-
ate the statistics, such as:
ANALYZE TABLE Customer COMPUTE STATISTICS;

Activity: Create Complex Joins
Jim, the sales manager, is concerned
about excess inventory. He wants to be
able to monitor the status of quantity
on hand for all inventory items. He is
particularly concerned about identify-
ing which models are selling quickly
versus models that have large numbers
of items sitting around. Remember that
models are product lines from the man-
ufacturers, while individual items are
specific sizes within a model group. He
wants the totals for the model. To see if

Figure 5.8

Action
Create a new query.
Tables: Customer and Sale.
Columns: LastName, FirstName, and

CustomerID.
WHERE CustomerID Not In (SELECT

CustomerID FROM Rental).
Run the query.

Question List customers who bought items but never rented.
SQL SELECT LastName, FirstName, Customer.CustomerID

FROM Customer
INNER JOIN Sale ON Customer.CustomerID = Sale.
CustomerID
WHERE Customer.CustomerID NOT IN
 (SELECT CustomerID FROM Rental)
ORDER BY LastName, FirstName;

LASTNAME FIRSTNAME CUSTOMERID
Abrams	 Marc	 603
Allen	 Laura	 1085
Baez	 Agnes	 302
Baldwin	 Orville	 403
Bell	 Leslie	 19
Brown	 Tony	 832
Brown	 Tony	 832
Buchanon	 Orson	 66
Cardwell	 Christina	 1377
Cardwell	 Christina	 1377

Action
Create a new query.
Table: Inventory.
Columns: ModelID and

Sum(QuantityOnHand).
Sort by the Sum descending.
Run the query.
Save it as ModelsOnHand.
Create a new table: SalesCategory.
Columns: CategoryID, CategoryName,

LowLimit, HighLimit.
Enter data from Figure 5.10.

85Chapter 5: Advanced Queries

there is a problem, construct a new query that totals the quantity on hand and sorts
it in descending order by ModelID. Figure 5.9 shows the total quantity on hand
for a few of the models. Save the query as ModelsOnHand.

But Jim does not want to wade through the entire query every day. Instead, he
is proposing a categorical system, where items with more than a certain QOH will
be called slow sellers, and items with minimal QOH will be hot sellers. He also
wants a few categories in between. While you have the tools to build this query,
there is one catch: he wants the ability to fine-tune the numbers on the ranges for
each category. The solution is to create a new table that defines the category and
the upper and lower limits for each cat-
egory: SalesCategory(CategoryID, Cat-
egoryName, LowLimit, HighLimit). If
the QOH for a model is greater than
or equal to the LowLimit and less than
the HighLimit, it falls into the speci-
fied category. The CategoryID ensures
a unique key and could be used to sort
the rows if necessary. You need to cre-
ate the table and then load some initial

Figure 5.9

Question Compute quantity on hand by ModelID.
SQL SELECT ModelID, Sum(QuantityOnHand) As

SumOfQuantityOnHand
FROM Inventory
GROUP BY ModelID
ORDER BY Sum(QuantityOnHand) DESC;

MODELID SUM(QUANTITYONHAND)
YXY-385	 70
YCG-584	 70
QDV-720	 70
MHQ-568	 60
LDK-181	 60
YKU-321	 60
NTE-526	 50
More ...

Question Data for the new SalesCategory table.
SQL INSERT INTO SalesCategory VALUES (1, ‘Hot’, 0, 6);

INSERT INTO SalesCategory VALUES (2, ‘Good’, 6, 10);
INSERT INTO SalesCategory VALUES (3, ‘OK’, 10, 20);
INSERT INTO SalesCategory VALUES (4, ‘Weak’, 20, 40);
INSERT INTO SalesCategory VALUES (5, ‘Slow’, 40, 1000);

SELECT * FROM SalesCategory;
CATEGORYID CATEGORYNAME LOWLIMIT HIGHLIMIT
 1 Hot 0 6
 2 Good 6 10
 3 OK 10 20
 4 Weak 20 40
 5 Slow 40 1000

Figure 5.10

Action
Create a new query.
Columns: ModelID,

SumOfQuantityOnHand, CategoryID,
and CategoryName.

Tables: ModelsOnHand and
SalesCategory.

Add the inequality join.
Run the query.

86Chapter 5: Advanced Queries

data. Figure 5.10 shows the initial categories. The CREATE TABLE command
should be easy now:
CREATE TABLE SalesCategory
(
 CategoryID INTEGER,
 CategoryName NVARCHAR2(15),
 LowLimit INTEGER,
 HighLimit INTEGER,
 CONSTRAINT pk_SalesCategory PRIMARY KEY(CategoryID)
) ;

Using the categories in a query requires slightly tricky join conditions. You need
to use inequality (theta) joins. Begin with a new query based on the ModelsOn-
Hand query and the SalesCategory table. Select the ModelID and SumOfQuan-
tityOnHand along with the CategoryName. But, the JOIN command is consider-
ably different from the others you have done. Figure 5.11 shows the inequality

Figure 5.11

Question Models categorized based on quantity on hand.
SQL SELECT ModelID, SumOfQuantityOnHand, SalesCategory.

CategoryID, CategoryName
FROM ModelsOnHand INNER JOIN SalesCategory
 ON (ModelsOnHand.SumOfQuantityOnHand >=
SalesCategory.LowLimit)
 AND (ModelsOnHand.SumOfQuantityOnHand <
SalesCategory.HighLimit);

MODELID SUMOFQUANTITYONHAND CATEGORYID CATEGORYNAME
ENW-975	 2	 1	 Hot
EZX-852	 2	 1	 Hot
IQE-600	 2	 1	 Hot
KSB-825	 2	 1	 Hot
XUW-452	 2	 1	 Hot
PKT-115	 2	 1	 Hot
RFL-870	 2	 1	 Hot
SXT-833	 2	 1	 Hot
WER-904	 2	 1	 Hot
LNH-128	 2	 1	 Hot
(many rows not shown)

Figure 5.12
Question Count the number of models in each sales category.
SQL SELECT SalesCategory.CategoryID, CategoryName,

Count(ModelID)
FROM ModelsOnHand INNER JOIN SalesCategory
 ON (ModelsOnHand.SumOfQuantityOnHand >=
SalesCategory.LowLimit)
 AND (ModelsOnHand.SumOfQuantityOnHand <
SalesCategory.HighLimit)
GROUP BY SalesCategory.CategoryID, CategoryName ;

CATEGORYID CATEGORYNAME COUNT(MODELID)
2	 Good	 253
1	 Hot	 179
5	 Slow	 9
3	 OK	 29
4	 Weak	 35

87Chapter 5: Advanced Queries

statements used to join the two views.
Figure 5.11 also shows the sample re-
sult from the query. Save the query as
ModelSales so Jim can perform some
additional analysis on the data.

Jim might create a new, simpler
query that counts the number of models
that fall within each of the categories.
Figure 5.12 shows the basic query. It is
built using the results of the previous
query. This query hides the complicat-
ed details and Jim needs to see only the
simple data results. The final aggrega-
tion query uses the CategoryID to sort the results logically; otherwise, they would
be sorted alphabetically by the category name. Fortunately, most of the models
appear to be in the categories indicating that they sell relatively quickly. However,
the category definitions might not be accurate, but Jim can quickly alter the range
numbers and rerun the query to see the results.
Activity: Combine Data Rows with UNION
You need to understand the role of the UNION command. It is designed to com-
bine rows from multiple queries. Read that sentence carefully. It says combine
rows not columns. If you have two queries that retrieve similar columns of data,
the UNION statement will combine the results into one set of data. To illustrate
the process, consider a request that Katy made to see a single list of customers
who purchased items in January or in March. You could build two queries using

Question List customers who bought items in January or March.
SQL SELECT Customer.CustomerID, LastName, FirstName,

‘Jan’ As SaleMonth
FROM Customer
INNER JOIN Sale ON Customer.CustomerID = Sale.CustomerID
WHERE SaleDate BETWEEN ‘01-Jan-2006’ AND ‘31-Jan-2006’
UNION
SELECT Customer.CustomerID, LastName, FirstName,
‘Mar’ As SaleMonth
FROM Customer
INNER JOIN Sale ON Customer.CustomerID = Sale.CustomerID
WHERE SaleDate BETWEEN ‘01-Mar-2006’ AND ‘31-Mar-2006’ ;

CUSTOMERID LASTNAME FIRSTNAME SAL
19	 Bell	 Leslie	 Mar
92	 Shelton	 Kelly	 Mar
119	 Garrison	 Hershel	 Mar
120	 McDougal	 Andrew	 Mar
155	 O’Connor	 Carlos	 Mar
302	 Baez	 Agnes	 Mar
315	 Vance	 Dominic	 Mar
345	 Dennison	 Lena	 Mar
411	 Keen	 Elmer	 Mar
431	 Hinton	 Adam	 Mar
(many rows not shown)

Figure 5.13

Action
Create a new query.
Columns: CustomerID, LastName,

FirstName, and SaleDate.
Tables: Customer and Sale.
Set January sale date in WHERE.
Copy the entire statement.
Add the word Union.
Paste the SELECT statement and change

the date condition and name to March.
Run the query.

88Chapter 5: Advanced Queries

simple WHERE conditions, but if you want to list people twice if they bought
items both in January and in March, the UNION query is easier.

As shown in Figure 5.13, create a new query using the Customer and Sale ta-
bles. Display the CustomerID, LastName, and FirstName columns. Add the Sale-
Date column, but uncheck the box to display the date. Add the condition to select
sales only in January. If you run the query at this point, you will see a list of cus-
tomers who bought items in January. To get the March customers, copy the entire
statement without the semicolon. Add the word “UNION” after the existing query,
then below that, paste a copy of the query. Now modify the dates in this copy to
indicate March instead of January. Finally, in the first (January) SELECT state-
ment, add a computed column to display “Jan” As SaleMonth. Do the same thing
for the second SELECT statement, but display “Mar” for March. This column will
identify each row to indicate the month for the sale. Run the query, and you will
see a combination of rows from both queries. If you want to sort the data by Cus-
tomer or by date, first you will have to save the query, then you can build a second
query based on the first and sort the columns as needed.
Activity: Create Recursive Hierarchical Queries
The recursive query is somewhat
strange, but it can be useful for par-
ticular types of queries. Unfortunately,
Oracle relies on its own syntax for re-
cursive or hierarchical queries, but that
syntax is straightforward.

Action
Look at the Employee table—the

ManagerID column.
Create the recursive query to show the

reporting relationships.
Check the results against the data.

 EmployeeID LastName FirstName ManagerID
0 Staff 8

1 Killy Jean-Claude

2 Miyahira Hideharu 4

3 Street Picabo 6

4 Heiden Beth 1

5 Cavagnoud Regine 4

6 Daehlie Bjorn 1

7 Moe Tommy 15

8 Tomba Alberto 18

9 Jasey-Jay Anderson 15

10 Carr Chris 4

11 Fawcett Mark 6

12 Mckenna Lesley 18

13 Weinbrecht Donna 3

14 Adam Arno 3

15 Brassard Jean-Luc 1

16 Boit Philip 6

17 Bourgeat Pierrick 15

18 Gravier Richard 1

Figure 5.14

89Chapter 5: Advanced Queries

Figure 5.14 shows the important columns in the Employee table. Notice the
ManagerID column shows the ID number for the manager of each employee. First,
note that Killy (EmployeeID = 1) does not have a manager, so he is at the high-
est level. Now check the entry for EmployeeID = 4, Beth Heiden. Her manager
is EmployeeID = 1, or Killy. If you look through the list, you can see that Beth is
manager to a couple of other employees. The goal is to write a query that can track
through the list, starting with Killy (ManagerID Is Null), and listing each person
who reports to him, and then each person who reports to that person, and so on.

This question would be difficult or impossible to answer with traditional SQL,
so vendors have created special syntax to handle the problem. The Oracle version
introduces two key terms: “Start With” and “Connect by Prior.” With an extra
twist, the query is:
SELECT lpad(‘*’, level, ‘*’) || LastName
FROM EMPLOYEE
Start with ManagerID Is null
Connect by prior EmployeeID=ManagerID;

Figure 5.15 shows the results. The asterisks were generated with the lpad func-
tion which adds the number of asterisks based on the “level,” which is a pseudo-
column that is part of the recursive query. The level is simply an integer specify-
ing the depth of the recursive tree. It makes it easier to see that all of the employ-
ees with two stars (Heiden, Daehlie, Brassard, and Gravier) report to the level-1
employee (Killy).

The structure of the query is straightforward. Begin with a SELECT statement
that identifies the columns to be displayed. The “level” column is helpful either
by itself or using the lpad function shown here. Use the FROM statement to spec-
ify the table—the recursive query is somewhat picky about using a single table,
but search the Web and you can find workarounds to handle multiple tables. The
“Start With” phrase specifies the top level—typically you know the specific value
or the top level has some special value such as null or a negative number. Use the
“Connect by Prior” phrase to specify the condition that joins the ManagerID to the
EmployeeID or lookup column.

Figure 5.15

*Killy
**Heiden
***Miyahira
***Cavagnoud
***Carr
**Daehlie
***Street
****Weinbrecht
****Adam
***Boit
**Brassard
***Moe
***Jasey-Jay
***Bourgeat
**Gravier
***Tomba
****Staff
***Mckenna
****Fawcett

90Chapter 5: Advanced Queries

SQL Data Definition and Data Manipulation

Activity: Create Tables
Although it is possible to create and
delete tables in Oracle using the en-
terprise manager, you will often have
to create a table using the data defini-
tion language (DDL) CREATE TABLE
command. For example, after working
with the database for a while, you realize that it would be useful to have a separate
table that lists salespeople and other contacts at the manufacturers. Each person
has a direct phone number and an e-mail address. To practice building tables, Fig-
ure 5.16 shows the CREATE TABLE command for the new Contacts table. Essen-
tially, you list each desired column along with its data type. Since Oracle supports
the ANSI standard data types, it is often more convenient to specify INTEGER for
numeric data types instead of NUMBER; but either version will work.

Enter the SQL code in either SQL Developer and run the query. You should re-
ceive the “Table created” message. If not, check your typing carefully. You should
create the primary key constraint to indicate the ContactID is the sole primary key
column. For other tables, if you need multiple columns, simply create a comma-
separated list. The foreign key constraint is similar, but you must also specify the
table and column that is referenced by the foreign key. Be sure to specify the ON
DELETE CASCADE option for the foreign key. If rows are deleted in the master

Figure 5.16

CREATE TABLE Contacts
(
	 ContactID	 INTEGER,
	 ManufacturerID	 INTEGER,
	 LastName	 NVARCHAR2(25),
	 FirstName	 NVARCHAR2(25),
	 Phone	 NVARCHAR2 (15),
	 Email	 NVARCHAR2 (120),
		 CONSTRAINT pk_Contacts PRIMARY KEY (ContactID),
		 CONSTRAINT fk_ContactsManufacturer FOREIGN KEY (ManufacturerID)
		 REFERENCES Manufacturer(ManufacturerID)
 ON DELETE CASCADE
) ;

Action
Create a new query.
Enter the CREATE TABLE command.
Run the query.

CREATE TABLE MyTemp
(
	 ID	 INTEGER,
	 LName	 NVARCHAR2(25),
	 FName	 NVARCHAR2(25),
	 CONSTRAINT pk_MyTemp PRIMARY KEY (ID)
);

Figure 5.17

91Chapter 5: Advanced Queries

table (Manufacturer), then any contacts in this table associated with that manufac-
turer will also be deleted automatically.

Generally, with Oracle it is easier to create tables with SQL. It is particular-
ly useful to create a text file that contains several CREATE statements that will
generate the database automatically. First, you want to test each statement indi-
vidually and make sure it contains the correct statement. Then cut and paste the
command into a separate text file. This file can be given to others to create the
database on a different system. The CREATE TABLE command is also useful for
creating temporary tables. Figure 5.17 shows the table that you need to create.

The SQL ALTER TABLE command can also be used to add new columns to
an existing table. However, you rarely need this command if you work from a
good design. You can also use the Enterprise Manager console to add columns to a
table—and it will show you the full syntax of the SQL command. For example, to
add a TempCost column to the ItemModel table, the command would be ALTER
TABLE ItemModel ADD (TempCost NUMBER(38,4)).
Activity: Insert, Update, and Delete Data
SQL also provides data manipulation
language (DML) commands to insert,
update, and delete rows of data. Con-
sider the INSERT command first. The
simple version of the command shown
in Figure 5.18 inserts a single row into
one table. Notice that you specify the
table columns in the first list and the
corresponding values in the second
list. By listing the column names, you
choose to enter the data in any order and to skip columns. Of course, you will
rarely enter data this way, but occasionally it comes in handy. More importantly,
the SQL statement can be generated using programming code with complex rou-
tines to extract data from one source, clean it up and transfer it to the desired
table. Notice that you must include the CustomerID column at this point. Chapter
7 will explain how to create a sequence number so this value can be generated
automatically.

A second version of the INSERT command is more useful because of its power.
You use it to transfer large blocks of data from one table into a second table. Note
that the second table must already exist. The example in Figure 5.19 copies some
data from the Customer table and transfers it to the temporary MyTemp table you
created in the previous section. Again, you list the columns for the new table that

INSERT INTO Customer (CustomerID, LastName, FirstName, City, Gender)
VALUES (4000,’Jones’, ‘Jack’, ‘Nowhere’, ‘Male’);

Figure 5.18

INSERT INTO MyTemp (ID, LName, FName)
	 SELECT CustomerID, LastName, FirstName
	 FROM Customer
	 WHERE City=’Sacramento’;

Figure 5.19

Action
Create a new query.
Type the INSERT command: INSERT

INTO Customer (CustomerID,
LastName, FirstName, City, Gender)
VALUES (4000, ‘Jones’, ‘Jack’,
‘Nowhere’, ‘Male’);

Run the query.

92Chapter 5: Advanced Queries

will hold the data, then write a SELECT statement that retrieves matching data for
those columns. Be sure to issue a COMMIT command after any INSERT com-
mand to ensure changes are saved to the table.

You should keep in mind that the SELECT statement can be as complex as you
wish. It can include calculations, multiple tables, complex WHERE conditions,
and subqueries. For complex queries, you should first build the SELECT state-
ment on its own and test it to ensure that it retrieves exactly the data you want.
Then switch to the SQL view and add the INSERT INTO line at the top. The abil-
ity to perform calculations has another benefit. You can add a constant to the SE-
LECT statement that will be inserted as data into the second table. For example,
you might write SELECT ID, Name, “West” to insert a region name into a new
table. The INSERT INTO command is useful when you need to expand a database
or add new tables. You can quickly copy selected rows and columns of data into a
new table.

The UPDATE command is used to change individual values for specified rows.
It is a powerful command that affects many rows. You must always be cautious
when using this command because it can quickly change thousands of rows of
data. To illustrate the power of the command, consider that the manufacturers
have announced that costs will increase by 4 percent for the 2010 snowboards.
The ItemModel table contains an estimate of the Cost for each model, so you need
to increase this number by 4 percent, but only for the boards.

To be safe, begin by creating a query that displays the Cost data for the 2004
boards. You should run the query to ensure that it returns exactly the data that you
want to update. Next, as shown in Figure 5.20, edit the query so that it uses the
UPDATE command instead of SELECT. The Round function is used to ensure
that the final Cost value is rounded off
to cents instead of extended fractions.
Be sure you run the SELECT query
first to ensure the correct rows are se-
lected by the WHERE clause. Then
edit the query by adding the UPDATE
statement. In practice, do not try to run
both queries at the same time. They are
shown here only so you can compare
the two. After you run an UPDATE
query, you should issue a COMMIT
command to make sure the changes are
recorded to the table.

Figure 5.20

Question Increase the cost of snow boards by four percent for 2010.
SQL SELECT Category, ModelYear, Round(Cost*1.04,2)

FROM ItemModel
WHERE Category=’Board’ AND ModelYear=2006
;
-- run the top query first, then edit it to make the actual changes
UPDATE ItemModel
SET Cost = Round(Cost*1.04,2)
WHERE Category=’Board’ AND ModelYear=2006;

88 rows updated.

Action
Create a new query.
Columns: Category, ModelYear, and

Rounc(Cost*1.04,2).
Table: ItemModel.
Criteria: Category=’Board’ And

ModelYear=2010.
Run the query.
Change the first two lines to:
UPDATE ItemModel
SET Cost = Round(Cost*1.04,2).
Run the query.

93Chapter 5: Advanced Queries

Notice that the SQL statement is straightforward. It is also easy to change mul-
tiple columns at one time. Just separate the column assignments with commas.
For example: SET Cost = Round(Cost * 1.04,2), ModelYear = 2010.

The DELETE command is similar to the INSERT and UPDATE commands,
but it is more dangerous. It is designed to delete many rows of data at a time. Keep
in mind that because of the relationships, when you delete a row from one table,
it can trigger cascade deletes on additional tables. For the most part, these deletes
are permanent. If you are not careful, you could wipe out a large chunk of your
data with one DELETE command. To minimize the impact of these problems, you
should always make backup copies of your database—particularly before you at-
tempt major delete operations. If your system has an Oracle Management server
installed, you can use the backup wizard in the Enterprise Manager console to
make a backup copy of the schema.

To be particularly safe, this example is just going to delete data from the tem-
porary table that was created in the previous section. Create a new query using the
MyTemp table. As shown in Figure 5.21, to see the rows you are going to delete,
display the ID, LName, and FName columns and set a condition to show only
rows with an ID > 100. Run the query to verify that it returns only one row. Now,
edit the query and replace the entire SELECT row with the DELETE command.
Run the query. If only one row is deleted, issue the COMMIT command to make
the deletions permanent. Your other option is to issue a ROLLBACK command to
restore everything to the last point where you executed a commit.

In practice, it is best to stick with simple WHERE clauses when possible. How-
ever, it can be complex and can include subqueries. Particularly in the complex
cases, you should first build a SELECT
statement using the same WHERE
clause to ensure that you are deleting
exactly the rows you want to delete.
Then convert the query into a Delete
Query, or delete the SELECT state-
ment and replace it with the DELETE
command.

Figure 5.22

Action
Create a new query: SELECT * FROM

MyTemp WHERE ID > 100;
Test the query.
Change the SELECT row to DELETE.
Run the query.
Run a commit; command.

DROP TABLE MyTemp;

Question Delete sample row from the MyTemp table.
SQL -- SELECT *

DELETE
FROM MyTemp
WHERE ID > 100;
Commit;

 ID LNAME FNAME
 1184 Cherry Louis
1 row deleted.

Commit;

Commited

Figure 5.21

94Chapter 5: Advanced Queries

The DROP TABLE command is even more dangerous. It removes the entire
table and all of its data. Generally, you should only use it for temporary tables. As
shown in Figure 5.22, the syntax is straightforward, just make sure you enter the
correct table name. Again, it would be wise to make a backup copy of your data-
base before removing tables.

The main aspect to remember about these commands is that they operate on
sets of rows that you control with the WHERE clause. The WHERE clause can
be complex and include subqueries with detailed SELECT commands. All of the
power of the SELECT command is available to you to control inserting, updating,
and deleting rows of data.
Activity: Create Parameter Queries
Parameter queries are useful when
you need to create a complex query
that a manager runs on a regular basis
but needs to change some of the con-
straints. For instance, you often use
parameters to set starting and ending
dates so the manager can easily select
a range of data without having to know
anything about building queries. The
example in Figure 5.23 shows a query that displays the total rental income by Cat-
egory for a specified range of dates. This query has fixed dates for the first quarter.
The objective is to replace those fixed dates with parameters that can be entered
quickly by the manager—preferably without having to see or edit the query.

In Oracle, parameterized SELECT queries are somewhat complicated. They re-
quire the use of variables, which means you need to create a small package to hold
the variable definitions and the procedure that executes the query. These topics are
explored in more detail in Chapter 7, but it is worth typing in this example to see
how they work.

To create the package and procedure, enter the commands in Figure 5.24 by
typing them in. The commands are also stored as a text file on the student CD so
you can cut and paste them to save some typing. The package defines a record and
a cursor that are used to return the selected values. It also contains the definition of

Figure 5.23
Question Show rental totals by category for a specified time period.
SQL SELECT Category, Sum(RentFee) AS SumOfRentFee

FROM Rental
INNER JOIN RentItem ON Rental.RentID=RentItem.RentID
INNER JOIN Inventory ON RentItem.SKU=Inventory.SKU
INNER JOIN ItemModel ON Inventory.ModelID=ItemModel.ModelID
WHERE RentDate Between ’01-Jan-2006’ And ’31-Mar-2006’
GROUP BY Category;

CATEGORY SUMOFRENTFEE
------------ ------------
Board 18660
Boots 14370
Electronic 1350
Poles 790
Rack 420
Ski 37900

Action
Create a new query.
Columns: Category, Sum(RentFee).
Tables: Rental, RentItem, Inventory, and

ItemModel.
GROUP BY Category.
Test the query.

95Chapter 5: Advanced Queries

the procedure. The package body con-
tains the actual procedure. Notice that it
is passed a starting and ending date and
returns the matching rows of data. The
heart of the procedure is the query that
you already created. The only differ-
ence is that the two dates are specified
as parameters. The package and proce-
dure only have to be created one time.

Once the package is defined, the
manager only needs to issue a couple
of simple commands to enter new dates
and obtain the total rental fees by category. Figure 5.25 shows the commands.
Some of them are the common formatting commands. You would probably want
to save these commands in a file so the manager can cut and paste them, and then
edit the two dates to simplify the process.

You can build complex queries and insert parameters to request specific data
from the person running the query. Although it requires several steps, query pa-
rameters are a useful method to quickly build queries that users can control with-
out having to alter the query.

Action
Create a new query.
Copy or paste the code to create the

package and procedure.
Run the package creation code.
Enter the five commands to execute the

parameter query.
Run the query.
Change the dates to Oct-Dec.
Run the query.

Figure 5.24

CREATE PACKAGE pckCategoryFees AS
	 TYPE typeCategoryFees IS RECORD
	 (Category	 NVARCHAR2(15),
	 SumOfRentFees	 NUMBER(8,2)
);
	 TYPE typeCursorFees IS REF CURSOR RETURN typeCategoryFees;
	 PROCEDURE GetCategoryFees
	 (dateStart	 IN DATE,
	 dateEnd	 IN DATE,
	 cvFees	 IN OUT typeCursorFees
);
END;
/
CREATE PACKAGE BODY pckCategoryFees AS
	 PROCEDURE GetCategoryFees
	 (dateStart	 IN DATE,
	 dateEnd	 IN DATE,
	 cvFees	 IN OUT typeCursorFees
) IS
		 BEGIN
		 OPEN cvFees FOR
			 SELECT Category, Sum(RentFee) AS SumOfRentFee
			 FROM Rental INNER JOIN RentItem INNER JOIN Inventory
				 INNER JOIN ItemModel
			 ON Inventory.ModelID=ItemModel.ModelID
			 ON RentItem.SKU=Inventory.SKU
			 ON Rental.RentID=RentItem.RentID
			 WHERE RentDate Between dateStart And dateEnd
			 GROUP BY Category;
	 END;
END;
/

96Chapter 5: Advanced Queries

Note, if you just need to reuse a single query in one session, you can use substi-
tution variables instead of building a packaged procedure. Simply write the SQL
statement as usual, but place a variable using an ampersand, instead of a literal.
For example: WHERE RentDate BETWEEN &DateStart and &DateEnd. When
the query runs, the user will be prompted to enter the DateStart and DateEnd val-
ues which will be substituted into the query.

Exercises

Many Charms
You will need to create some additional sample data for each table. Madison and
Samantha know that they will want certain information on a weekly basis, but
they will not be able to build complex queries to retrieve the data. You will have
to build a few queries for them that they can run when they want to see the results
or need to change prices. Some of the queries should be parameter queries so they
can easily select the values they need to control the results. Note: You will have to
modify the queries slightly to match the data that you have entered.
1.	 Which of the customers who ordered bracelets have not ordered necklaces?
2.	 Which customers bought more gold charms than silver ones?
3.	 Which categories generated the most profit over a parameterized time period?
4.	 Are expensive charms more profitable than mid-priced or low-priced

charms? Hint: Create categories based on the prices.
5.	 Create a parameterized query to enable Samantha to increase prices of a

certain category of charms by a given percentage.
6.	 Create a new table with SQL and copy into it all of the customers who have

not purchased items within the last three months.
7.	 Delete customers from the new table in the prior exercise who have spent

more than $100 in the past year.

Standup Foods
You will need to create some additional sample data for each table. Laura knows
she will want certain information on a weekly basis, but she will not be able to
build complex queries to retrieve the data. You will have to build a few queries for

Figure 5.25

Question Use the parameterized procedure to display rental totals for specified
dates.

SQL SET AUTOPRINT ON
VARIABLE cv REFCURSOR
EXECUTE pckCategoryFees.GetCategoryFees(‘01-Jan-2006’,
‘31-Mar-2006’, :cv);

CATEGORY SUMOFRENTFEE
--------------- ------------
Board $18,660.00
Boots $14,370.00
Electronic $1,350.00
Poles $790.00
Rack $420.00
Ski $37,900.00

97Chapter 5: Advanced Queries

her that can be run to display results or change prices. Some of the queries should
be parameter queries so Laura can easily select the values she needs to control the
results. Note: you will have to modify the queries slightly to match the data that
you have entered.
1.	 Identify the employees who have below average overall job evaluations.
2.	 Identify the main menu items that have not been served to a particular

director or other celebrity (pick one from your list who wants something
different).

3.	 Which customers have not yet referred her business to other clients?
4.	 Create a category table to segment the employee ratings (excellent, good,

average, weak). Use the table to identify the employees with excellent
evaluations as both server and dishwasher.

5.	 Create a temporary table and copy into it information about employees who
have worked as drivers but have not driven within the last month.

6.	 Delete from the temporary table in the previous question the drivers whose
average evaluations are less than 6 (on the 10-point scale).

7.	 Write a parameterized query that enables Laura to increase the base wage
rate of employees by specifying a category, a minimum overall average
evaluation, and the percentage increase.

EnviroSpeed
You will need to create some additional sample data for each table. Brennan and
Tyler know that they will want certain information on a weekly basis, but they
will not be able to build complex queries to retrieve the data. You will have to
build a few queries for them that they can run when they want to see the results
or need to change prices. Some of the queries should be parameter queries so they
can easily select the values they need to control the results. Note: You will have to
modify the queries slightly to match the data that you have entered.
1.	 List the experts who have worked with two or more crews in the same

month.
2.	 Which experts have not contributed any documents within the last three

months?
3.	 List the crews that are more than 25 percent larger than the average crew.
4.	 Create a table to categorize the expensiveness of cleanups. For example,

spills that cost more than $1 million to clean up are expensive; splits that cost
$500,000 to $1 million are merely costly; and so on. Create a query to apply
these categories to the actual spills.

5.	 Write a query that retrieves documents based on a list of keywords entered by
a user. The keywords might appear anywhere in the document, and the final
query should sort the list based on the number of matches.

6.	 Write a parameterized query to update a severity value for an incident by
allowing the user to enter a chemical name and a point-wise increase in
severity.

98Chapter 5: Advanced Queries

7.	 Write a query to copy the data on experts to a new table who have
participated in a total of at least three incidents in the last year.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks. You will have to create sample
data for each of the tables.
1.	 Identify and create at least two parameter queries that would be useful to

managers. Share the business question (not the query) with other students and
solve their queries.

2.	 Identify a business question to list items greater (or less) than average. Write
the query to return the results.

3.	 Create a temporary table and write a query to copy some rows of data from
one table into the new table.

4.	 Write a delete query to remove a few rows of data from the temporary table.
5.	 Write an update query using parameters to change the value of one of the

numeric columns in a table based on a percentage and conditions entered by
the user.

Objectives

•	 Create forms that make it easy for users to enter data.
•	 Create three types of forms (main, grid, subform) to understand the purpose of each.
•	 Create reports to display and summarize data.

Chapter Outline

Forms and Reports
6Chapter

Forms and Reports, 100
Model-View-Controller, 101

Case: All Powder Board and Ski Shop, 102
Lab Exercise, 103

All Powder Board and Ski Shop Forms, 103
All Powder Basic Reports, 131

Exercises, 136
Final Project, 137

100Chapter 6: Forms and Reports

Forms and Reports
The main purpose of the DBMS is to store data efficiently and provide queries
to retrieve data to answer business questions. But from the perspective of busi-
nesses, the true value of the DBMS lies in the applications that can be built on top
of the database. Oracle provides tools to help you build forms and reports. The
tools help you create the basic forms and reports quickly; however, you will still
need to edit the designs to clean them up to make them easier to read. One of first
things you will see with Oracle 11g has many different tools to handle the same
tasks. Oracle developed and purchased several technologies and 11g “Fusion” is
designed to support multiple technologies. This flexibility can be useful, but it is
also overwhelming. A given project should try to stick with a relatively small set
of technologies. This chapter focuses on a few of the newer Web-based technolo-
gies (such as ADF Faces) so students can learn one fundamental technology first.
Other options can be added to projects later if specific tools are needed.

Forms are used to make it easier for users to enter data. You would never want
users to enter data directly into the tables. For example, look again at the Sale
table. It contains mostly ID numbers, and you cannot expect workers to memorize
thousands of ID numbers. Instead, you build forms to match the processes and
styles of the business. Likewise, you rarely ask managers to build queries them-
selves. Instead, you create reports that display details and subtotals within a layout
that is easy to read. You can even include charts to make it easy to compare values
or examine trends over time.

With Oracle 11g, all forms are designed to run as Web pages and the forms run
in relatively standard browsers using Javascript and interactive AJAX-based com-
ponents. Web-based forms and reports have several benefits over older methods.
The most important is that users can reach the data from anywhere in the world
with a variety of devices including low-cost laptops and even cell phones. Also,
all of the forms and data are centrally located making it easier to upgrade the
application and monitor usage and security controls. Web forms still have some
limitations in terms of interactivity, but current browsers are relatively flexible
and client-side scripting with AJAX tools generally provide acceptable options for
business applications.

Forms and reports can be used for internal applications as well as public Web
sites for use by customers and vendors. The primary differences are in terms of
security and usability. The examples in this chapter are geared toward develop-
ing internal applications, as opposed to public Web sites. Keep in mind that even
public Web sites need backend tools to handle administrative tasks. The forms
and reports you create here will work well for those administrative tasks. Public-
based Web sites are often simpler where each page handles a single concept and
the focus lies on connecting the pages. So, if you can build the three main types
of forms in this chapter, you can apply the same concepts to building public Web
sites.

This chapter uses the JDeveloper tool and Oracle’s Application Development
Framework (ADF). JDeveloper should be installed on your workstation computer.
The applications will be built and tested within JDeveloper. In a production envi-
ronment, you would then deploy the application to a standalone application server
and configure security options to control access to the application. But, first you
have to build the application, and it is easier to understand the process if these ex-
tra steps are ignored for a while.

101Chapter 6: Forms and Reports

Model-View-Controller
The Oracle application development process generally follows an architecture
known as Model-View-Controller (MVC). It is an approach that has proved use-
ful for building complex applications—particularly Web applications that interact
with users. Shown in Figure 6.1, each of the three items represents component or
objects within the application. Each component is dedicated to a specific set of
tasks. By separating these tasks, it is easier to build and maintain the application.
In terms of building applications within Oracle, it also means that Oracle develop-
ers have created generic tools that work within each segment—saving you huge
amounts of time and energy. Typically, these components are built as software
objects within the application. By default, JDeveloper stores the model and data-
base components in a separate project named Model. The pages and control code
are stored in a separate project called ViewController. It is possible to change the
names of the projects and the pages and objects can actually be stored anywhere.
However, it is good practice to stick with the default choices so that other devel-
opers will understand the goals.

Model components are software objects that hold data from the database that
will be needed for the page. The pre-built Oracle ADF model components know
how to retrieve data and write changes back to the database. For the most part,
you simply need to select tables in the database and the wizards build the match-
ing model components—including the code that handles the data transfers. Tech-
nically, JDeveloper also allows you to design in the other direction: build Model
components and generate the necessary tables. However, most applications are
easier to construct if you design the database first.

View components essentially consist of the page design and layout. Typically
you place panels on the page to define the page structure, such as the number of
columns or the existence of header and footer panels. Then you place display ob-
jects within the panels. Oracle ADF includes objects that support simple text, text
input boxes that connect to the data model, and even tables that support the dis-
play and editing of data in the form of rows and columns. Standard HTML-type
components are also supported, including objects to display image files, radio but-
tons, check boxes, and drop down lists. Each of these can be standalone, or they
can bind to the data in the model. Data-bound controls automatically include code
to retrieve data from the model, display it, and store changes back to the model
structures.

Database

PageModel

View

Controller

Figure 6.1

102Chapter 6: Forms and Reports

Controller objects are related to
the view objects—and Oracle often
places them into the same category.
But controller objects represent logic
and code—not the display of data and
pages. The logic controllers are used to
determine page navigation and respond
to user input and choices. The goal is to
keep the code separate from the display
of the page. That way the page can be
designed and altered without tripping
over the code and each component
can be built and edited separately. Of
course, code that depends on objects on a page would have to be rewritten if the
page objects are deleted or substantially modified.

As you build forms in JDeveloper, you will encounter these three types of ob-
jects, so it is important that you understand the purpose of each object type.

Case: All Powder Board and Ski Shop
The primary application at All Powder Board and Ski Shop is the need to track
sales and rentals. Of course, these applications also require you to build forms
and reports for inventory items and customers as well. Eventually, you will have
forms that store data into each of the tables in the relationship diagram. However,
before you leap to the forms wizard, make sure you understand the three major
form types shown in Figure 6.2: main form, grid form, and main with subform.
A main form shows one row of data at a time, such as a form to edit basic infor-
mation about one customer. A tabular or grid form appears similar to the table
view in that it shows several rows at one time. Main and subforms combine the
two: the main form shows one row of data from one table, and the grid subform
shows matching rows from a related table. The classic business example is the
Sale form and SaleItem grid, where the main form shows data from one sale, and
the grid shows the repeating items purchased and stored in the SaleItem table. At

Action
Start JDeveloper with the default role.
Use menu: Application/New.
Name: AllPowder06, Package prefix:

AP06.
Pick Fusion Web (ADF) template.
Create default project Model with ADF

objects.
Create default project ViewController

with ADF Faces.
Finish with defaults.

Figure 6.2

Style Style Description CategoryCustomer

Last Name
First Name
Phone
Address
City

Ski Board Style

Sale
Customer Salesperson
ItemID Description Price Quantity Value

Main

Grid

Main and
Sub-form

103Chapter 6: Forms and Reports

this point, your responsibility is to examine the business operations and determine
the best type of form to handle each operation.

Lab Exercise

All Powder Board and Ski Shop Forms
Many of the forms in an application are straightforward main forms. Users want
to see data for one row—such as one customer or one employee. You generally
create main forms when you need detailed control over the layout. Fortunately,
the Oracle wizards make it relatively easy to create main forms. One of the useful,
but sometimes tricky, aspects of Oracle forms is that they run in a disconnected
mode. Data modified on the client form is not written to the database until the user
tells the system to save all of the changes.
Activity: Create Basic Main Forms
Figure 6.3 shows a simple version of the form to edit customer data. It is similar
to the form you built in Chapter 1. In its simplest layout, the main form contains
labels and text boxes for each column in the table. You can enter any text into the
label to help tell the user what data is to be entered into each text box. The data
on the form is bound to the database table. Changes made to the data in the text
boxes are automatically written to the database table. However, these changes are
written only at certain times—when the user clicks the Submit button to save the
data. The importance of the main form is that you have considerable control over
the layout and presentation of the items. You can change the image of the form
by setting the properties for the form or the controls to control descriptors such as
size, position, and color. You can add new controls to display images or include
buttons to delete or find records. Notice the use of the list box to choose the gen-
der values. Oracle has tools to define a list of values (LOV) which can draw data
from a fixed list or from another table. It is useful when you need to restrict data

Figure 6.3

Record navigation

Text box
with label

Gender Combo Box/LOV

104Chapter 6: Forms and Reports

entry to a specific set of items. Oracle
forms also automatically include a date
picker which provides a popup calen-
dar that users can use to enter dates.

Creating any form takes several
steps. JDeveloper creates a list that
you can follow if you forget the basic
steps—but the list has many options
that are not required. Once you create
the project and define a database con-
nection, creating a main form requires
only two or three steps. (1) Add a data model that defines the data tables needed.
(2) Create a list of values if needed. (3) Create a display page and drag the data
onto the page. Oracle provides many other options to improve the layout and add
security. For now, concentrate on the main steps needed to create the form. Later,
you can edit and improve the forms.

The project needs a connection to the database. Figure 6.4 shows the main JDe-
veloper screen with the two methods of creating a database connection. First, note
the four major sections in JDeveloper: (1) Application Navigator that shows proj-
ects, resources, and eventually page lists. (2) Component Navigator that shows
lists of components that can be added to pages. (3) Edit Windows that enable you
to edit pages and components. (4) Property Navigator (not in the picture) that
shows properties or attributes for components selected in the active edit window.

To create a database connection, you can use Step 2 in the checklist or open the
Resources section in the Application Navigator, right-click the Connections en-
try and choose New Connection/Database. At that point, the database connection
window opens and asks for the standard connection information. Give the connec-
tion a name you will recognize later, such as AllPowder06. Enter the username
and password, change the server SID if necessary, and click the button to test the
connection. The connection information was created by the database administrator

Figure 6.4

Component
navigator

Edit
windows

Application
navigator

Property
navigator

Action
Use Checklist Step 2, or
Right-click Connections, New

Connection/Database.
Name it (AllPowder).
Enter standard login information

(Username/Password).
Set the server and SID if needed.
Test Connection!

105Chapter 6: Forms and Reports

when the account was created. If you
created the account yourself when you
installed Oracle, go back and look at
your notes. Note that you should leave
the default option checked to “Save
the password.” This option means that
the forms will run without asking for
a password. Security options can be
changed later, and it is easier to de-
velop forms and experiment if you do
not have to log in every time you test
a form.

One of the most important steps in building a form is to create a data model.
The data model is a buffer between the database table and the objects on the dis-
play page. You define it much the way you define tables and relationships in the
actual database. For this reason, JDeveloper has a tool that makes it easy to cre-
ate a data model based on selected tables in the database. You simply select the
database tables and JDeveloper uses the database information to create matching
objects in your project model. The model objects have built-in tools that know
how to retrieve data and write changes back to the database tables—using SQL
statements. The process for a main table like Customer is straightforward because
it requires the use of only a single table.

You can use Checklist Step 3.1 by expanding Step 3, clicking the substeps but-
ton, and clicking the link for Step 3.1. Or, you can expand the Projects section in
the Application Navigator, right-click the Model entry and choose New. As shown
in Figure 6.5, expand the Business Tier in the list on the left, pick ADF Busi-
ness Components, and select Business Components from Table. The first time you
build a data component in a project, you will be asked to initialize the project con-

Figure 6.5

Action
Use Checklist Step 3.1 or,
Expand Projects, right-click Model, New.
Pick Business Tier/ADF Business

Components.
Click Query button.
Select Customer table to the right side.
Updatable View: Select Customer table.
Finish with defaults.

106Chapter 6: Forms and Reports

nection. If necessary, select the connection and keep the default SQL flavor and
types.

The main step is to choose the entity objects (tables) needed. Figure 6.6 shows
the main process. First click the Query button to see a list of tables in the data-
base. If the list is huge, you can enter a value in the filter column and then click
the Query button to see only the matching values. For instance, you could enter
Cust% to see only the tables that begin with letters “Cust”. When you find the
desired table (Customer), click it to select it in the list on the left. Click the ar-
row (>) button to move it to the select list on the right. Only the Customer table
is needed for this simple form, so you can move to the Next page of the wizard.
More complex forms might require additional tables which can be selected using
the same steps.

The next two steps are similar. You are asked to choose which tables will be
updatable and which are read only. Because you want users to be able to edit the
data in the Customer table, again select it in the list on the left and move it to the
Selected list on the right—for the Updatable View Objects screen. The next screen
asks you to choose read only tables and this form has none. So keep the default
values and work your way through the end of the wizard.

Making forms easy to use is often a difficult task. One key feature is to give us-
ers lists when you want them to enter certain values. For the most part, never trust
users to enter data—they will find ways to misspell, abbreviate, skip, or mangle
the data entry. If you need data to be consistent, create a list and let them choose
from the list. Options can also be displayed on the screen using radio buttons (sin-
gle selection) or check boxes (multiple selections). Oracle has several controls
to create and display a list of values (LOV). The simplest version is the default
Choice List and it will work well for the Gender column in the Customer table.
The objective is to display a list of choices (Female, Male, Unidentified) to the
user who will pick one.

Creating a list of values requires a new view object that contains the list of
items to be displayed. In the Application Navigator, expand the Projects section,
and then the Model project. Right-click the AP06.model. (It will have a different

Choose table. Click
arrow to select.

Figure 6.6

107Chapter 6: Forms and Reports

prefix if you used a different package
name). Choose the option to Create a
New View Object. Name it GenderLO-
VView to remind you that it holds the
list of values for gender. As shown in
Figure 6.7, choose the option to “Select
Rows populated at design time (Static
List). Gender requires only three choic-
es and they are unlikely to change so
they can be static. You will now be
asked to define a table with columns
and then add rows of data choices to
that table. But this pseudo-table is
stored only within the data model and
not on the database. The main step is
to add attributes, so click the plus sign
and add a new attribute (Gender). On
the properties form for this attribute,
check the box to indicate that it is the
“Key Attribute.” For gender, the problem only needs this single column—unless
eventually you want to translate gender to multiple languages. Then you would
need to alter the Gender column in the Customer table to hold a number, and build
the list of values with two columns: A number and a name—where the name can
later be translated to multiple languages, but each name will result in the proper
number being stored in the table. In situations of this sort, you would add two
columns to Gender table: GenderID and GenderName, and make the GenderID
column the key attribute. Anyway, to keep it easy for now, just use the single Gen-
der column.

On the next form, you will enter the gender values to be displayed. Click the
plus sign to add a row. Click on the row and type Female as the value. Repeat the
process until you have entered the three rows of choices. Finish the steps of the

Figure 6.7

Action
Right-click Projects/Model/AP06.model.
Create a New View Object.
Name: GenderLOVView.
Select Rows populated at design time

(Static List).
Add Attributes with the New button.
Name: Gender, Key Attribute (check

box).
Static List: Click the Plus sign.
Add three rows: Female, Male,

Unidentified.
Set check box for Application Module.
Finish with defaults.
Choose Combo Box with List of Values.
Move Gender column to Selected side.

108Chapter 6: Forms and Reports

wizard using the defaults, but be sure
to check the box to assign the Applica-
tion Module on the next-to-last page—
accepting the default module names.

The resulting GenderLOVView also
lets you specify the type of control that
should be used to display the data. As
shown in Figure 6.8, select the List UI
Hints tab on the left side of the edit
window. Accept the default display of
Choice List, but take a look at the num-
ber of possible options. You also need
to indicate which column(s) will be
displayed when the list is opened. With
only one column, the choice is easy:
move the Gender column to the Select-
ed box. If your list contains an ID number and a matching value, you would nor-
mally choose only the matching value and leave the ID number hidden. The list of
values object has now been created, so you can save it and close the edit window.

To use the list of values, you need to assign it to a column (Gender) in the Cus-
tomer table. Actually, you can do two things: (1) Declare the list as a validation
rule so users can never enter anything else, and (2) Assign the LOV so the form
builder automatically creates the choice list box.

The validation rules are best declared in the underlying Customer table mod-
el—where they will automatically be assigned to the corresponding Customer-
View object. Find the Customer object in the Model section of the Application
Navigator and double-click it to open it in the edit window. Select the View Ac-
cessors tab and click the plus sign to create a new accessor. As shown in Figure
6.9, find the GenderLOVView use the arrow button to move it to the right-side
selection list. Click OK to close the box.

Figure 6.8

Action
Open Customer table object in model.
View Accessors tab, click plus sign.
Move GenderLOVView to right side.
Attributes tab, select Gender column.
Double-click to edit Gender attribute.
Select control Hints tab.
Set Control Type to Combo Box with

List of Values.
Select Validation tab.
Set Rule Type to List.
Choose GenderLOVView1/Gender.
Failure Handling tab, enter message

(Female, Male, Unidentified).

109Chapter 6: Forms and Reports

Select the Attributes tab and double-click the Gender column to edit it. Select
the Validation tab in the Gender edit window and click the New button to add a
new validation rule. As shown in Figure 6.10, choose List as the rule type and
View Accessor Attribute as the list type. Then select the Gender GenderLOV-
View1 view and the Gender column in the tree. Select the third tab in the edit win-
dow labeled Failure Handling. Enter a message to be displayed to the users such
as: Please select from the list: Female, Male, or Unidentified. Click OK, save, and
close the Customer edit window. Any forms built with this view will now accept
only the values in the gender list.

Figure 6.9

Figure 6.10

110Chapter 6: Forms and Reports

You are almost finished. The next
step is to assign the LOV to the Gender
column so that the choice list will be
displayed automatically. This assign-
ment takes place in the CustomerView
object (not the table). In the Model
section of the Application Navigator,
double-click the CustomerView object
to edit it. Select the Gender column but
instead of trying to edit it, scroll the
edit window down to see the List of
Values: Gender section below the column list. Click the plus sign to create a new
list of vales.

 Figure 6.11 shows the basic steps of assigning the gender LOV to the Gender
column in the CustomerView object. For the List Data Source, choose the Gen-
derLOVView1 object that you built a minute ago. For the List Attribute, choose
the Gender column. If your list has multiple columns, this is where you need to
pick the Key column which contains the value in the list that will be inserted into
the Customer table. You can also use the tab to override the default type of dis-
play, but the default Choice List is best for the gender data.

 Finally, you are ready to build the display page. With the data and list of values
created and assigned the process of building the page is relatively easy—leaving
you free to concentrate on the layout and design for the page. You can use Step
5.2 in the checklist, or create a new page from the Application Navigator. Because
the checklist is easy to lose, you should learn to create objects in the navigator.
Expand the ViewController project in the navigator, right-click the Web Content
entry. In the object tree of the pop-up box, expand the Web Tier and choose the
JSF entry. Pick the JSF Page option from the list of JSF items.

Figure 6.12 shows the basic options for a JSF Page. First enter a name (Edit-
Customer.jspx). The name cannot include spaces and must end with the jspx file

Action
Open Customer View in model.
Select Gender column.
Scroll to bottom.
List of Values: Gender, click Plus sign.
List Data Source: GenderLOVView1.
List Attribute: Gender.
Ignore warning messages.

Ignore any warning messages.

Figure 6.11

Choose table. Click
arrow to select.

111Chapter 6: Forms and Reports

type. Leave most of the default values,
but click the Browse button to see the
Quick Start Layout choices. For this
simple form, the simple One Column
Header (Stretched) layout is fine. Even-
tually, you will want to choose more
complex layouts for your Web site so
you can add page navigation elements.
You might want to hire a graphics de-
signer to help determine the best design
and structure for the entire Web site.
You can even built a custom template
which can be used as the foundation for
all of your pages—a useful approach
for large projects. A set of templates
ensures all developers build similar
pages. For now, just get familiar with
the standard options so you have some
idea of the basic choices.

Once the page is created, add a title
at the top by typing Edit Customer into
the top panel of the page design. Each
page is essentially an HTML page,
so select/highlight the new title and choose the Heading 1 style from the second
drop-down list. You can use cascading style sheets to assign consistent styles to
every page. In the Component Navigator at the top right of JDeveloper, change
the ADF Faces selection box to the CSS options. Drag the built-in JDeveloper
style sheet onto the main edit page. A pop-up box lets you rename the file to: pow-

Figure 6.12

Action
Checklist Step 5.2 or
ViewController project, right-click Web

Content, New JSF Page.
File Name: EditCustomer.jspx.
Choose Quick Start Layout (One Column

Header).
Type title: Edit Customer.
Set it as Heading 1.
In Component navigator, pick CSS from

dropdown instead of ADF Faces.
Drag JDeveloper.css onto the form and

rename as Powder.css.
In Application navigator, refresh Data

Controls section.
Drag CustomerView1 object to form

page (bottom).
Check two boxes: Navigation and Submit

buttons.
Verify Gender column is set to ADF

Select One Choice.

112Chapter 6: Forms and Reports

der.css. Later, you can edit the styles
in this file to match your preferences.
For now, simply observe that the title
has a nicer appearance.

Now for the big step. Refresh the
Data Controls section of the Appli-
cation Navigator and expand its sub-
tree. As shown in Figure 6.13, drag
the CustomerView1 object and drop
it onto the main section of the form
design. In the pop-up menu select the
Form and ADF Form options. In the
resulting Edit Form Fields screen,
you can use the up/down arrows to
change the initial order of the fields.
You can also verify the type of dis-
play box for the Gender and Date
columns. More importantly, check the
two boxes to Include Navigation Controls and Include Submit Button so the user
can see and edit the Customer data.

That is it. You are now ready to test the form. Click the Save All button to be
safe. Right-click the form and choose the run option. You might have to wait a
minute or so for the application to build and the internal Web server to start. Fig-
ure 6.14 shows the form. You can use the navigation buttons (Next, Last, and so
on) to scroll through the customers. The one glaring problem is that the Email
textbox is too wide to fit on most displays. It is a good idea to fix this problem
first, so close the browser window.

Figure 6.13

Action
Save everything (button).
Right-click the form and choose Run.
Wait.
Use red square stop button to stop the

form.
Select the Email box.
Expand Properties/Appearance.
Change Columns from bindings.Email…

to bindings.Lastname…
Select Gender combo box.
Change columns to bindings.Lastname…
Run form.
Test gender combo box.
Test date picker.
Stop form and close all design pages.

113Chapter 6: Forms and Reports

As shown in Figure 6.15, select the Email textbox control in the edit window. In
the Properties navigator on the bottom right, expand the Appearance section. No-
tice the Columns property contains an entry that sets the size based on the display
width of the Email column: #{bindings.Email.hints.displayWidth}. You could try
to find where this value is stored and change it, but an easier solution is to realize
that it is best to keep all of the widths the same, so edit the entry to use the width

Figure 6.14

Too wide.

Figure 6.15

114Chapter 6: Forms and Reports

of the Lastname column instead: #{bindings.Lastname.hints.displayWidth} by
changing Email to Lastname.

Now you can run the form, scroll through the entries, modify any of the data,
and click the Submit button to save your changes to the database. Figure 6.3 at the
start of this chapter shows the LOV choice list used to edit the gender value. Here,
Figure 6.16 shows the use of the automatic date picker to display a calendar. You
should also test the form by trying to enter invalid data. If you find problems, you
could add more validation rules and LOV selection boxes to the form. The one
catch is that these changes are easiest to make to the underlying table and view in
the Model section. If you make changes to the view, they will not automatically
be added to the page. Instead, you generally have to delete the existing controls on
the page, edit the underlying view, and then re-drag the view onto the page to cre-
ate new controls. So, you should figure out what controls and validation are need-
ed before you get too involved in playing with the design and layout of the page.
Activity: Create Grid Forms
Grid forms are another simple type of form. They are used when a table has a
limited number of columns and rows. The columns should all fit on one screen—
users find it difficult to edit data if they have to scroll horizontally. The number
of rows should be limited because the
grid form has few methods for search-
ing, and users should not be forced to
scroll through thousands of rows to
change one piece of data. Figure 6.17
shows a grid form for the SkiBoard-
Style table. Notice that the data in this
table is generally used only to pro-
vide consistent values to other tables.
This form will generally be used only
by an administrator once in a while to

Figure 6.16

Date picker
-- automatic

Action
Application Navigator: Model/New.
Business Components: Business

Components from Tables.
Click Query button, select SkiBoardStyle

table to right.
Updatable View, select SkiBoardStyle

table.
Read-only, none, default.
Finish with defaults.

115Chapter 6: Forms and Reports

modify or add a style. The data all fit
on one screen, making it easy to find
the items to be altered and to compare
the various entries across the rows.
In practice, you will use grid forms
for similar tasks aimed at administra-
tion. Think hard before you use one
of these forms for general users. Al-
though you have some control over
the form design, your options are lim-
ited, so users need to know what they
are doing.

You create a grid form in much the
same way as a main form. You need
a data model to hold the data for the
form. The SkiBoardStyle table also links to the ProductCategory table by asking
users to assign a Category such as Ski or Board to each style. To ensure consis-
tency and referential integrity, this data should be entered through a list of values
that is filled from the ProductCategory table—so you will have to create a view
object for that list as well.

In the Application Navigator, right-click the Model project and choose New. As
with the main form, select the Business Components items and pick the Business
Components from Tables option. Click the Query button to see the list of possible
tables and select the SkiBoardStyle table by moving it to the right-side panel. As
before, this table needs to be in the selected list of updatable views. The form does
not need any other read-only tables, so accept the default options and finish the
wizard.

You also need to create a view object for the list of values from the Product-
Category table. In the Projects section, expand the Model entry and right-click the

Figure 6.17

Action
Projects/Model/Ap06.model: New View

Object.
Name: ProductCategoryLOVView.
Read-only access through SQL query.
Write SQL.
Accept most defaults, but set Category as

Key Attribute.
Set Checkbox for Application Module.
Use defaults to finish.
List UI Hints tab: Keep default: Choice

List
Move Category column to Selected box.

116Chapter 6: Forms and Reports

AP06.model entry. Choose New View Object from the menu. Figure 6.18 shows
the choices that must be made. Name it something like ProductCategoryLOV-
View so you recognize later that it is a list of values object. Choose the Read-only
access through SQL query option. On the next page, write an SQL query to re-
trieve the list of categories in the ProductCategory table:

SELECT Category FROM ProductCategory ORDER BY Category
Figure 6.19 shows the basic form. Notice there is a button to help build queries,

but the process might not be useful. You do need to click the Test button to ensure
the query is valid. If you need help building the query, use SQL Developer, or
open the Database Navigator window in JDeveloper—the tab is just to the right of
the Application Navigator tab at the top-left of the window. When you are certain
the query retrieves the data you need, copy the SQL and paste it into list of values
window. On the next screen, mark the Category column as a key attribute. On the
next-to-last screen, check the option to save the object in the default application
module and finish the wizard.

Figure 6.18

Figure 6.19

117Chapter 6: Forms and Reports

As shown in Figure 6.20, select the List UI Hints tab. This time, change the
default from Choice List to: Combo Box with List of Values. Be sure to move
the Category column to the Selected box on the right side. The combo box ap-
proach has some options that are not available on the standard choice list control.
The problem with LOV controls is that the Web browser has to load the entire
list of options to display the page. If the list is huge, it can slow down the time it
takes to load and display the page—even if the user does not need to use that list.

Figure 6.20

Figure 6.21

118Chapter 6: Forms and Reports

The List of Values option chosen here
avoids that problem by initially load-
ing only a portion of the data. If the
user needs to see more, he or she can
click the “Search” option and enter
a pattern to download only the items
that are needed. This process might
take a couple of extra steps, but it is
substantially more efficient for dis-
playing Web pages.

You still need to add the list of val-
ues to the SkiBoardStyle table. Be-
cause the interface will use a combo
box, users might try to type in random
values, so you need to add the valida-
tion rule as well as the LOV display.

First, open the SkiBoardStyle table in the Model section. Select the View Ac-
cessors tab and click the Add button. Move the new ProductCategoryLOVView to
the right panel. In the Attributes tab of the SkiBoardStyle table, select the Catego-
ry table. Click the plus sign in the Validation rule to add a new one. Choose List
for the rule type and View Accessor Attribute for the rule type. Choose the new
ProductCategoryLOVView1 and then the Category column. Switch to the Failure
Handling tab and enter a message of the form: Please select category from the list.
Figure 6.21 summarizes the changes for the SkiBoardStyle table. Save and close
the table edit windows.

Figure 6.22

Action
Model/SkiBoardStyle table: Edit/double

click.
View Accessors tab, click plus sign to add.
Move ProductCategoryLOVView to right

panel.
Attributes tab, select Category.
Validation rule, click plus sign to add.
Rule Type: List.
List Type: View Accessor Attribute
Choose ProductCategoryLOVView1 and

Category.
Failure Handling message: Please select

category from list.

119Chapter 6: Forms and Reports

The next step is to add the LOV to
the view, so open the SkiBoardStyle
View in the Model project. Choose
the Attributes tab to see the list of col-
umns. Select the Category column,
and scroll down the edit window if
necessary. At the List of Values: Cat-
egory entry, click the plus sign to add
a new LOV. For the List Data Source,
choose Skiboardstyle.ProductCatego-
ryLOVView1, and select Category for
the List Attribute. Ignore any warning
messages that might be displayed. Figure 6.22 shows the assignment choices.

With the data sources defined and the validation rule and LOV assigned, creat-
ing the page is straightforward. First create a blank JSF page. In the Application
Navigator, expand the ViewController project, right-click the Web Content entry
and pick the New option. In the module-selection form, choose the JSF entry un-
der the Web Tier and select the JSF Page option in the right-side panel.

In creating the new page, enter the name (EditSkiBoardStyle.jspx) and select
the same layout as you did for the last page. Most of your Web pages will have
the same layout—to ensure a consistent style. Just as you did with the main form,
type a title onto the top of the form, such as Edit Ski Board Style Types. Assign it
a Heading 1 style and drag the Powder.css style from the Component Navigator
onto the page design. Later, if you want to change the Web site appearance, you
simply edit the Powder.css file and all pages will reflect the changes.

As shown in Figure 6.23, the real difference with the Grid form lies in adding
the data view to the page. Refresh the Data Controls section so it has the current
information. Find the new SkiboardstyleView1 and drag it onto the form. This
time, instead of choosing the Form option, select Table and ADF table from the

Action
Model/SkiBoardStyle View: Edit/double

click.
Attributes tab, select Category column.
List of Values: Category, click plus sign to

add.
List Data Source: Skiboardstyle.

ProductCategoryLOVView1.
List Attribute: Category.
Ignore error messages.

Figure 6.23

120Chapter 6: Forms and Reports

pop-up menu. The following page
will list the columns and enable you
to change the order if desired.

Figure 6.24 shows the more im-
portant options at the top of the form.
You should check all three boxes for:
Row Selection, Filtering, and Sort-
ing. The last two are particularly im-
portant if the form has many rows of
data—they enable the user to reduce
the display list and sort it to work
with a smaller set of data. You will
get the opportunity to work with these
options when you run the form.

Right-click the form and choose
the option to run it. The first pass de-
sign is not bad, but it is likely that the
column widths are too narrow and
you cannot see the entire text for each
column entry. Also, the text label “Styledescription” is annoying. Stop the brows-
er and edit the page design. If you can hold the cursor on the dividers between
the columns, you can drag them to make the wider—although the last column is
difficult. It is usually easier to select a column and edit its properties. Expand the
Appearance section in the Property Navigator and set the widths to the columns
as: 150, 150, and 140. Be sure the panel holding the columns is wide enough to
hold the new widths (at least 440 units).

To change the Styledescription label, you can check the Header Text property
to see that it is bound to hints.Label property of the original table. Instead of over-
writing the binding value in the properties, it is better to go back and edit the
source. That way it will be fixed for every other form that might want to use it
and be easier for another developer to find if it needs to be changed in the future.
In the Application Navigator, open the SkiBoardStyle table (not the view). Select
the Attributes tab and double-click the StyleDescription entry to edit it. For Label

Figure 6.24

Action
Right-click the form and run it. Wait.
Notice the column widths.
Stop the browser.
Adjust the column widths by dragging the

borders in the design.
Fix the title/label for Style Description.
Model: Edit Skiboardstyle View.
Attributes tab: Edit Styledescription
Set Label Text: Style Description.
Save everything and run the form.
Test the LOV for Category.
Test the sorting by clicking the column

headings.
Test the filter. Enter Board in the box

above the Category heading and press
<Enter>.

121Chapter 6: Forms and Reports

Text, enter: Style Description, with the space and proper capitalization. Close the
edit window.

Run the form again and verify that it works. Use the combo box to select one
of the entries for Ski or Board. Click the “Search” option at the bottom of the list.
Figure 6.25 shows a portion of the search form that pops up. Enter B% as the
category and click the Search button. The Search button is probably hidden way
to the right and you have to scroll to see it. Later, you will want to reduce the size
of the Category box to try and make this form smaller. Anyway, the search nar-
rows the selection list to just the categories that begin with the letter “B.” For lists
of value that contain a large number of entries, this approach is much better than
trying to cram the entire list into one display. This approach reduces the amount
of data to download on the page, and it provides a smaller list that is easier to
read and search. But, it requires more steps, and might require training the users
to understand how it works. One recommendation is to use the combo box/list of
values approach whenever the list of items exceeds 100 rows.
Activity: Create Main Forms and Subforms
Now that you understand the main
forms and grid forms, it is time to
combine them into a main form and
subform. Remember where this pro-
cess began: with business forms—
particularly the Sale form. A typical
business sale form has data for the
sale (SaleID, SaleDate) and customer
(name, address, and so on). It also has
a section of repeating data to hold the
specific items being purchased by the
customer. This repeating section was
split into the SaleItem table, with
some elements placed in the Inven-

Figure 6.25

Action
Add the table objects to the project: Sale,

SaleItem, Inventory.
Do NOT create views for them. You can

add all tables for use later.
Right-click AP06.model, New Association:

Sale + Customer.
Choose Customer/CustomerID as the

source (left) and Sale/CustomerID as the
destination (right).

Click the Add button to create the link.
Accept defaults except check the box to

add to the Application Module.

122Chapter 6: Forms and Reports

tory and ItemModel tables. The purpose of the main and subform is to recombine
these tables. Keep in mind that each form can be associated directly with only one
table. In this case, the Sale form will be based on the Sale table, and the subform
will be based on the SaleItem table. Additional data from the other tables can be
displayed on the forms, but only the primary keys from those two tables will be
used.

Figure 6.26 shows the two parts of the basic Sales form. Creating this form
takes many steps—most are similar to those used earlier, but a few new twists
are being added to this description. First, the data objects for the main form and
subform must be created separately. Notice that each section uses data from mul-
tiple tables. The main form is based on the Sale table, but it includes some data
from the Customer table. Creating the data for the main form (and the subform)
requires building a View object based on a query. Second, these view objects must
be linked through an association—which is based on the foreign key (SaleItem.
SaleID connects to Sale.SaleID). This link restricts the rows displayed in the sub-
form to those that match the SaleID in the main form. Third, the subform contains
a computed expression (LineTotal) to obtain price times quantity. Fourth, the main
form displays the total value of the subform, computed as the sum of the LineTo-
tal. Fourth, the main form contains a couple lists of values (for selecting the cus-
tomer and setting PaymentMethod). To illustrate the process, these are going to be
added after the first-pass form has been created. With all of these complications,
it is not going to be possible to display all of the screen shots. Instead, the text
outlines the steps—you can check the PowerPoint slides for this chapter for ad-
ditional screen shots if you need more details.

The basic process involves seven major steps:
1.	 Create a data view joining the Sale and Customer tables.
2.	 Create a data view joining the SaleItem and Inventory tables.
3.	 Create a link view to establish a join between these two views.
4.	 Build the initial form to test it.
5.	 Add lists of values to the main form.
6.	 Clean up the form display.
7.	 Add a calculation to display the Sale Total.

Figure 6.26

123Chapter 6: Forms and Reports

View objects are needed instead
of tables because both forms contain
multiple tables that need to be con-
nected. But, the first step is to add
the underlying tables to the proj-
ect so they can be referenced in the
joins. Use the standard right-click
menu on Model, New: Business Tier,
ADF Business Components, Business
Components from Tables. Choose the
new tables: Sale, SaleItem, Inventory,
and ItemModel. Do not create views
for the tables. Skip the updatable and
read-only options. In a major project,
you would probably just add all of the
tables at the start—knowing you are
going to use them later. But, adding
dozens of tables and views makes the
project cluttered and harder to focus on the tables needed at the moment.

Because the Customer table was added before the Sale table, JDeveloper prob-
ably did not create the foreign key association between Customer and Sale; so
you have to create it by hand. Look at the list of view objects and you should see
FK…associations for the Sale/SaleItem table but not for Customer/Sale. Right-
click AP06.model to build a New Association. Name it SaleCustomerAssociation.
In the left panel (Source), expand the Customer table and select the CustomerID.
In the right panel (Destination), expand the Sale table and choose the CustomerID
as the matching value.

Now you can create the view that combines columns from the Sale and Custom-
er tables. Right-click AP06.model, New View Object. Name it SaleCustomerView
and accept the default option: Updatable access through entity objects. Choose
the Sale and Customer tables, leaving the default options. Figure 6.27 shows that

Figure 6.27

Action
Right-click AP06.model and choose New

View Object.
Name: SaleCustomerView.
Defaults: Updatable access through entity

objects.
Select Sale and Customer tables, Sale will

be updatable, Customer will not.
Verify the link between Sale and Customer.
Select all columns from the Sale table and

LastName, FirstName, Phone, Email
from Customer.

Add Order By Sale.SaleID.
Build a second view for SaleItem and

Inventory using all columns from
SaleItem and ItemSize and ModelID
from Inventory.

124Chapter 6: Forms and Reports

the Customer table should be set as
Reference, not Updatable, and the as-
sociation that links them should be
selected in the drop-down list. If the
association is not available, stop and
go back a step to build that link.

Select the attributes to be displayed
on the main form. Start by selecting
all of the columns from the Sale table.
You can use the arrow keys to rear-
range the order. Then add the First-
Name, LastName, Phone, and Email
columns from the Customer table.
The wizard will automatically include the Customer.CustomerID column. Bring
it along for now—it can be removed from the display form later. Advance to the
query shown in Figure 6.28 that is built to connect the Sale and Customer tables.
Notice that it uses the old syntax to join the two tables instead of the new standard
INNER JOIN. Add Sale.SaleID to the Order By clause—or use Sale.SaleDate if
it will be easier to scroll through the form by date. Ignore the Bind Variables and
Java options and accept the default options to finish.

Repeat the process for the SaleItem and Inventory tables. Choose the SaleItem
table first and the foreign key association should be available in the drop-down
list. Choose all columns from the SaleItem table along with ModelID and Item-
Size from the Inventory table. It would also be possible to add a third table (Item-
Model) to bring along the description and other attributes—but it will be difficult
to get them to fit on the display page, so stick with just these few columns for now.

On the attribute summary page, click the New button to create a new computed
attributed. Name it: LineTotal with a Type of BigDecimal and Value Type of Ex-
pression. For the expression value, enter Quantitysold * Saleprice; which should
not be updatable (by the user). Click the Edit button and move Quantitysold and
Saleprice to the right panel to indicate the total should be recomputed when ei-

Figure 6.28

Action
In the SaleItemInventory View, at Attribute

summary, click the Add button to create a
new transient attribute.

Name: LineTotal
Type: BigDecimal
Value Type: Expression
Value: Quantitysold*Saleprice
Click the Edit button.
Select Quantitysold and Saleprice to

trigger recalculations.

125Chapter 6: Forms and Reports

ther of these values changes. Close
the edit window and finish the View
wizard. Double-check the query and
add a sort clause such as Saleitem.
SKU. Accept the defaults to finish the
wizard.

The next step (#3) is to create an
association that links these two views
together. Right-click AP06.model and
choose New View L ink. Name it:
SaleToSaleItemViewLink. In the left panel (Source), choose the SaleCustomer-
View created for the main form and pick the Saleid attribute. In the right panel
(Destination), expand the SaleItemInventoryView and choose its Saleid attribute
to match the source value. Figure 6.29 indicates that you need to remember to
click the Add button to actually create the link—which is then displayed in the list
at the bottom of the wizard.

With the two view objects created and connected through a link view, it is now
possible to create a first-pass version of the form to test the design (Step #4). The
first step is to create a new blank form. In the Application Navigator, expand the
ViewController project, right-click the Web Content entry and choose New. Ex-
pand the Web Tier and pick the JSF entry, followed by the JSF Page type. Name it
Sale.jspx and use the standard single-column template used earlier. Add a title at
the top (Sale), assign it the Heading 1 style and drag the Powder.css style onto the
page—so this new page matches the style of the other pages. So far, this process
matches the steps for creating any form.

Figure 6.30 shows the real trick to creating the main form/subform. Refresh the
Data Controls. Scroll through the list to find SaleCustomerView2. Expand it to en-
sure that SaleItemInventoryView2 lies beneath it. These views with the hierarchi-
cal relationship were created when the link between them was established. They

Figure 6.29

Action
Right-click AP06.model, New View Link.
Name: SaleToSaleItemViewLink
Source: SaleCustomerView.Saleid
Destination: SaleItemInventoryView.Saleid
Click the Add button.
Accept the defaults except set the

Application Module.

126Chapter 6: Forms and Reports

are different from the standalone ver-
sions of the original views because
only this set is linked. Drag the Sale-
CustomerView2 object onto the form
and choose the Form/ADF Form op-
tion. Check the options to create the
navigation and submit buttons.

After the main form controls are
created, drag the nested SaleItem-
InventoryView2 onto the form be-
neath the controls. Choose the Table/
ADF Table option. Check the options
for Row Selection and Sorting. Do
not select the Filtering option—un-
less you anticipate the Sale form to
hold dozens of lines that will need to
be searched. The goal is to keep the
form as simple as possible, and filter-
ing adds options that need to be ex-
plained to users.

Figure 6.31 shows the basic form. Observe that the layout is going to need
work. For example, the detail subform is way too narrow. However, for now,
check that the subform only displays rows that match the SaleID in the main form.
Also check that the customer information is updated as you scroll through other
sales.

One critical problem exists with all forms created by the wizard: The Submit
button does not actually do what you think it does. Basically, the Submit button
simply calls the server and refreshes the page. Any data changes are stored only
in the data objects created in the application—they are not automatically written
to the database tables. To actually store the data, you need to either add a separate
Commit button, or add the Commit functionality to the Submit button. In terms of

Take SalecustomerView2
Hosting
SaleItemInventoryView2

Figure 6.30

Action
ViewController, Web Content, New page.
Web Tier/JSF/JSF Page.
Name: Sale.jspx, single-column template.
Add title, set as Heading 1, drag Powder.

css onto page.
Refresh the Data Controls.
Find SaleCustomerView2 and expand it.
Verify that SaleItemInventoryView2 is

beneath it.
Drag SaleCustomerView2 onto the form:

Form/ADF Form.
Select Navigation and Submit buttons.
Drag nested SaleItemInventoryView2 onto

the bottom of the form: Table/ADF Table.
Check the Row Selection and Sorting

boxes (not filtering).
Run the form to test it.

127Chapter 6: Forms and Reports

usability, most application should just add the Commit functionality to the Submit
button.

Figure 6.32 shows the basic process. In Data Controls, find the SaleCustomer-
View2 entry and scroll down to expand the Operations node. Drag the Commit
function and drop it onto the Submit button. The key is to ensure that you drag the
Commit operation from the correct location—underneath the SaleCustomerView2
node. Check the two boxes indicated to keep the original values: Name=Submit
and Disabled=blank (or false which means the button is enabled and can be used).
The Submit button will now function properly and changes made on the form will
be saved to the database.

Check to keep old

Drag

Figure 6.32

Figure 6.31

128Chapter 6: Forms and Reports

The next step (#5) is to add the
lists of values to select the Customer
and the PaymentMethod. The pro-
cess of creating the LOVs is similar
to that used before. Create new View
Objects to retrieve the desired data.
Edit the SaleCustomerView object to
add these new accessors and assign
them as LOV objects to the match-
ing attributes. The big change is that
in the earlier forms, the LOVs were
built before the view was dragged onto the form, so the form build knew which
type of control to create. In this new case, the form has already been built. There
is no easy way to edit the existing text boxes on the form, so the trick is to drag
a new control onto the form, set it as an LOV control and then delete the original
text box.

By now, you should be able to create an LOV on your own. However, the Cus-
tomerLOVView adds one trick. The LOV needs to display the person’s name (first
and last) and transfer the CustomerID into the Sale table. The trick is that the
display value needs to be a single column, so you have to create a new column
(Fullname) concatenated from the other columns. Start the LOV as a New View
Object using read-only SQL and the Customer table. When you get to the query
screen shown in Figure 6.33, enter a query that retrieves the CustomerID and con-
catenates the three columns into a single value called Fullname:

SELECT CustomerID, Lastname || ‘, ‘ || Firstname || ‘ ‘ || Phone AS Fullname
FROM Customer
ORDER BY Fullname
As you finish the wizard be sure you set the Key Attribute for the CustomerID

column and assign the result to the default Application Module. On the List UI
Hints tab, for the List Type, choose Comobo Box with List of Values, and set Full-
name in the Display panel.

The second step in creating an LOV is to open the underlying SaleCustomer-
View object so that you can assign the LOV to the CustomerID column. First

Figure 6.33

Action
Close the browser running the Sale form.
In Data Controls, under the

SaleCustomerView2 entry, expand the
Operations node.

Drag the Commit function and drop it onto
the Submit button.

Check the boxes to keep the original values
for the name (Submit) and disabled
(empty).

129Chapter 6: Forms and Reports

select the View Accessors tab and add
the CustomerLOVView to this view
object. Switch to the Attribute tab and
select the CustomerID column. Be
sure to select the CustomerID from
the Sale table and not from the Cus-
tomer table. Scroll to the LOV sec-
tion and add a new LOV. Select the
new LOV as the list data source and
choose CustomerID as the list at-
tribute. These steps create the LOV
and assign it to the CustomerID in
the Sale table. The LOV is not yet
installed on the page, but you can do
that step after you finish the second
LOV.

Repeat the basic process to create the PaymentMethod LOV. Use a read-only
SQL query, and select the single column. Set the UI Hint to the default Choice List
and pick the PaymentMethod as the display column. Open the SaleCustomerView
again and add the new LOV to the list of View Accessors. Switch to the Attribute
list, select PaymentMethod and choose the new PaymentMethodLOVView, again
choosing its only column.

Finally you can put the LOVs on the Sale form. Close the view object windows
if they are open and open the Sale.jspx page in design mode. Refresh the Data
Controls and expand the SaleCustomerView2 node. Delete the existing text con-
trols for CustomerID and PaymentMethod. Figure 6.34 shows the next step. Drag
the CustomerID data onto the Sale form and drop it carefully between two existing
text controls—look for the horizontal dividing line as a target—do not drop it onto
an existing text control. Also, be careful to drag the CustomerID column and not
CustomerID1 (which is in from the Customer table). In the pop-up menu, choose

List of Values/ADF LOV Choice List as the type of control. Repeat the process
for the PaymentMethod with the same selections. Notice that the CustomerID
LOV is way too wide. Use the Property Navigator to set the Columns to 20.

Save the form and run it to test it. Check the Customer combo box. The Search
option becomes important because of the large number of customers. The user can
enter the first few letters of the last name and perform a search for matching val-
ues—selecting the desired name by double-clicking it.

The layout of the form and subform need work (Step #6). Unfortunately, the
HTML structure limits what you can do with the forms—ultimately, layout is
controlled by the browser. You can try using combinations of layout panels and
groupings to alter the layout of the main form—but be prepared to spend several
hours working on it. Ultimately, the subform needs the most work—because most
of the columns are not being displayed. First, set the table width to 500. The prop-
erty is easy to find, the challenge lies in selecting the table so the properties are
displayed. It is often easiest to use the Structure Navigator in the lower-left corner
of JDeveloper. Simply scroll through the list and select the Table entry.

Figure 6.34

Action
Create a New View Object.
Name: CustomerLOVView.
Read-only access through SQL Query.
Query includes CustomerID and a

LastName+FirstName+Phone display
column.

List UI Hints: Combo Box with List of
Values.

Edit SaleCustomerView.
Add new LOV as a view accessor.
Link to Customerid in the Sale table.
Create a PaymentMethodLOV using the

default Choice List.

Choose LOV

Delete old
Drag

130Chapter 6: Forms and Reports

Once the table is wider, delete the
SaleID column—now that you know
the subform works properly, there is
no reason to display the SaleID on
each row. Next, set the width of each
column to 70 so they fit on the screen.
Then delete the SKU1 column at the
end.

It would also be nice to format the
SalePrice and LineTotal columns as
currency. The easiest approach is to
edit the underlying SaleItemInvento-
ryView object. In the Attributes tab, select the SalePrice column and choose the
Control Hints tab. Set the Label text to Sale Price and the Format type to Cur-
rency. Do the same thing for the LineTotal column. Save and close the view. The
changes will be picked up automatically when the Sale page runs.

If you work with the form for a couple of minutes, you will see that you can
scroll through the existing orders, but there is no way to add new ones. The so-
lution is to add a button to the main form that enables the user to create a new
sale. Fortunately, this function is one of the preprogrammed options within the
Data Controls. Expand the SaleCustomerView1 node and scroll down to find and
expand the Operations node. Drag the CreateInsert function and drop it onto the
main form next to the Submit button. Change its text property to New Sale. Be-
cause of the panel (HTML) layout method, the new button actually appears below
the Submit button. You might want to add a horizontal panel grouping to place the
two buttons side-by-side. The easiest way to add this grouping is to edit the source
code. Select the new button and click the Source tab at the bottom of the form.
Scroll until you see the highlighted button text.

Figure 6.35 shows the tag and end-tag lines that need to be added to cre-
ate the grouping. Immediately before the Submit button tag, enter the
<af:panelGroupLayout layout=”horizontal” id=”pgl4”> tag. On the line following
the New Sale button, add the closing tag.

This new button creates a blank
Sale entry. Ultimately, you will need
to add a sequence to the database so
that a new SaleID is created auto-
matically. That process is explained
in Chapter 7. More importantly, you
cannot use the same process to add
new rows to the SaleItem table—
so there is no easy way to add new

Action
Open the Sale.jspx page in design mode.
Refresh the Data Controls.
Expand the SaleCustomerView2 node.
Delete the CustomerID text control.
Drag Customerid (not Customerid1) and

drop it between two text controls.
Choose List of Values/ADF LOV Choice

List.
Repeat the steps for PaymentMethod.

Action
Clean up the subform.
Set Table width to 500.
Delete SaleID column (in subform).
Reduce all column widths to 70.
Delete the SKU1 column (at end).
Go back to SaleItemInventoryView and set

formats for SalePrice and LineTotal.

Figure 6.35

<af:panelGroupLayout layout=”horizontal” id=”pgl4”>
	 <af:commandButton text=”Submit” id=”cb4”
		 actionListener=”#{bindings.Commit.execute}”/>
	 <af:commandButton actionListener=”#{bindings.CreateInsert.execute}”
		 text=”New Sale” disabled=”#{!bindings.CreateInsert.enabled}”
		 id=”cb6”/>
</af:panelGroupLayout>

131Chapter 6: Forms and Reports

items to be sold. You could add a link
that opens a new form just to add a
new row to the SaleItem table. An-
other option is to add a text control
and button at the bottom of the form.
The user would enter a new SKU and
click the Add button to insert it into
the SaleItem table. However, this pro-
cess requires additional coding. So,
for now, the form is best used for ex-
amining and editing existing sales.

Finally, in Step #7, the form needs
to compute the total value of the items sold and display that value on the main
form. The process is straightforward, but is computed through a somewhat un-
expected process. The subtotal is actually computed in the underlying SaleCus-
tomerView—not on the form itself.

Open the SaleCustomerView object and select the Attributes tab. Click the
plus sign to add a new transient attribute. Name it: SaleTotal with a data type of
BigDecimal. Select the Expression option and carefully enter: SaleItemInvento-
ryView.sum(“LineTotal”)

The expression uses a function form “Groovy” which is an underlying language
used in ADF for expressions and calculations that need to interact with the form.
The first part (SaleItemInventoryView) is the view accessor that was created when
the link was defined between the SaleCustomer and SaleItemInventory views. If
you need to create a similar expression in the future, go back and check the name
from the Link View. The sum function is one of the basic aggregator functions,
and the column total must be enclosed in double quotes. That is the hard part. Ev-
erything else is easy. Use the Control Hints to assign the label: Sale Total and For-
mat Type Currency. Save and close
the edit window.

The last step is to place the new
control on the page. Return to the
Sale page and refresh the Data Con-
trols. Drag the new SaleTotal entry
onto the top part of the Sale form and
choose the Text/ADF Output Format-
ted w/Label option. Save everything
and run the form. You should now see
the subtotal for the items displayed in
the subform.

All Powder Basic Reports

Activity: Create Interactive Reports with Subtotals
Most managers want reports so they can evaluate the progress of the business. In-
creasingly, there is little difference between forms and reports. Originally, reports
were designed to be printed and report writers had detailed layout controls for
positioning text on the page along with page breaks, headers, and footers. With
a Web-based system, reports can be more interactive—providing managers the
ability to search for data and drill down to see details. Ultimately, business in-

Action
In Data Controls expand the

SaleCustomerView1 node.
Scroll down and expand the Operations

node.
Drag the CreateInsert function and drop

it next to the Submit button on the main
form.

Select the Button option.
Edit the Source page to add a horizontal

layout.

Action
Open the underlying SaleCustomerView.
In the Attributes tab click the plus sign.
Name: SaleTotal
Type: BigDecimal
Expression value:
SaleItemInventoryView.sum(“LineTotal”)
Control Hints: Currency
Dependencies: Saleid
Sale.jspx, drag-and-drop SaleTotal as Text/

ADF Output Formatted w/Label

132Chapter 6: Forms and Reports

telligence tools might be more useful
to managers than traditional reports.
These tools are examined in Chapter
9. Still, it is useful to understand the
basic structure of reports.

The challenge with Oracle 11g is
that there is no single technology for
creating traditional reports. The ADF
system examined in the start of this
chapter has some tools—which will
be used to show how to build inter-
active data analysis. The Application
Express (APEX) system has some
more traditional features for building
reports, but it requires a separate in-
stallation. If you truly need traditional
reports, it is probably best to use the Reports system in the 10g package. Again,
that system requires a separate installation (along with management and cost).
Another option is Microsoft’s Web-based Reporting Systems (see the Microsoft
Workbook). Because it is Web based, you could easily include links on your ADF
forms to open a browser window that calls that system. One option that some
bloggers have suggested is Jasper—a open-source, Java-based reporting system
available free from Source Forge: http://jasperforge.org/projects/jasperreports.

The goal of this Workbook is to focus on ADF, so the example in this section
uses the existing tools to build a basic Customer Sales report. The nice thing is
that you will use the same tools to build the report as you do for forms, so the pro-
cess should be straightforward by now.

Action
Create a View object

CustomerSalesReportMainView that
retrieves basic Customer data.

Create a View object
SalesTotalsReportView that computes the
total value for each Sale.

Create a Link View object to join the two
new views.

Add a subtotal column to the Sales Main
view.

Create a new JSF page that uses the
Master/Detail tools to add two tables.

Clean up the report.
Run it and save it.

Figure 6.36

133Chapter 6: Forms and Reports

The first issue in building a report is to identify the level of detail that will be
needed. You can always use queries and expressions to compute subtotals across
groups, but you need to ensure that your query retrieves the level of detail desired
by the managers. As an example, consider a basic sales report by customer. Man-
agers want to list each customer, followed by the sales placed by that customer. If
they also want to include the individual items purchased on each sale, that level
of detail is different than if they simply want to see the total value of the sale.
For now, assume they need to see only the Customer data (main group) and the
value of each Sale (detail group). Figure 6.36 shows an example of the report.
Of course, the Sale total needs to use a query to compute the sum of price times
quantity by sale.

The report has two main sections, so you need to create a new View object for
each section. You will also need to create a View Link to build the connection
between the views. Adding a subtotal for each customer is straightforward using
the technique shown in the previous section. At that point, the page can be built
using the ADF Master/Detail tools, and all you have to do is clean up the display
and layout.

Begin by creating a new View object named: CustomerSalesReportMainView.
Define it as Read-only access through SQL query. Build a query that retrieves ba-
sic Customer data, such as CustomerID, Lastname, and State:
SELECT
 CUSTOMER.CUSTOMERID CUSTOMERID,
 CUSTOMER.LASTNAME LASTNAME,
 CUSTOMER.FIRSTNAME FIRSTNAME,
 CUSTOMER.EMAIL EMAIL,
 CUSTOMER.STATE STATE,
 CUSTOMER.GENDER GENDER
FROM
 CUSTOMER
ORDER BY CUSTOMER.LASTNAME, CUSTOMER.FIRSTNAME

Accept most of the wizard’s default values, except assign the Key Attribute to
the CustomerID column, and select the default Application Module near the end
of the wizard.

Create the second view for the detail object named: SalesTotalsReportView.
Again, build it as a read-only SQL query. This query is more complex because it
needs to return the SaleDate, CustomerID, and the total of price times quantity for
each matching row in the SaleItem table:
SELECT
 SALE.SALEID SALEID,
 SALE.SALEDATE SALEDATE,
 SALE.CUSTOMERID CUSTOMERID,
 SUM(SALEITEM.QUANTITYSOLD*SALEITEM.SALEPRICE)
SaleTotal,
 COUNT(SALE.SALEID) SaleCount
FROM
 SALE INNER JOIN SALEITEM
 ON SALE.SALEID=SALEITEM.SALEID
GROUP BY SALE.SALEID, SALE.SALEDATE, SALE.CUSTOMERID
ORDER BY SALE.SALEDATE

134Chapter 6: Forms and Reports

Be sure to include the join condition. ADF accepts both the newer INNER
JOIN form and the older method with the join condition placed in the WHERE
clause. You should probably test both queries in SQL Developer to ensure they
return the correct values. Again, accept the wizard’s defaults, except set SaleID as
the Key Attribute and set the Application Module.

Figure 6.37 shows the main step in creating the new View Link object. Choose
the new CustomerSales view as the source its CustomerID to link to CustomerID
in the SalesTotals view. Remember to click the Add sign to generate the connec-
tion link. Finish the wizard by accepting the defaults, except remember to add it to
the Application Module at the end.

It is important to compute the total of the SalesTotal for each customer and
display that value in the report. Managers will probably want to sort the customer
list in terms of sales, and then drill down to see the individual sales. Remember
the trick to computing subtotals in ADF is to write the expression in the underly-
ing data View. Open the CustomerSalesReportMainView and select the Attributes
tab. Click the plus sign to add an attribute. Name it: SalesTotal with a Type of
BigDecimal. For the expression value, enter:

SalesTotalsReportView.sum(“Saletotal”)
 The first part (SalesTotalsReportView object) is determined by the name used

in the Link View object that ties the two views together. The Saletotal column
must be enclosed in quotes and it is case sensitive. If you re-examine the SalesTo-
talsReportView, you will see that the column returned is capitalized only on the
first letter. After entering the formula, click the Edit button and add CustomerID
as a dependency column, then close that edit window. Click the Control Hints tab
and enter Sale Total as the label text and set its format to Currency. Save and close
the view editor.

With the data objects successfully created and linked, you can now build the
JSF display page. Create a new page using the standard one-column layout named:

Figure 6.37

135Chapter 6: Forms and Reports

CustomerSalesReport.jspx. Add a “Customer Sales” title at the top and remember
to drag the Powder.css style sheet onto the page.

Refresh the Data Controls and expand the CustomerSalesReportMainView2
entry. Figure 6.38 shows the hierarchical relationship that you need to see—which
was created by the Link View. Now, the trick is to drag the detail view (SalesTo-
talsReportView2) object onto the form—not the parent node. Then select the Mas-
ter Detail/ADF Master Table, Detail Table option to create two tables—one for the
Customer data in the master table and one for the Sales totals in the details table.
Save and run the report. As you select different rows in the main Customer sec-
tion, the details Sales section should update. Note that many of the customers do
not yet have sales, so the details section will remain blank in several cases.

The bigger issue is that the report layout needs work. Both tables are too nar-
row and the columns need to be resized. Some of the basic fixes include setting
the main table width to 550 and the width of the detail table to 500. Reduce most
column widths to 70, although a couple can be even smaller. For example, State
could be reduced to 30. Remove the CustomerID column from the Detail table.
Also reduce the heights of the two tables to save some vertical space.

The subtitles can be changed by editing the properties for the two panelHeader
objects. These can be selected using the Structure Navigator at the bottom left
corner of JDeveloper, or even by editing the XML source directly. You can also
set the columns in the main Customer table to be sortable—simply select each one
and change its Sortable property to true. However, note that the sorting is some-
what slow when the report runs.

As you work with redesigning the report re-run it to evaluate the effects of
your changes. Report design is often an iterative process as you experiment to see
exactly what data will fit on a standard page. You will have to make some assump-
tions about the screen size and browsers used by the managers, but eventually,
your report should resemble Figure 6.36.

Ultimately, the report could probably use search filters. For example, to search
for customers or select a range of sale dates. Some of these features can be added
to this report design. In other cases, it might be easier to build a different page

Figure 6.38

136Chapter 6: Forms and Reports

and manually placing the two tables instead of relying on the master/detail tools.
However, you will probably have to edit the PageDef objects to ensure that the
main form correctly triggers updates to the details form. You can use the master/
detail report design for comparison and even copy XML code from the PageDef
files.

You can also add charts with the built-in chart object. However, in the end,
avoid trying to cram every possible feature into one report. It is often better to cre-
ate many simpler reports and tie them together later through hyperlinks. Remem-
ber that there is a finite amount of screen space available. Also, more complex
interactions, subtotals, crosstabs, and drill downs are easier to create using the
business intelligence tools available.

Exercises

Crystal Tigers
The Crystal Tigers club is mostly interested in tracking members and events. The
officers who will use the system do not know much about computers, but they
can enter data into forms. They are also interested in a few key reports. For in-
stance, they want to be able to get totals for the number of hours members devoted
to charity events. They also want monthly summaries of the amount of money
raised. The vice president also wants to be able to print a simple listing of the of-
ficers, their phone numbers and e-mail addresses. Sometimes, she also wants a
similar list for members who have participated in the initial steps of an event. She
wants to be able to carry the list with her when the event starts so she knows who
to contact if problems arise.
1.	 Create the basic forms needed to enter data into the database.
2.	 Build a form similar to the one defined in Chapter 2.
3.	 Create the main reports needed by the organization.

Capitol Artists
Job tracking is the most important aspect of the application needed by Capitol Art-
ists. In particular, the employees need to be able to quickly select a job and enter
the time and expenses for the task performed. This data is then used to create a
monthly billing report for the client. Consequently, you need to focus on creating
the forms to capture this data. You need to make sure they are fast and easy to use.
The managers also want weekly reports showing the hours and money generated
by each employee so they can use the data in personnel evaluations.
1.	 Create the basic forms needed to enter data into the database.
2.	 Build a form similar to the one defined in Chapter 2.
3.	 Create the main reports needed by the managers.

Offshore Speed
Special orders have always been a complex problem for the Offshore Speed man-
agers. Customers come to the shop because it is one of the few that can obtain the
custom parts they want. But the company has always had problems training em-
ployees to collect all of the order data and, keep track of getting the orders placed
and delivered in a timely manner. Some of these orders include contracts with

137Chapter 6: Forms and Reports

other local firms to perform customization and finish work on the boats. Although
these firms do excellent work, most are terrible at keeping records. Consequently,
the managers want to use the system to generate reports on individual boats for
each contract shop that can be used to remind the other owners of the details. The
company also needs reports on the inventory status of the specialized parts. They
are having trouble keeping some items in stock, and other items seem to sit on the
shelves forever; but they have no good way of keeping track at the moment.
1.	 Create the basic forms needed to enter data into the database.
2.	 Build a form similar to the one defined in Chapter 2.
3.	 Create the main reports needed by the managers.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.
1.	 Create the main forms needed for the database, including forms that will be

used by administrators.
2.	 Build the forms similar to the ones used to define the project. That is, build

database forms that match the existing user forms.
3.	 Create the main reports needed. Think about the analysis that managers will

want to do and provide reports that help them. Consider adding charts to
compare data.

138

Objectives

•	 Define customized functions.
•	 Improve forms by responding to form events.
•	 Execute customized SQL statements from code.
•	 Define transactions.
•	 Create new rows and use the generated key value.
•	 Write cursor-based programs that compare data across rows.
•	 Set up and handle optimistic locking conditions.

Chapter Outline

Database Integrity and
Transactions

7Chapter

Program Code in Oracle, 139
Case: All Powder Board and Ski Shop, 144
Lab Exercise, 144

All Powder Board and Ski Data, 144
Database Cursors, Keys, and Locks, 168

Exercises, 172
Final Project, 174

139Chapter 7: Database Integrity and Transactions

Program Code in Oracle
The Oracle DBMS is large, complex, and constantly changing. At this point, you
should be able to design and create data tables. You should also know how to
write relatively complex SQL queries to retrieve data as well as insert, update,
and delete rows of data. The last chapter introduced the basic concepts of building
forms and reports. Forms and reports are critical because they are used to create
applications that focus on the user’s tasks. As a developer, you can never expect
users to know anything about the database or SQL. Simple forms and reports can
be created using the basic concepts of SQL. However, many forms and applica-
tions require more complex interactions between the user and the database. These
interactions often have to be programmed with procedural code that evaluates
conditions, searches for items, or performs repetitive steps automatically. So, you
have to learn how to write program code in the Oracle environment.

An important aspect of the current version of Oracle is that users interact with
your application using a Web browser. This approach actually simplifies several
difficult problems. For example, the database, application, and code all reside on
a central server—making it relatively easy to deploy and upgrade files as well as
monitor security access. And the effect is minimal when client computers crash,
because users can simply start a browser on a new computer. However, program-
ming Web applications can become complicated.

Figure 7.1 shows the major components involved in writing programming code
in Oracle Web applications. First, you can create functions, procedures, and trig-
gers that are stored in the DBMS along with the tables. These functions are written
in PL/SQL which consists of SQL statements along with procedural commands
such as IF statements and loops. Code that relies heavily on the data and consists
mostly of SQL commands should be stored as these functions and procedures.
They will be available to any applications that need to access the data.

The second level of programming relies on the Java language and runs as part
of the Web server. You can create independent Application Modules, which are
code files that reside on the server and are used to perform specific tasks. Gener-
ally, business rules and processes are written in Application Modules—often tied

Figure 7.1

CREATE OR REPLACE Function ComputeSalesTax
(Amount REAL) return REAL

AS
BEGIN

RETURN Round(0.07*Amount,2);
END ComputeSalesTax;
/

Tables
Data

SaleID

Sale Date

Name

Web Page: HTML

<script type=“text/javascript”>
function validate_form()
{

if (document.form1.name.value == ″ ″)
{

alert(″ Please enter a name. ″);
return false;

}
return true;

}
</script>

Javascript mixed in HTML

public String cb6_action() {
BindingContainer bindings =

getBindings();
OperationBinding operationBinding=

bindings.getOperationBinding(
"callSalesTaxFunction");

…
return null;

}

Page backing and Modules
Java

Functions, Procedures, Triggers
PL/SQL

140Chapter 7: Database Integrity and Transactions

into PL/SQL procedures stored in the DBMS. Application Modules can be used
and shared by many applications on the same server. Every Web form or report
that you create can also have a “backing page,” which consists of a code file that
is designed to interact with the objects on the specific page. This code runs on the
server and executed either when the page is first built or when some page action
(such as a button click) calls back to the server to run a specific function.

The third level of programming exists because of HTML and Web browsers. It
consists of Javascript code that is embedded (or downloaded) on the page itself.
This code runs on the client computer within the browser. It is used to provide
more immediate responses to the user—typically without the need to return to
the server. For instance, Javascript is commonly used to perform initial valida-
tion of input data on the form. If a user forgets to enter a critical item, the Javas-
cript code can quickly spot the problem and raise a warning message. However,
you must always remember that because Javascript runs on the client computer,
it can be prevented from running, circumvented, or even altered by users. So any
tests made using Javascript must be repeated using either Java or PL/SQL on the
server. Then why use Javascript? Basically, to provide more immediate feedback
to users. Javascript can be used to provide a richer, more responsive environment
to the user, including partial page refresh and drag-and-drop capabilities. Asyn-
chronous Javascript and XML (AJAX) technologies are used to have the browser
send requests to the server behind the page, and provide more subtle page changes
without the need to rebuild the entire page.

Are you worried yet? To build applications in Oracle, ultimately you need to
learn three programming techniques: PL/SQL, Java, and Javascript. And yes, Ja-
vascript is different from Java. On top of the three languages, each environment
has its own framework, or objects available. PL/SQL uses standard SQL com-
mands, so you should be familiar with those; but you eventually need to learn to
use the built-in functions. Java on the Web server typically relies on ADF Faces—
a large set of tools for building and interacting with Web pages. Javascript on the
browser relies on the document object model (DOM) of a browser page. You need
to learn how to identify individual components on a page, such as the document,
form, input boxes, and tables.

The languages of Java and Javascript are nice, but they are not explained in
this book. Fortunately, you can find several tutorials and tons of examples on the
Web. Instead, this chapter focuses on showing you how to handle some common
tasks. You should be able to build all of the examples by copying the sample code.
Ultimately, in large companies, on big projects, the various tasks are assigned to
different people or different groups. A database expert might be in charge of de-
signing the tables and the PL/SQL. An application developer might focus on writ-
ing server code in Java, and a page designer might be hired just to make the pages
work well for the user. One of the purposes of Oracle’s JDeveloper is to divide
the application into these three sets of tasks so that different people can work on
their assigned components at the same time with minimal interference with other
workers.

The key is to understand when you need to use each type of code. PL/SQL code
is used for business processes that need to be centralized and depend heavily on
the data. Javascript on the browser is used to improve usability and appearance on
specific pages. ADF Java server code is used for two purposes: (1) To control data
interaction on individual pages (backing page), and (2) To perform generalized
business functions (application module).

141Chapter 7: Database Integrity and Transactions

PL/SQL Functions, Procedures, and Triggers
First, the only difference between procedures and functions is that functions return
a value and procedures do not. Both can have input parameters and the internal
structure and code is very similar. Generally, functions are more useful because
even if you do not need to return a result, it is nice to return an indicator to let the
calling process know if the code succeeded or failed. So, the examples here focus
on functions, but you can use a similar process to create procedures if you really
need one.

Second, the difference between functions and triggers is that functions have to
be called specifically to run. Triggers consist of code that is run when some data-
base event occurs. For example, triggers can be assigned to run when a data row
is inserted into a table, when a specific data item is updated, or when rows are de-
leted. You write the code and assign it to a specific database event. The challenge
with triggers is that they might cascade—a change in one table fires a trigger that
alters a second table which fires a new trigger, which alters a third table, and so
on. Writing triggers that affect other triggers is risky. Trying to debug cascading
triggers is a much bigger problem. Whenever you write a trigger be absolutely
certain that you need it and that you document your work so that other people will
be able to understand the purpose of the trigger.

Figure 7.2 shows the basic structure of a PL/SQL function. You define a unique
name, specify the input parameters and their data types, and identify the data type
of the value being returned by the function. Within the function (or procedure or
trigger), you can declare local variables. You can perform calculations with these
variables, but be sure to use the colon-equals notation (v_Var1 := 0;) or the code
will not compile. You can also use the SELECT INTO statement to retrieve single
values from a table and store them into a variable. If you need to retrieve multiple
rows from a table, you need to define a cursor variable that will track through the
returned dataset row-by-row. To track through rows, you need to create a loop
with either a FOR statement or a WHILE condition. Conditional (IF) statements
are also commonly used in writing code. Error trapping is handled by adding an

Figure 7.2

CREATE OR REPLACE FUNCTION function_name (
	 sName NVARCHAR2, nValue NUMBER)
 returns NUMBER
AS
 v_Var1 NUMBER := 0;
BEGIN
 SELECT Balance INTO v_Var1, …
 WHILE <condition> LOOP
 …
 END LOOP;
 IF <condition> THEN
 …
 ELSE
 …
 END IF;
 RETURN v_Var1;
EXCEPTION WHEN others THEN …
END;

Variable assignment

Common structures

Error trapping

142Chapter 7: Database Integrity and Transactions

EXCEPTION section to your code and then writing WHEN <condition> THEN
statements.

The basic format of the Oracle cursor code is:
CURSOR myCursor IS
 SELECT columnA, columnB, … FROM table …
BEGIN
 FOR oneRow IN myCursor LOOP
 Code: oneRow.columnA …
 END LOOP;
END;

You are always better off using SQL and avoiding cursor loops as much as pos-
sible. With the newer LAG and LEAD analytic functions, it is much easier to use
SQL even for relatively complex problems.
Javascript and the Browser
Javascript is used very little in this chapter—largely because it is a relatively com-
plex topic. Also, you can find a large amount of documentation for standard Javas-
cript problems on the Web. Finally, JDeveloper has some tools to automatically
write Javascript code for you to handle common tasks. Specifically, you can create
field validators on the form simply by specifying properties and formats or drag-
ging pre-written validators onto the form. Many of the common tasks for Javas-
cript are already handled within JDeveloper.

The key to writing Javascript code is to learn the document object model
(DOM). Warning: The DOM is going to change when the next version of HTML
(HTML5) is released—probably in late 2010 or early 2011. The main structures
should remain, but several new elements are being added.

The main DOM elements are the Window and Document objects. The standard
HTML elements reside within the Document—typically in a hierarchical refer-
ence. For example, Javascript code might refer to the value in a specific text box
as: document.form1.Lastname.value; Warning: Javascript is case-sensitive and it

Figure 7.3

XML
<af: controls>

HTML
Form

Controls
Javascript

XML
Bindings

Java
Control

references

Stylesheet

Sales form
To User

Powder.cssSalesPageDef.xml

Sales.java

Sales.jspx

XML
Configuration

Java
Code

DBModuleImpl.java

DBModule.xml

PL/SQL Functions

143Chapter 7: Database Integrity and Transactions

is easy to make typing mistakes. These errors are hard to debug and typically
show up only when the page runs and the page debugger generates a hard-to-
understand error message.
ADF Faces and Java Server Code
ADF Faces is an Oracle proprietary framework designed to make it easier to
build Web pages with Java. Oracle donated an earlier version of the framework to
open-source (Java Faces). It is possible to use Java Faces instead of ADF, but you
cannot mix the two, and ADF is the default and is more useful with JDeveloper.
You used ADF Faces in the last chapter to build the forms and reports.

Java on the server is commonly used in two places: (1) On a backing page to
handle data interactions with the specific page, and (2) In separate application
modules to automate business procedures. In many cases, you will need code in
both places—the application module to retrieve and process data from the data-
base and backing-page code to deliver the results to the page. Figure 7.3 shows
the primary files that are needed to integrate code into an application module and
a display page. As you will see in the lab sections below, the individual files are
created by the JDeveloper wizards. JDeveloper also has some tools to automati-
cally create code and references in the files. However, you sometimes need to edit
the files to add your own code and references.

To understand the process, begin with the Sales.jspx page that you have al-
ready seen. It is an XML file that contains the descriptions of the page layout and
the ADF controls on that page. The Powder.css page contains standard Web style
definitions—it is passed directly to the browser. The Web server reads the Sales.
jspx page and generates HTML and Javascript code that is sent to the browser.

The Sales.java file is a backing page for the Sales form. Initially, it is largely
empty—containing simple references to the controls on the jspx page. You can
define events on the browser page that will trigger code to run on the Sales.java
page. So creating code requires two steps: (1) Identifying the page event, and (2)

Figure 7.4

144Chapter 7: Database Integrity and Transactions

Writing the Java code to do what you want. For instance, you could place a but-
ton on a form so that when it is clicked (event) your code computes sales tax due
based on the total amount of the sale and stores the result in the sales tax control
on the form.

The system quickly becomes more complex when you want to write code to ac-
cess the database or perform other centralized functions. In this case, you need to
create a new Application Module—which creates several files. The two most im-
portant files are DBModule.xml and DBModuleImpl.java (assuming the module
is named DBModule). The java file contains the actual code—including calls to
PL/SQL functions to interact with the database. The DBModule.xml file contains
definitions that enable your code to be accessed from other pages (and modules).
To access the module functions from a page, you also need to add definitions in
the SalesPageDef.xml file. JDeveloper has tools to help you create these defini-
tions in the DBModule.xml and SalesPageDef.xml files, but it helps if you know
how the files interact and how to edit them.

Keep Figure 7.3 as a reference—it will help you remember which files are
needed when you write code. Why does Oracle use so many different files? The
goal is to separate projects into three major levels: (1) Database, (2) Business
components, and (3) Page display. Page display is actually split further into data
and layout. These separations make it easier to modify one segment without af-
fecting the others. For example, a graphics designer can redesign the pages with-
out affecting the data content. Keep in mind that other configuration files (XML)
are also used to define pages and controls. If you need to delete pages and start
over, you often have to manually edit these additional files: AppModule.xml for
views and DataBindings.cpx for pages. However, when you manually edit any
of the XML files, you should first make a backup copy in case you accidentally
delete critical references.

Case: All Powder Board and Ski Shop
With this background, you are now ready to improve the Sales form. Figure 7.4
shows the basic objective: (1) A button to compute sales tax, (2) A button (at the
bottom) to add a new Sale, (3) The ability to add a new item (SKU) purchased,
and (4) A simple search that lets the user jump to a specific SaleID. Notice that the
form does not contain a button to delete either Sales or SaleItems. These options
are straightforward to add, but they carry dangers. Letting anyone delete any sale
or any item can lead to accidents or deliberate destruction of data. A more com-
plex form could include delete options that appear only for certain users, along
with security controls on the underlying data. These elements can be added later.

Lab Exercise

All Powder Board and Ski Data
To be able to add a new Sale, the system needs to generate SaleID values au-
tomatically. You cannot expect users to create unique ID values, so Oracle has
a system for creating them. Like everything else in Oracle, it is not completely
automatic, so you have to write some PL/SQL code. For the projects in this chap-
ter, you might be able to continue using the base forms you created in Chapter 6.
However, it might be easier to start over with a new project. In addition to starting
with clean project files, it will be good practice to improve your speed at building
base forms.

145Chapter 7: Database Integrity and Transactions

Activity: Generate and Use Keys
Many tables require generated keys—
to ensure that unique ID values are
created automatically. Oracle uses se-
quences to generate unique key values.
Sequences are objects that standalone
to generate sequential values. They
have some nice properties that make
them highly efficient for multiple users
and heavy loads. However, the act of
generating a new number does not automatically store it in the table. You need to
add a trigger to the desired table, which provides a means of automating the num-
ber generation when you need it the most—inserting a new row. Figure 7.5 shows
the PL/SQL code to generate a sequence of numbers that will be used for the Sale
table. Notice that the command contains no overt indication that it is for the Sale
table. Only the name that you provide gives a clue. The point is that sequences
are technically independent from a table. Your code, either through a trigger or
through other INSERT code is what ties a sequence to a table. Notice that several
options are available for generating sequences of numbers. This example starts at
10000 to avoid collisions with the existing data. You might have to DROP any ex-
isting sequence that was defined by the database design system, since it will start
at 1, which is too low. You could also use an ALTER SEQUENCE command to
set the MINVALUE if you prefer not to drop the existing sequence.

One of the easiest ways to use a sequence is to automatically generate a new
value whenever a row is inserted into the table. Figure 7.6 shows the trigger that
will generate sequenced key values for the Sale table. Each time a row is added
to the Sale table, this trigger is fired and it generates a unique key value by select-
ing it off the sequence list. The trigger must be fired before the row is inserted,
because you cannot insert a row without a primary key. There are some potential
drawbacks to this approach. In particular, what happens if someone wants to insert
a new row without using the generated key? This situation arises when you need
to import existing data that already has
key values that should not be changed.
If this situation is relatively rare, or at
least controllable, you can always dis-
able the trigger (ALTER TRIGGER
GenKeyForSale DISABLE), load the
data, and then reenable the trigger. If
there is a regular need to insert rows

Figure 7.5

--DROP SEQUENCE sq_Sale;
CREATE SEQUENCE sq_Sale
INCREMENT BY 1
START WITH 10000
NOMAXVALUE
NOCYCLE
CACHE 10;

Action
Create the new sequence definition for

the Sale table.
Create a trigger for the Sale table that

generates a new sequence value and
uses it for the SaleID.

Test the process by inserting a row into
the Sale table without using a SaleID.

Action
Create the new sequence definition for

the Sale table.
Create a trigger for the Sale table that

generates a new sequence value and
uses it for the SaleID.

Test the process by inserting a row into
the Sale table without using a SaleID.

146Chapter 7: Database Integrity and Transactions

with a known SaleID, the trigger code can be modified to add a conditional
statement:
IF :NEW.SaleID Is Null OR :New.SaleID < 0 THEN
	 SELECT …
END IF

You should test all sequences and
triggers using SQL. Figure 7.7 shows
the statements needed to test this par-
ticular trigger. The first line inserts a
row into the Sale table. Notice that it
does not specify a value for the SaleID.
If you did specify a value, the com-
mand would be accepted, but the
SaleID value would be discarded. The
second line retrieves the value that was
generated by the sequence. You will
use this value (probably 10000) in the
third statement to retrieve the Sale val-
ues to ensure the row was created correctly. Note that you can use the sq_Sale.
CURRVAL function to obtain the number that was most recently generated. This
function will be useful on the Sales form because it will be used to refresh the dis-
play page to move to the new Sale.

At this point the sequence has been defined and assigned to the table. Ulti-
mately, you need to create sequences and triggers for all of the tables that require
generated keys: Sale, Rental, Customer, Manufacturer, and Employee. You should
copy your SQL statements for the sequences and triggers and store them in your
lab notebook. You can rerun these scripts if you ever need to rebuild the database.

Figure 7.7

INSERT INTO Sale (CustomerID, EmployeeID) VALUES (582, 5);
SELECT sq_Sale.CURRVAL FROM dual;
SELECT SaleID, CustomerID FROM Sale WHERE SaleID=10000;

CURRVAL
 10000

SELECT SaleID, CustomerID FROM Sale WHERE SaleID=10000;

 SALEID CUSTOMERID
 10000 582

CREATE OR REPLACE TRIGGER GenKeyForSale
	 BEFORE INSERT ON Sale
	 FOR EACH ROW
BEGIN
	 SELECT sq_Sale.NEXTVAL INTO :NEW.SaleID FROM dual;
END;
/

Figure 7.6

Action
Define sequences and INSERT

triggers for tables: Sale, Customer,
Manufacturer, Employee, and Rental.

Create a new application: AllPowder
with package prefix: AP.

Define the database connection.
Create entities for all tables, do not create

view objects.
Assign the default Application Module.
Select the Business Components

diagram.

147Chapter 7: Database Integrity and Transactions

So far all of the work has been done
within the database. Now you need
to rebuild the JDeveloper project. It
is actually easiest to start over from
scratch. Create a new project—named
AllPowder with a package prefix of AP.
Define the database connection. Add
all of the tables as new entity objects.
Right-click the Model node and choose
New, then Business Tier/ADF Business
Components: Business Components
from Tables. Select all of the tables but
not stored views. For now, do not cre-
ate any view objects (either updatable
or read only). Assign the default Appli-
cation Module and select the Business Components Diagram.

Before creating forms, you need to tell JDeveloper that some of the tables use
sequences. Figure 7.8 shows the basic process for the Customer entity. Open the
entity and switch to the Attributes tab. Double-click the CustomerID attribute to
edit it. Change the Type to DBSequence and be sure to set the Updates to Never
on the right-hand side. If you look at the Sequences tab near the bottom, you can
see this form has the ability to define sequences as well. This tab option is only
used if you choose the option to have JDeveloper create the underlying tables on
the database. You need to repeat the process of setting the DBSequence type for
all five of the tables that use sequences.

Now you can use the standard process to build the Customer form. You can
review the detailed steps in the previous chapter. Basically, create a View Ob-
ject in the Model project that uses all of the attributes from the Customer object.
You should also re-create the Gender LOV with the static list of choices (Female,
Male, and Unidentified). Set the UI Hints and then add the GenderLOVView as an
accessor in the CustomerView and assign the Gender column to the LOV.

Figure 7.8

Action
Edit the Customer table object.
Click the Attributes tab.
Edit the CustomerID.
Change its type to: DBSequence.
Set Update to Never.
Re-create the CustomerView.
Re-create the Gender LOV and assign it

to the CustomerView.
Re-create the Edit Customer form.
Drag the Commit operation and drop it

onto the Submit button.
Add a CreateInsert button to the form.

148Chapter 7: Database Integrity and Transactions

Finally, you can create a new JSF Page in the ViewController project. Drag
the new CustomerView onto the page as a Form/ADF Form. Use an OutputText
object to hold the title and add or create the style sheet Powder.css. Fix the Submit
button by dragging the Commit operation from the data control and dropping it
onto the Submit button. Add a CreateInsert button to the form so you can use it to
add new customers.

Figure 7.9 shows the Customer form after clicking the New Customer (insert)
button. Notice that the Web server creates a temporary CustomerID that is nega-
tive. Remember that the server holds a temporary set of data in the entity objects.
When this data is submitted (committed) to the database, the SQL trigger will
automatically create a new CustomerID value from the sequence.

Eventually, you should add a search form to the top of the page and bind the
main retrieval query to the search conditions. Not only will it make it easier for
users to find specific customers, but the retrieval query is more efficient—pulling
only a few selected rows from the database at one time. JDeveloper has two query
tools that you can use, but a few more coding items have to be covered first.
Activity: Create Sales Tax Function
Figure 7.10 shows the Sale form devel-
oped in the last chapter. Notice that it
has a box to enter the sales tax. If you
look at the underlying Sale table, you
will see that it contains a column to
hold the sales tax amount for each sale.
You could argue that the sales tax does not have to be stored, since it can always
be computed from the other sales data. But what happens if the tax rate changes?
Or, what if the round-off computation is modified? Then the company’s sales tax
records will no longer exactly match the data filed with the state and local govern-
ments. It is safer to store the actual tax amount collected to ensure consistency.
However, now you need a method to compute the sales tax on each sale; you
certainly cannot expect clerks to compute the amount, or even look it up correctly

Figure 7.9

Action
Use SQL to create the ComputeSalesTax

function within a new Taxes package.
Test the function with an SQL statement.

149Chapter 7: Database Integrity and Transactions

Figure 7.10
in a table. Instead, you need to write a function that will compute the sales tax
correctly and transfer it to the form and the database. Sales taxes can be highly
complex. Some items might be taxable, while others are not. Since each state and
local district is different (and there are several thousand tax districts in the United
States alone), this presentation is simplified and assumes a single tax rate that is
applied to all sales and to rental items.

The first question you must answer when creating custom code is to determine
where it belongs: (1) In the database as PL/SQL, (2) In an application module as
Java, or (3) On the Sale page as Javascript. Putting computations on individual
pages is usually a bad idea—it makes them hard to find and change later, and they
can be used only on that page. Options (1) and (2) are better and roughly simi-
lar; however, option (1) writing the code as a database function is probably the
best answer in this case. Eventually, the tax computation will need more complex
features that will rely on information in the data tables, such as year, geographic

Sales Tax

Figure 7.11

CREATE OR REPLACE PACKAGE Taxes AS
 Function ComputeSalesTax(Amount REAL) return REAL;
END Taxes;
/
CREATE PACKAGE BODY Taxes AS
 FUNCTION ComputeSalesTax(Amount REAL) return REAL IS
 taxRate REAL := 0.07;
 BEGIN
 RETURN (Round(taxRate*Amount,2));
 END ComputeSalesTax;
END Taxes;
/

150Chapter 7: Database Integrity and Transactions

region, and type of product. Placing the code in a database package will make it
available to any form, query, or report within the application.

In this case, you will create a package named Taxes that will eventually hold
other tax-related procedures. When the auditor asks to see all of the tax-related
calculations, you can quickly find them in this one package. Figure 7.11 shows
the PL/SQL code used to create the package header and the package body. If you
run the two commands together, make certain they are separated by a slash (/) or it
will not accept them. Right now, the package body contains only the simple func-
tion to compute sales taxes.

The tax calculation function is deliberately simple to highlight the process in-
stead of the accounting rules. Be sure to use a variable for the tax rate, since it
makes the code easier to understand, which reduces errors when someone tries to
modify it later. Also, make sure you use the Round function to truncate the tax due
at two decimal places. Run the commands to create the package and the function.
You can now use this function in queries and forms just as you would use any oth-
er function. You can test the function in SQL using the special system table called
dual. This tiny table contains one column and one row of data, making it useful
for testing functions and calculations because it returns only a single value. Figure
7.12 shows the command and the correct result. Since the function is stored within
a package, you include the name of the package when you call the function Taxes.
ComputeSalesTax.
Activity: Create an Application Module
Writing the sales tax function in the database makes it accessible to operations
within the database. You could use that function in a query that computes the total
amount for each sale and then computes the sales tax on that total. This total could
then be passed to the page form as simply another attribute. The drawback to this
approach is that it re-computes the sales tax every time the page is opened—po-
tentially changing the value of the tax if the tax rate changes. In most cases, you
do not want to alter tax computations that were made in prior years. Ultimately,
you want the Sales page to decide when to compute the tax—possibly whenever

Figure 7.12

SELECT Taxes.ComputeSalesTax(500) FROM dual;
TAXES.COMPUTESALESTAX(500)
			 35

Figure 7.13

151Chapter 7: Database Integrity and Transactions

new items are added or by relying on a
clerk to click a Tax button.

Enabling a display page to call a
function in the database requires add-
ing an intermediate step: Create an Ap-
plication Module that knows how to
connect to the database. You create an
application module by right-clicking
the Model section in the navigator and
choosing the New Application Module
option. Figure 7.13 shows the two im-
portant steps: (1) Name: DBModule,
and (2) Extends AP.model.AppMod-
ule. The name could be almost anything and you can create different modules to

Figure 7.14: From Oracle Fusion Documentation

// Helper method from Oracle Fusion Documentation Chapter 37.5
 // Some constants
 protected static int NUMBER = Types.NUMERIC;
 protected static int DATE = Types.DATE;
 protected static int VARCHAR2 = Types.VARCHAR;

 protected Object callStoredFunction(int sqlReturnType, String stmt,
 Object[] bindVars) {
 CallableStatement st = null;
 try {
 // 1. Create a JDBC CallabledStatement
 st = getDBTransaction().createCallableStatement(
 “begin ? := “+stmt+”;end;”,0);
 // 2. Register the first bind variable for the return value
 st.registerOutParameter(1, sqlReturnType);
 if (bindVars != null) {
 // 3. Loop over values for the bind variables passed in, if any
 for (int z = 0; z < bindVars.length; z++) {
 // 4. Set the value of user-supplied bind vars in the stmt
 st.setObject(z + 2, bindVars[z]);
 }
 }
 // 5. Set the value of user-supplied bind vars in the stmt
 st.executeUpdate();
 // 6. Return the value of the first bind variable
 return st.getObject(1);
 }
 catch (SQLException e) {
 throw new JboException(e);
 }
 finally {
 if (st != null) {
 try {
 // 7. Close the statement
 st.close();
 }
 catch (SQLException e) {}
 }
 }
 }

Action
Create a new Application Module that

extends the existing AppModule.
Check box to Generate Application

Class.
Open DBModuleImpl.java and add

helper code from Oracle.
Add function: callSalesTaxFunction
Open DBModule.xml, Overview tab,

Java tab, Client Interface.
Move new function to Selected side.

152Chapter 7: Database Integrity and Transactions

handle different sets of tasks. Eventually the module will hold several functions
or procedures, so related processes should be grouped into a single module with
name that reflects their purpose. The second step is critical and not set by default.
Notice that the value depends on the specific names chosen within your project.
Use the Browse button to select the Application Module that already exists in your
project. When the wizard finishes you should have a new DBModule section in
the Model project. It should contain four new files: DBModule.xml, DBModu-
leClient.java, DBModule.java, and DBModuleImpl.java. You need to work with
only the first and last of these files.

The main module code belongs in the “implementation” file, so open DBMod-
uleImpl.java to edit it. The first thing you need is a special helper code from the
Oracle documentation that makes it relatively painless to call database functions.
The code can be found in chapter 37.5 of the Fusion Developer’s Guide for Oracle
Application Development Framework, document B31974-05, which is available
online. Figure 7.14 shows the callStoredFunction code and you should be able to
copy-and-paste the entire set of code into the DBModuleImpl.java file. Place the
code immediately above the bottom closing brace “}”. This generic function can
be called with the name and parameters of the sales tax function. It reformats the
parameters, calls the function in the database, and returns the result to your calling
function.

The next step is to write a Java function in the same DBModuleImpl.java file
that uses the helper function to call the sales tax computation. Figure 7.15 shows
the code—it basically consists of a single long line that calls the helper function.
This new function creates an interface that enables Java code on any page to call
this function which passes the parameter (value or sales total) to the function in
the database, computes the sales tax and returns the value as a string. The call to
the helper function includes the type of data being returned, the name of the func-
tion with question marks used for parameters, and an object array that contains the
values to pass to the function. An output type of String was chosen because the
result is ultimately displayed on a page in a text box.

Both sets of java code will require the editor to import various library defini-
tions. The editor should load them automatically, but it might prompt you to use
Alt-Enter to select the appropriate library. Ultimately, the libraries needed are:

import java.sql.CallableStatement;
import java.sql.SQLException;
import java.sql.Types;
import oracle.jbo.JboException;
import oracle.jbo.server.ApplicationModuleImpl;

You can save and close the java file, but another critical step is required before
the function can be seen by your page. You need to tell the DBModule to publish
its functions so they are available to other code modules. First, notice that the

public String callSalesTaxFunction(Number value) {
 String result=(String)callStoredFunction(
 VARCHAR2, “ Taxes.ComputeSalesTax(?)”,
 new Object[]{value});
 return result;
 }

Figure 7.15

153Chapter 7: Database Integrity and Transactions

salesTax function was declared with the “public” notation. Second, as shown in
Figure 7.16, open the DBModule.xml file. Select the Overview tab on the bottom
and then the Java tab at the top left of the page. Click the edit button (pencil) for
the Client Interface section. Move the new sales tax function to the Selected side.
Save and close the XML file. Your function should now be visible to other mod-
ules—eventually you might have to refresh the Data Controls to see the options.
Activity: Create a New Sales Page to Compute Sales Tax
You are now ready to create the new
Sales page. Technically, it is possible to
modify the page you created in the last
chapter, but you need to add a backing
page to it to handle Java code and that
would probably have to be done manu-
ally. Starting from scratch, JDeveloper
has an option to add all of the compo-
nents for you. The basic process is to
create (1) the Sale + Customer View,
(2) the CustomerLOV and Payment-
MethodLOV views to use for lookups,
(3) the SaleItem + Inventory view, (4)
the View Link between the main form
and the subform data, (5) define the
new variables LineTotal and SaleTotal,
and (6) create the JSPX page by drag-
ging on the main form and subform
data.

Begin by creating the SaleCus-
tomerView that pulls all of the attributes from the Sale entity and a few customer
attributes such as Lastname, Firstname, Email, and Phone. Because the Sale and
Customer objects are already in JDeveloper, it should automatically know to build
the relationship association between the two tables.

Figure 7.16

Action
Create Sale + Customer View.
Create CustomerLOVView as a Combo

Box/LOV.
Assign it to the SaleCustomerView.
Create PaymentMethodLOVView
Assign it to the SaleCustomerView.
Create SaleItem + Inventory View.
Add LineTotal=Saleprice*Quantitysold

attribute.
Create new View Link

SaleToSaleItemViewLink to join
the SaleCustomerView to the
SaleItemInventoryView.

In SaleCustomerView, create
SaleTotal=SaleItemInventoryView.
sum(“LineTotal”)

Set formats for money items to Number:
#,000.00 not to Currency.

154Chapter 7: Database Integrity and Transactions

Create a view using a read-only query to build the list of values for Customer
so users can look up customers by name or phone. Use the UI Hints to assign it to
a Combo Box List of Values. Create a similar view for PaymentMethod but use
the default list box as the UI. Remember to open the SaleCustomerView and add
both LOV views as accessors. Then assign the CustomerLOV to the CustomerID
attribute in the Sale table and the PaymentMethodLOV to the PaymentMethod
attribute.

Create a new View for the subform that uses all attributes from the SaleItem
table and the ModelID and ItemSize as read-only attributes from the Inventory
table. Add a calculated attribute: LineTotal = Saleprice*Quantitysold.

Create a View Link between the master query SaleCustomerView and the de-
tails query SaleItemInventoryView that joins them on the matching SaleID entries.
With that link created, re-open the SaleCustomerView and create a new attribute
that sums the LineTotal: SaleTotal=SaleItemInventoryView.sum(“LineTotal”). If
you assign formats to the monetary attributes, it is better to choose the Number
format (#,##0.00) instead of the Currency format. To compute the sales tax, the
code needs to retrieve the SaleTotal value and it is more difficult to parse if it
includes a currency ($) sign. It is even more complicated if the currency might
change in an international environment.

It seems like a lot of steps to define objects before you even get to look at the
page. As you learned in the last chapter, it is critical to first define the data views
for the master and detail sections along with the Link View that connects them.
But, now it is relatively easy to create the basic page.

Creating the sales page requires on one critical new step, so be careful when
you first start the wizard. Right-click the Web Content section of the View Con-
troller and choose the New option. Under Web Tier, choose JSF, and JSF Page
in the list of items. Figure 7.17 shows the main setup page. Enter Sales.jspx as
the name of the page and stick with the default One Column Header layout. The
big change is to expand the Page Implementation section and choose the option
to “Automatically Expose UI Components in a New Managed Bean.” This is the
option that generates the Sales.java page and automatically builds the links to the
jspx page.

Figure 7.17

155Chapter 7: Database Integrity and Transactions

Once the page has been created,
you can work with the jspx page just
as before. Add a title using an Output-
Text control, entering a label (Sales)
and assigning it a style (PageHeader).
To ensure consistent styles across pag-
es, drag or create the Powder.css style
sheet onto the page. Edit this file and
add a definition for PageTitle that sets
the font size and color of the title.

Now you can drag the data elements
on to the main page. Remember to re-
fresh the Data Controls and find the
SaleCustomerView2 object that serves
as the parent for the SaleItemInvento-
ryView2. Drag the SaleCustomerView2
onto the page and select the Form/ADF Form option. Be sure to check the boxes
to include navigation and submit buttons. Drag the SaleItemInventoryView2 onto
the bottom of the page and select the Table/ADF Table control. Choose the Select
and Sort options but not the Query one.

Clean up the form and subform—removing unneeded columns, resizing, and
reformatting to make the items fit on a reasonable page. From the Data Controls,
drag the Operation Commit and drop it on the Submit button. You can keep the
Submit name. Do not add any other buttons yet. Run the form and ensure that it
works—particularly the totals.

<f:view>
<af:document ... >
<af:resource type=”css” source=”Powder.css” />
<af:form ... >
 <af:panelStretchLayout ... >
 <f:facet name=”top”> ... title ... </f:facet>
 <f:facet name=”center”>
 <af:panelFormLayout ... >
 ... inputText controls for main form ...
 <af:facet name=”footer”>
 <af:panelGroupLayout layout=”vertical” ...>
 <af:panelGroupLayout layout=”horizontal” ...>
 ... command buttons ...
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </af:facet>
 <af:table ...>
 ... subform columns
 </af:table>
 </af:panelFormLayout>
 </facet>
 </af:panelStretchLayout>
</af:form>
</af:document>
</f:view>

Figure 7.18

Action
Create a new Sale.jspx page.
Expand the Page Implementation section.
Check: Automatically Expose UI

Components in a New Managed Bean.
For the Main form, drag

SaleCustomerView as Form/ADF
Form.

For the subform, drag
SaleItemInventoryVIew as Table/ADF
Table.

Clean up the form and subform.
Drag the Commit operation onto the

Submit button.
Do not add any buttons yet.

156Chapter 7: Database Integrity and Transactions

You should spend a few minutes
and look through the Source (XML)
for the jspx page. The wizard template
relies on several <af:panel… controls
to handle formatting. You will want
to manually edit some of the format-
ting so it helps if you understand the
basic concepts. Figure 7.18 summa-
rizes the overall structure of the lay-
out controls. Your initial page might
be slightly different—particularly in
terms of placement of the subform
table. Here, the table has been moved
inside the main panelStretchLayout
which improves the overall flow layout
of the page. More importantly, notice
the use of the <af:panelGroupLayout
layout=”horizontal”…> control. Without this control, all items added to the page
are displayed in a vertically stacked list. The panelGroupLayout is used when you
want to put multiple items side-by-side. You will need to add a couple of these to
improve the display of some new buttons that will be added.

The main goal now is to add a button that can be used to compute the Sales tax
using the function in the database. The basic steps are straightforward except you
must remember to define the interface to the function in the SalePageDef.xml file.

Open the SalePageDef.xml file and switch to the Overview tab. In the main
Bindings window click the plus sign to add a new binding definition. Choose the
methodAction option in the pop-up window. Select the DBModuleDataControl in
the top window of the Create Action Binding form, but do not expand it. In the
Operation selection box, choose the callSalesTaxFunction that you created earlier.
Click the OK button to add the methodAction entry to this PageDef file. You must
perform this step for every page that uses a function stored in an application mod-
ule. Figure 7.19 shows the methodAction entry that was created in case you need
to edit it later.

In the ADF Faces list on the top right, find a command button and drag it onto
the form near the Sales tax control. You will move it later so do not worry about
exact placement. Double-click the new button and accept the defaults to create the
code structure in the Java backing page. Figure 7.20 shows the code that you will

Action
Drag a button onto the page from the

ADF control list.
Double-click the button to generate the

code entry in the java file.
Add code to handle the event that calls

the Sales Tax Function.
Open the file SalesPageDef.xml and

select the Overview tab.
Click the Add (plus) button in

the Bindings window and select
methodAction.

Select the DBModule in the top window
Choose callSalesTaxFunction in the

Operation selection list.
Run the form and test the tax button.

Figure 7.19

<methodAction id=”callSalesTaxFunction” RequiresUpdateModel=”true”
	 Action=”invokeMethod” MethodName=”callSalesTaxFunction“
	 IsViewObjectMethod=”false“
	 DataControl=”DBModuleDataControl”
	 InstanceName=”DBModuleDataControl.dataProvider”
ReturnName=”DBModuleDataControl.methodResults.
callSalesTaxFunction_DBModuleDataControl_dataProvider_callSalesTaxFunction_
result”>
 <NamedData NDName=”value” NDValue=”0“
	 NDType=”java.lang.Number”/>
</methodAction>

157Chapter 7: Database Integrity and Transactions

need. You should use copy-and-paste to
transfer this code into your editor. Note
that you will already have the first line
and closing brace, although the name of
your button might be different. You will
also have to edit the code in two places.
The code needs to know the names of
two input boxes on your form: It13 is
the ID of the text box that holds the
SaleTotal value and It3 is the ID of the
text box that displays the sales tax. Go
back to your jspx page, select each of
these two controls and note the ID val-
ues. If necessary, edit the code and en-
ter the correct values of the controls on
your form.

It would be nice to put the Tax but-
ton next to the text box for the sales tax. Edit the Source for the jspx code and
place a tag above the inputText tag for the sales tax:
<af:panelGroupLayout layout=”horizontal” id=”pgl6”>
Place the closing tag after the closing tag for the inputText:
</af:panelGroupLayout>
Return to the Design view and drag the Tax button and drop it next to the Sales

tax text box. If necessary, you can hand-edit the Source code to place everything
correctly. Finally, save everything and test run the Sale.jspx page to test it. Click
the new Tax button and watch for errors. You can check the calculation to ensure

public String cb8_action() {
 BindingContainer bindings =
 BindingContext.getCurrent().getCurrentBindingsEntry(); OperationBinding
operationBinding=
 bindings.getOperationBinding(“callSalesTaxFunction”);
 // set parameter
 Map paramsMap = operationBinding.getParamsMap();
 RichInputText salesTotalTextBox = getIt13();
 DecimalFormatSymbols sym = new DecimalFormatSymbols();
 sym.setDecimalSeparator(‘.’);
 sym.setGroupingSeparator(‘,’);
 DecimalFormat form = new DecimalFormat(“”);
 Number v;
 try {
 v = form.parse(salesTotalTextBox.getValue().toString());
 } catch (Exception e) {
 return null; // no value
 }
 paramsMap.put(“value”, v);
 Object result = operationBinding.execute();
// System.out.println(“### Result Sales.java= “ + result);
 RichInputText salesTaxTextBox = getIt3();
 salesTaxTextBox.setValue(result.toString());
 return null;
}

Action
Drag a button onto the page from the

ADF control list.
Double-click the button to generate the

code entry in the java file.
Add code to handle the event that calls

the Sales Tax Function.
Open the file SalesPageDef.xml and

select the Overview tab.
Click the Add (plus) button in

the Bindings window and select
methodAction.

Select the DBModule in the top window
Choose callSalesTaxFunction in the

Operation selection list.
Run the form and test the tax button.

Figure 7.20

158Chapter 7: Database Integrity and Transactions

that the tax is seven percent of the total value—but the existing tax values are
likely to be correct. You could edit the existing tax value and then click the Tax
button to see if it is recomputed correctly.
Activity: Add Buttons for New Sale, New SaleItem, and Search
Now that you know how to write code
and connect it to the page, you need
to add a few additional features to the
Sale form to make it useful. Most im-
portantly, you need the ability to add a
new Sale and to enter new items being
purchased. The two processes are simi-
lar. Along the way you can add a search
option to jump to Sales based on the
SaleID.

Begin by writing the PL/SQL func-
tions to insert a new sale—this function
needs to return the SaleID that was cre-
ated so it can be used on the page. Fig-
ure 7.21 shows the PL/SQL code for creating two functions: (1) To insert a new
Sale using the current date and return the generated SaleID; and (2) To insert a
new SaleItem given the SaleID and the SKU of the item being sold. The SaleItem
code uses a query to look up the List Price for the item and set it as the default

Action
Create PL/SQL for inserting a new Sale.
Create PL/SQL for inserting a new

SaleItem.
Add Java functions in DBModuleImpl.

java to call the PL/SQL code.
Add the Client Interface.
Add a button to the main page for New

Sale.
Write the code for the New Sale button.
Add the methodAction for insertNewSale

in the SalePageDef.xml file.

CREATE OR REPLACE FUNCTION InsertNewSale return NUMBER
AS
BEGIN
	 INSERT INTO Sale(SaleDate)
	 VALUES (SysDate);
	 Commit;
	 RETURN sq_Sale.CURRVAL;
END InsertNewSale;
/
CREATE OR REPLACE FUNCTION InsertNewSaleItem(
	 inSaleID NUMBER, inSKU NVARCHAR2)
 return NUMBER
AS
 v_ListPrice NUMBER(10,4);
BEGIN
 SELECT ItemModel.ListPrice INTO v_ListPrice
 FROM INVENTORY
 INNER JOIN ITEMMODEL
 ON INVENTORY.MODELID=ITEMMODEL.MODELID
 WHERE INVENTORY.SKU=inSKU;
 INSERT INTO SaleItem(SaleID, SKU, QuantitySold, SalePrice)
 VALUES (inSaleID, inSKU, 1, v_ListPrice);
 Commit;
 return 1;
EXCEPTION WHEN others THEN
 RETURN 0;
END;
/

Figure 7.21

159Chapter 7: Database Integrity and Transactions

Sale Price in the sale. Notice that both
functions require a Commit; statement
to force the database updates—other-
wise the new values will not be visible
to other processes—including the Sale
page.

 Next edit the DBModuleImpl.java
file to add two functions to call the PL/
SQL commands. The new functions are
similar to the tax function—basically
build the function that calls the helper
utility and returns the results. Figure
7.22 shows the two functions. The first one (InsertNewSale) is easier because it
does not have any input parameters. Both functions return a numeric result. The
return for NewSale is critical because it contains the SaleID generated. The value
for NewSaleItem simply indicates whether the insert was successful (1) or not (0).
For example, someone might accidentally try to insert the SKU of a product that
has already been entered for that sale.

 Remember that when you add functions to the DBModuleImpl code, you also
need to add them to the Client Interface. Open the DBModule.xml file and use the
Overview and Java tabs to edit the Client Interface and add the two new functions.
You also need to add them to the SalesPageDef.xml file as method actions. You
probably have to refresh the Data Control before you can see the new functions in
the PageDef file.

With the functions defined and published, you can add a new button to the Sale
form. Open Sale.jspx in Design view and drag an ADF command button onto the
form, placing it next to the existing Submit button. Double-click the button to
open the Java editor. Figure 7.23 shows the code for the button. It consists of three
parts: (1) Call the PL/SQL function through the DBModule, (2) Requery the main
SaleCustomerView to retrieve the new entry, and (3) Jump to the newly inserted
row based on the SaleID value returned as a result to the first function.

Add a text box (New SKU) and a button at the bottom of the subform so users
can add a new sale item. Place them in a panelGroupLayout layout=”horizontal”
layout panel.

Figure 7.22

Action
Add a text box and a button for a New

Sale Item.
Write the code for the New Sale Item.
Add methodAction for

insertNewSaleItem in SalePageDef.xml
file.

Add a text box and button for SaleID
search.

Write the code for the SaleIDSearch.

public Number InsertNewSale() {
	 Number result = (Number)callStoredFunction(
		 NUMBER, “ InsertNewSale()”,
		 null);
	 return result;
}

public Number InsertNewSaleItem(Number SaleID, String SKU) {
	 Number result=(Number)callStoredFunction(
	 NUMBER, “ InsertNewSaleItem(?,?)”,
	 new Object[]{SaleID, SKU});
	 return result;
}

160Chapter 7: Database Integrity and Transactions

Figure 7.24 shows the code you need to add to the Sale.java page. You will
need to modify the two get statements so they match the ID values of the SaleID
and new SKU text boxes on your form.

Figure 7.23

Figure 7.24

public String cb9_action() {
 // Add event code here... New Sale
 BindingContainer bindings
	 = BindingContext.getCurrent().getCurrentBindingsEntry();
 OperationBinding operationBinding
	 = bindings.getOperationBinding(“InsertNewSale”);
 Object result = operationBinding.execute();
 //System.out.println(“### Result new SalesID= “ + result);
 // Requery the page to load the newly inserted row
 DCBindingContainer dcBindings = (DCBindingContainer)
	 BindingContext.getCurrent().getCurrentBindingsEntry();
 DCIteratorBinding iterBind =
 (DCIteratorBinding)dcBindings.get(“SaleCustomerView2Iterator”);
 iterBind.executeQuery();
 //Find the new row
 iterBind.setCurrentRowWithKeyValue(result.toString());
 return null;
}

 public String cb6_action() {
 // Add event code here...Insert new SaleItem
 BindingContainer bindings
	 = BindingContext.getCurrent().getCurrentBindingsEntry();
 OperationBinding operationBinding
	 = bindings.getOperationBinding(“InsertNewSaleItem”);

 // set parameters
 RichInputText SIDTextBox = getIt1();
 RichInputText SKUTextBox = getIt20();
 Map paramsMap = operationBinding.getParamsMap();
 NumberFormat fmt = NumberFormat.getInstance();
 Number v;
 try {
 v = fmt.parse(SIDTextBox.getValue().toString());
 } catch (Exception e) {
 return null; // no value
 }
 paramsMap.put(“SaleID”, v);
 paramsMap.put(“SKU”, SKUTextBox.getValue().toString());
 Object result = operationBinding.execute();

 // Requery the subform to load the newly inserted row
 DCBindingContainer dcBindings = (DCBindingContainer)
	 BindingContext.getCurrent().getCurrentBindingsEntry();
 DCIteratorBinding iterBind =
	 (DCIteratorBinding)dcBindings.get(“SaleItemInventoryView2Iterator”);
 iterBind.executeQuery();
 return null;
 }

161Chapter 7: Database Integrity and Transactions

Notice that when a new Sale is added, the code jumps to the new item based on
the generated SaleID value. You can use this same process to add a search text box
on the form. Add a new horizontal panelGroupLayout to the top of the form and
insert an ADF Text Box and ADF command button. Figure 7.25 shows the code
for the simple search function. Notice the similarity to the insert New Sale code.
Remember to change the get function to match the ID of the text box you created.
The ADF Faces system supports more complex searches on multiple columns.
The Oracle documentation contains examples and other samples can be found on
the Web.

You are close, but need to complete one more step—twice. Recall that the Sa-
lePageDef.xml file needs to have an entry to enable the Sale.java page to call the
DBModuleImpl code. You need two entries—one for the insertNewSale and one
for the insertNewSaleItem function. If you understand the exact syntax, you could
add the elements by hand. Otherwise, it is easier to drag two new temporary but-
tons onto the Sale.jspx page—using each of the two functions in the Data Controls
list. Manually edit the XML source and remove the two buttons, and edit the Sale.
java page to remove the references to the two new buttons. The new elements in
the SalePageDef.xml file should remain and be available for your real functions.

Save everything and run the page to test it. Try searching for sales by ID val-
ues. Try adding a new sale and adding new Sale Items. Ultimately, the page could
use more features, such as delete options for both the sale and the sale items. The
process is straightforward and you might even be able to use the built-in delete
operation functions. However, allowing anyone to delete data can be dangerous.
Now that you know how to create database functions and call them from the page,
you can handle relatively complex tasks.
Activity: Update Inventory with Data Triggers
Maintaining quantity on hand statistics for inventory is one of the trickiest ele-
ments in programming business forms. Reexamine the Inventory table and notice
that it contains the column QuantityOnHand. This value represents the current
number in stock for a specific item. The value of the column is that clerks can
quickly check the column to see if certain sizes are available. Also, managers can
get a quick look at the list of items that might be under- or overstocked. Tech-
nically, this value would not have to be stored in the database—if you have a

Figure 7.25

 public String cb5_action() {
 // call find row on iterator
 RichInputText findSIDTextBox = getIt17();
 try {
 DCBindingContainer dcBindings = (DCBindingContainer)
	 BindingContext.getCurrent().getCurrentBindingsEntry();
 DCIteratorBinding iterBind
	 = (DCIteratorBinding)dcBindings.get(“SaleCustomerView2Iterator”);
 String sSID = findSIDTextBox.getValue().toString();
 iterBind.setCurrentRowWithKeyValue(sSID);
 } catch (Exception e) {
 findSIDTextBox.setValue(“Invalid”);
 }
 return null;
 }

162Chapter 7: Database Integrity and Transactions

complete list of all purchases, sales,
and adjustments, you could use a query
to compute the total number currently
in stock. However, with thousands of
items and sales, this query might take
too long to run. Consequently, you
need a mechanism to update this value
on the fly. Whenever an item is sold,
the corresponding quantity should be
subtracted from the quantity on hand.
In Oracle, this subtraction can be han-
dled with triggers on the data tables. It
is best to put this code in the database because then the code is executed no matter
how the tables are updated. These data triggers are simply code that is executed
whenever a specified event occurs. The three events are DELETE, INSERT, and
UPDATE. You can attach a trigger before or after the change is written to the data-
base. In the inventory situation, you want to attach your code to the AFTER event
so that you do not change the quantity on hand (QOH) until after the change has
truly been made.

The first step is to examine the tables and understand how they are related. You
need to change the Inventory table whenever changes occur to the SaleItem table.
The SaleItem table specifies the SKU value that matches exactly one row in the
inventory table. Also, when testing, remember that you need a matching entry in
the Sale table to provide the SaleID key. You should look at some sample data
in the three tables so you can enter consistent values to test. In this case, a new
SaleID of 3000 to CustomerID 582 by EmployeeID 5 should work. SKU values of
500000 and 500010 both have an initial QOH of 10 units.

The next step is to think about the events that can occur and determine what
they mean and how they will affect the QOH. It is easier to understand the process
by considering one event at a time. Think about the first step in a sale. A row is en-
tered into the Sale table: INSERT INTO Sale (SaleID, CustomerID, EmployeeID)
VALUES (3000, 582, 5). You could enter the data for SaleDate and so on, but
since this data is temporary, these three items are sufficient. Now, the next logical
step that occurs in a sale is that the SKU for the item being purchased is entered
into the SaleItem table: INSERT INTO SaleItem (SaleID, SKU, QuantitySold, Sa-
lePrice) VALUES (3000, 500000, 1, 100). At this point, the QuantitySold of one
unit means that the system should subtract that value from the quantity on hand.
To accomplish this task automatically, you need to establish an AFTER INSERT
trigger on the SaleItem table. Figure 7.26 shows the SQL used to create this trig-

Action
Insert a new row into the Sale table with

a SaleID of 3000, CustomerID of 582,
and EmployeeID of 5.

Create the AFTER INSERT trigger for
the SaleItem table.

Insert a new row into the SaleItem table
(3000, 500000, 1, 100).

Check the value of QuantityOnHand in
the Inventory table for SKU=500000
and verify it decreased from 10 to 9.

Figure 7.26

CREATE OR REPLACE TRIGGER NewSaleQOH
	 AFTER INSERT ON SaleItem
	 FOR EACH ROW
BEGIN
	 UPDATE INVENTORY
	 SET QuantityOnHand = QuantityOnHand - :NEW.QuantitySold
	 WHERE SKU = :NEW.SKU;
END;
/

163Chapter 7: Database Integrity and Transactions

ger. First the trigger is given a unique
name. The second line specifies that
the trigger should be fired after a row
is inserted into the SaleItem table. The
third line indicates that the code body
should be executed once for each row
being inserted. The begin/end block
holds the main code, which consists of
a single SQL UPDATE statement. The
UPDATE statement should look famil-
iar, with a small twist. The twist is that
it refers to the values being inserted into the SaleItem table using the :NEW syn-
tax to reference the data that was just added to that table. The statement simply
tells the database to subtract the new quantity sold from the existing quantity on
hand for the SKU value just entered into the SaleItem table. When you have suc-
cessfully created the trigger, issue the INSERT statement to add the row to the
SaleItem table. Now verify that the QOH was modified with the query: SELECT
SKU, QuantityOnHand FROM SaleItem WHERE SKU=500000.

You could continue to issue INSERT commands for different quantities, and
the quantity on hand will decrease. Everything seems to be fine. However, what
happens if there is a data entry error? Try deleting the row you inserted: DELETE
FROM SaleItem WHERE SaleID=3000 And SKU=500000. Check the QOH in
the Inventory table and you will see that it does not change. Why is that bad? Be-
cause the delete statement implies that the item was not actually sold, and since
you have already subtracted the quantity, you need to add that value back to the
QOH. In other words, you need another database trigger—one that fires when a
row is deleted in the SaleItem table. Figure 7.27 shows the statement to create the
trigger. This code is similar to the after insert version. The only differences are
that the quantity sold is added back to the quantity on hand, and the syntax uses
the :OLD reference. The :OLD reference simply means to use the values that ex-
isted before the row was deleted. In this case, there are no :NEW values because
the Delete command does not create anything. To test the new trigger, insert the
SaleItem row again and check the quantity on hand. If you are using the SQL Plus
Worksheet, you can use the Back and Forward query buttons to bring up the SE-
LECT statement that you used before. Now, delete the SaleItem row and check the
quantity on hand again. It should be restored to its value before the latest INSERT
command.

The two triggers you created are powerful tools. Once they have been defined,
you never need to think about them. Anytime a process inserts or deletes a row,

Action
Delete the SaleItem row (SaleID=3000

And SKU=500000).
Check the quantity on hand.
Add the AFTER DELETE trigger.
Insert the SaleItem row again.
Check the quantity on hand.
Delete the SaleItem row.
Check the quantity on hand.

Figure 7.27

CREATE OR REPLACE TRIGGER DelSaleQOH
	 AFTER DELETE ON SaleItem
	 FOR EACH ROW
BEGIN
	 UPDATE INVENTORY
	 SET QuantityOnHand = QuantityOnHand + :OLD.QuantitySold
	 WHERE SKU = :OLD.SKU;
END;
/

164Chapter 7: Database Integrity and Transactions

they are activated and inventory is
changed immediately. You could test
these actions using the Sale form, and
you should see the same results. How-
ever, there is still something missing.
One of the trickiest aspects to event
programming is that you need to think
hard about possible actions by users,
and the consequences. In the inventory situation, what happens if a clerk goes
back and changes a value? Originally, an SKU and quantity were entered, then
the clerk sees an error or a customer changes his mind. Try it first with a change
in quantity. Check the current value for QOH then insert the row to sell one unit.
Check the QOH again to see that it was reduced by one, say from nine to eight
units. Now, consider what if the customer actually purchased two units. Issue the
statement to change the QuantitySold to two units: UPDATE SaleItem SET Quan-
titySold=2 WHERE SaleID=3000 And SKU=500000. Check the QOH and you
will see that it still shows only one item was removed from inventory (eight units
remaining instead of seven).

You need to add an UPDATE trigger to the SaleItem table to handle this prob-
lem. Figure 7.28 shows the code to create the trigger. Again, it uses a familiar
UPDATE statement. However, check the use of the :OLD and :NEW references
carefully. They contain the heart of the logic. The :OLD values are the data that
was stored in the SaleItem table before the update was initiated. The :NEW val-
ues are the data in the row after it has been changed. In this case, the Quantity-
Sold changed from one (old) to two (new). For the specified product SKU, this
query adds the old value back and subtracts out the new value instead. Remember
that a change in quantity means that the original subtraction was incorrect, so it
is restored while the new value is subtracted. Again, you should test this trigger
by checking the current QOH value, issuing an Update statement to the SaleItem
table to change the quantity sold value, and then examine the new QOH to see that
it holds the proper total.

If you look closely at the Update trigger code and think about the problem for a
minute, you will see that one additional situation has to be handled. What happens
if a clerk changes the SKU? In this case, you need to add the QuantitySold back to
the original SKU item, then subtract the QuantitySold from the new SKU item. Of
course, the QuantitySold might have been changed at the same time, so you need
to be careful about which one you add and subtract.

CREATE or REPLACE TRIGGER ChangeSaleQOH
	 AFTER UPDATE ON SaleItem
	 FOR EACH ROW
BEGIN
	 UPDATE Inventory
	 SET QuantityOnHand = QuantityOnHand + :OLD.QuantitySold - :NEW.
QuantitySold
	 WHERE SKU = :OLD.SKU;
END;
/

Figure 7.28

Action
Add the ON UPDATE trigger.
Check the quantity on hand.
Issue an update to change the

QuantitySold in the SaleItem table.
Check the quantity on hand.

165Chapter 7: Database Integrity and Transactions

Figure 7.29 shows a revised version of the AFTER UPDATE trigger. At this
point, it is useful to point out the value of the CREATE or REPLACE clause in
Oracle. Since the trigger already exists, you cannot simply issue another CREATE
statement with the same trigger name. Normally, you would have to DROP the
original trigger and then create the new one. The CREATE or REPLACE state-
ment essentially combines these two operations to save you a step. The IF state-
ment divides the trigger so that it handles the two cases separately. Actually, you
could have created two completely separate triggers using a WHEN condition,
but it is easier to see the code with all of the cases in one trigger. The IF statement
is true when the SKU was not changed. This Update statement is the same as the
simple update trigger. The ELSE condition handles the case where the SKU was
changed (and the QuantitySold might or might not have been altered). The first
UPDATE statement restores the old quantity subtracted from the original SKU
value (old quantity, old SKU). The second UPDATE statement subtracts the new
QuantitySold from the new SKU inventory level.

These three triggers should now handle all of the sales situations that affect the
inventory quantity on hand. You should reset the QOH value and test all of the
changes. In particular, in the SaleItem row change both the QuantitySold and the
SKU.

Of course, if you have created purchase order and purchase item tables, you
would have to add similar triggers to the purchase item table. The only difference
is that a purchase adds quantity to the QOH instead of subtracting it, so you have
to reverse the signs in the code.
Activity: Define Transactions
Transactions consist of multiple changes that must succeed or fail together. One
of Oracle’s strengths is its support to ensure that transactions are completed cor-
rectly. In particular, all changes are written to journal logs. If the system crashes in
the middle of a transaction, the system can still recover the transactions that were
interrupted or roll them back to the point where the changes began. The other

CREATE or REPLACE TRIGGER ChangeSaleQOH
	 AFTER UPDATE ON SaleItem
	 FOR EACH ROW
BEGIN
	 IF (:OLD.SKU = :NEW.SKU) THEN
		 UPDATE Inventory
		 SET QuantityOnHand = QuantityOnHand +
			 :OLD.QuantitySold - :NEW.QuantitySold
		 WHERE SKU = :OLD.SKU;
	 ELSE
		 UPDATE Inventory
		 SET QuantityOnHand = QuantityOnHand + :OLD.QuantitySold
		 WHERE SKU = :OLD.SKU;
		 UPDATE Inventory
		 SET QuantityOnHand = QuantityOnHand - :NEW.QuantitySold
		 WHERE SKU = :NEW.SKU;
	 END IF;
END;
/

Figure 7.29

166Chapter 7: Database Integrity and Transactions

important aspect of transactions is the
ability to prevent or handle collisions
of two processes altering the same data
at the same time.

Katy, the manager at All Powder,
has noticed that many customers do
not like being charged for damages
caused to the rental equipment. Some
of them believe that the equipment is
simply wearing out and failing. She also notices that there can be several com-
plaints about a specific rental—particularly when it involves multiple items. Da-
vid, the rental manager, agrees, but still wants to be able to track the cumulative
charges. He has suggested that any reduction in the damage charge be recorded as
a discount to that customer. That way, he can track the total damages, as well as
which customers might receive the most discounts. Katy also likes the discount
idea, because she wants to implement a discount program for employees who rent
equipment. Since multiple discounts can be applied to a single rental, a new table
is needed. Figure 7.30 shows the table keyed by both RentID and DiscountDate.

You can build a form to handle data entry for the employee discounts, but do
not do that now. Eventually, you will need a Rental form that is similar to the
Sale form; then you could add a button onto that form to open a discount form.
However, all of the main work will be done in a function or procedure stored in
the database, so this section concentrates on creating that function. The process
for handling customer discounts for disagreements over damage discounts has an
interesting complication. You need to create a transaction that decreases the repair
charges and adds a row to the RentalDiscount table for the same amount. Both ac-
tions must be completed together.

The function needs to be written in PL/SQL. Later, you can add a connector in
the DBModuleImpl.java code and then create a form that calls it. To reverse repair
charges, the function needs to know the RentID and the SKU from the RentItem
table. The function also needs to know the amount to be subtracted—it might be
less than the total damage charge. Also, a reason for the discount should be passed
to the function so it can be stored in the new RentalDiscount table. So, the input
values will be: RentID, SKU, DiscountAmount, and Reason.

Action
Create the full ON UPDATE trigger.
Check the quantity on hand.
Change the QuantitySold and SKU (to

500010) in the SaleItem row.
Check the quantity on hand for SKU

500000 and 500010.

Figure 7.30

167Chapter 7: Database Integrity and Transactions

Particularly for Web applications, it
is important that transaction code be
written in the PL/SQL database. You
cannot handle transaction processing
on the Web page because of potential
transmission delays and the fact that
a user might walk away from an open
session—potentially holding a transaction open for long periods of time.

In terms of processing, the function needs to subtract the discount amount from
the existing repair charge, with a simple test to ensure the charge does not go be-
low zero. Then the function needs to store the amount and reason in the new Rent-
alDiscount table. The two changes should be written as a transaction so they both
succeed or fail together. Because Oracle automatically has transaction-processing
enable, this step is easy. However, you need to trap errors and return a negative
value if something goes wrong. Later, the form submitting the request could no-
tify the user or take additional steps if the transaction fails.

Figure 7.31 shows the code for the new function. Examine the RentItem table
to see that the SKU is handled as characters instead of numbers. The first step
of the function is to retrieve the existing value for RepairCharges and then sub-
tracting the proposed discount. If the discount is larger than the repair charge, the
repair charge is reduced to zero. However, the discount is unchanged—a deci-
sion that should be verified with management. The UPDATE statement writes the

Action
Create the RentalDiscount table.
Create the GiveCustomerRentalDiscount

function.
Test the function.

CREATE OR REPLACE FUNCTION GiveCustomerRentalDiscount
 (oldRentID NUMBER, oldSKU NVARCHAR2,
 DiscountAmount NUMBER, Reason NVARCHAR2)
 RETURN NUMBER
AS
 OldRepairCharge NUMBER(10,4);
BEGIN
 SELECT RepairCharges INTO OldRepairCharge FROM RentItem
 WHERE RentItem.RentID=oldRentID AND RentItem.SKU=oldSKU;
 OldRepairCharge := OldRepairCharge-DiscountAmount;
 IF (OldRepairCharge < 0) THEN
 OldRepairCharge := 0;
 END IF;

 UPDATE RentItem SET RepairCharges=OldRepairCharge
 WHERE RentItem.RentID=oldRentID AND RentItem.SKU=oldSKU;

 INSERT INTO RentalDiscount(RentID, DiscountDate,
	 DiscountAmount, Reason)
 VALUES (oldRentID, SYSDATE, DiscountAmount, Reason);
 Commit;

 Return OldRepairCharge;
EXCEPTION
 WHEN others THEN
 ROLLBACK;
 Return -1;
END GiveCustomerRentalDiscount;
/

Figure 7.31

168Chapter 7: Database Integrity and Transactions

new repair charge back to the RentItem table. The INSERT statement stores the
discount and reason for the change in the new RentalDiscount table. The Commit
statement indicates the end of the transaction. If the transaction completes suc-
cessfully, the discounted repair charge is returned to the caller. If anything goes
wrong while processing the transaction, the EXCEPTION section is triggered, the
changes are rolled back, and a negative value is returned to the caller to indicate a
problem occurred.

If a more drastic event arises during the transaction processing, such as a com-
puter crash, then the Oracle DBMS handles the transaction completion when it
restarts. It will automatically read the log files and try to complete the transaction.
The only work you, the developer, had to do was use the commit command to
indicate the end of the transaction—plus handle simpler errors with the EXCEP-
TION section.

To test the function, start by finding a RentItem entry with a repair charge great-
er than zero. For example: RentID=4020, SKU=’200285’, RepairCharges=18.
Then use a new query window in SQL Developer to call the function. Figure 7.32
shows the script for calling the function and printing the returned value. It uses
two special Oracle script commands: set ServerOutput on and dbms_output.put_
line(…). Run this script with the script processor in SQL Developer using the
script button or F5. The result should be 3, which is the repair charge of 18 minus
the 15 discount.

Database Cursors, Keys, and Locks

Activity: Read Rows of Data
Direct SQL commands are useful for
DML issues where you need to change
or delete rows of data. Sometimes you
need program code to examine several
rows of data. You need to use database
cursors to handle these tasks. Consider
the business question of sales by week.
Katy wants to know if weekly sales in-
crease more in the first part of the year
or in the last part. In particular, she
wants to know the average percent increase in weekly sales for the first weeks (1
to 15) compared to the last 15 weeks (38 to 52). Remember that SQL can perform
calculations on data within the same row. SQL can also compute subtotals for
groups of data. However, it is difficult to get SQL to compare data by subtracting
values across two rows. Instead, it is easier to write a query that does the main
computations, and then use cursor code to do the comparisons. Actually, the re-

set ServerOutput on
declare result NUMBER;
begin
result := GiveCustomerRentalDiscount (
	 4020, ‘200285’, 15, ‘Testing’);
dbms_output.put_line(‘result: ‘ || result);
end;

Figure 7.32

Action
Create a new query.
Tables: Sale and SaleItem.
Create column TO_CHAR(SaleDate,

‘ww’) AS SaleWeek.
Create column QuantitySold*SalePrice

AS Value.
Sum the Value column by week.

169Chapter 7: Database Integrity and Transactions

cent Lead and Lag functions in Oracle make this problem easy to handle in SQL;
but build the cursor for practice.

Begin by creating a query that computes total sales by week. Figure 7.33 shows
the query. Note that you need to format the SaleDate using the TO_CHAR func-
tion with a format of ‘ww’ to get the number of the week. Make sure you compute
the Sum of the price times quantity and that the total is computed for each week
with the GROUP BY clause. A couple of entries have missing dates, so they can
be removed from this query. Use the CREATE VIEW line at the top to save the
query, but make sure you test the query before you add this line.

The next step is to compute the percentage change between the rows. The code
for this step will be created within a function in a new SalesAnalysis package.
Eventually, you can add a button and result box to a form to display the computa-
tion, but for now, it is faster to build the command and test it in PL/SQL.

The next step is to write the code that computes the average percent increase.
For each pair of rows, the code needs to subtract the two values and divide by
the value in the prior row to yield a percentage change. This percentage needs

CREATE OR REPLACE VIEW WeeklySales AS
SELECT TO_CHAR(SaleDate, ‘ww’) AS SalesWeek,
	 Sum(SalePrice*QuantitySold) AS Value
FROM Sale INNER JOIN SaleItem ON Sale.SaleID=SaleItem.SaleID
WHERE SaleDate Is Not Null
GROUP BY TO_CHAR(SaleDate, ‘ww’);

Figure 7.33

Figure 7.34

CREATE OR REPLACE PACKAGE SalesAnalysis AS
	 FUNCTION AvgPercentWeeklyChange return REAL;
END SalesAnalysis;
/
CREATE or REPLACE PACKAGE BODY SalesAnalysis AS
	 FUNCTION AvgPercentWeeklyChange return REAL IS
		 CURSOR c1 IS
			 SELECT SalesWeek, Value FROM WeeklySales;
		 Avg1 WeeklySales.Value%TYPE;
		 N Integer;
		 PriorValue WeeklySales.Value%TYPE;
	 BEGIN
		 Avg1 := 0;
		 N := 0;
		 PriorValue := -1;
		 FOR recSales in c1 LOOP
			 IF PriorValue > 0 THEN
				 Avg1 := Avg1 + (recSales.Value - PriorValue)/PriorValue;
 				 N := N + 1;
			 END IF;
			 PriorValue := recSales.Value;
		 END LOOP;
		 RETURN (Avg1/N);
	 END AvgPercentWeeklyChange;
END SalesAnalysis;
/

Define the SELECT
statement for the cursor
to trace through

Create a variable tohold the value
from the previous row with the same
data type as the column in the table

Skip the first week because
there is no prior value

Compute the percent change
and keep a running total

Save the current row value
and move to the next row

170Chapter 7: Database Integrity and Transactions

to be summed and eventually divided
by the number of calculations to obtain
the average percent increase. Figure
7.34 shows the main code. The SQL
statement is opened as a cursor, which
retrieves one row of data at a time us-
ing the loop. The Avg1 variable keeps
the running total of the percentage in-
crease, while N counts the number of operations. The role of the PriorValue vari-
able is the most important. At the end of the loop, it is assigned the value obtained
from the current row. When the next row is retrieved, the program can now com-
pare the current (new) value to the old (PriorValue) value. This trick is useful for
many cursor-based programs, so you should study the code until you understand
it. Use a basic SELECT statement to test the function in the package. Note that
you need to use the FROM dual clause so you can see the result. Depending on
the actual values in your database, the result should be about 16 percent. Note that
this routine does not quite provide the detail Katy wants, but it is straightforward
to restrict the query using starting and ending week parameters and call the func-
tion twice.
Activity: Test Optimistic Locks
The issue of locking records to prevent
concurrency errors on Web pages, in-
cluding Oralce JDeveloper, is almost
always handled using optimistic locks.
Pessimistic locks could result in prob-
lems with Web sites because a lock is
set on a piece of data when it is opened
by the user. The block prevents other
people from using the data until the
original user completes a transaction.
But with Web sites, the connection
might be lost, the user might close a
browser, or even walk away for lunch.
Leaving locks open for extended times
causes performance problems with the Web site. Instead, most tools use optimistic
locks—assume that collisions are rare. The big benefit is that it requires minimal
overhead by the DBMS server. The application code simply caches the original
values read from the table and then tests for changes when data needs to be writ-
ten back to the database. If the underlying values changed from when they were
read, a collision has occurred and it is up to the current form to handle the error.

Begin by testing the current process embedded in JDeveloper. Open the Edit-
Customer.jspx page in JDeveloper and run it. You should see data for one of the

Action
Create the SalesAnalysis package with

the AvgPercentWeeklyChange function.
Use SQL to call the function:

SELECT SalesAnalysis.
AvgPercentWeeklyChange FROM dual.

Action
Open the EditCustomer.jspx page in

JDeveloper and run it.
Open a Database query window

connected to AllPowder.
Run a SELECT query to verify the data

matches the ID on the form.
Run an UPDATE query to change the

ZIP Code.
Change the ZIP Code value on the Edit

Customer form and click the Submit or
Commit button.

Note the error message.

SELECT CustomerID, LastName, ZIP
FROM Customer
WHERE CustomerID=1110;

Figure 7.35

171Chapter 7: Database Integrity and Transactions

customers—probably Amos Abbot with ID=1110. It is fine if you see a different
customer, but note the ID number.

The essence of locking is to have two changes occur at the same time—or at
least interfere with each other by making changes before the first one is finished.
So open a database query window connected to AllPowder. You can click the Data-
base tab in JDeveloper and click the AllPowder connection—or you could open a
separate SQL Developer window. Run the small SQL query shown in Figure 7.35
to ensure the data matches that shown in the form. Be sure to use the CustomerID
value that matches the form. Now alter the query so that it becomes an UPDATE
query to change the ZIP Code. Figure 7.36 has an example. Be sure to include the
Commit statement so the change is written to the database immediately.

Return to the EditCustomer form. The ZIP Code must still be the same because
the page has not even returned to the server. Change the ZIP Code value to some-
thing different, such as 32555. Click the Submit button (which is really a Commit
command) to write the change to the server and the database. Figure 7.37 shows
the error message generated by the form—indicating that a collision has occurred.
Remember, as a developer, you did nothing special when you created this form.
JDeveloper automatically included the code, and the pop-up error message to test
for changes by other users.

The message is clear, but the user might be confused about how to handle the
problem. Fortunately, the user can simply click the resubmit button again and
override the message. In any collision, there is a question of which change should
succeed—the last one, or the one that was made by someone else. Although the
default error message does not display the value recorded by the other user, the
current user could cancel the changes and refresh the database to find the value.
More likely, the current user will simply overwrite the other changes, which is
usually fine for simple items such as ZIP Code, name, and address.

UPDATE Customer
SET ZIP=’32777’
WHERE CustomerID=1110;
Commit;

Figure 7.36

Figure 7.37

172Chapter 7: Database Integrity and Transactions

For more complex problems, such as account balances or inventory quantity,
you should probably override the default processing and write code to automati-
cally retrieve the updated values and then re-issue your update statements. If you
follow the rule that these types of changes should be processed in PL/SQL on the
server, you do not need to worry about the individual form code. Whenever pos-
sible, you should use PL/SQL and EXCEPTION processing to handle everything
behind the scenes on the server and never bother the user.

Exercises

Many Charms
Inventory control is a critical success factor for determining profitability at Many
Charms. Madison and Samantha need to watch the quantity on hand—particularly
for the high-cost items. The suppliers are a complicating factor. Some of them are
known for being inconsistent in delivering items ordered. As a result, Samantha
and Madison have to carefully check every shipment they receive and cross-match
it to the orders. Many times the shipment is missing items, and once in a while,
the companies send items that were not ordered. These items have to be returned,
but the supplier billing is just as bad. Madison has to continually watch the sup-
plier bills to ensure that they are only billed for items they actually ordered and
received. As a result of problems, she also wants to track the unordered items that
were sent back, so if they show up on a bill, she can provide the details of when
the item was returned.
1.	 Create a form to handle purchase orders to suppliers. Create a second form to

handle received shipments. Be sure that it can handle receipt of partial orders
and track the day that each partial order arrives. It must also handle receipt of
unordered items (which should be stored in a separate table).

2.	 Add a button to the Received Orders form so that if they receive an
interesting unordered item, it can be added to the orders and inventory and
paid for. Create it as an entirely new order and be sure to handle optimistic
locks and transactions.

3.	 Create a form that enables Madison to select a product category and metal,
and then enter a percentage price increase. Write the SQL update code so that
this increase is applied to the list price of the selected categories.

4.	 The company often ships orders to three states, each of which charge
different sales tax rates. Write a function that takes the state code and the
amount and returns the tax due.

5.	 Create a form and write a program that for a given type of charm and type of
metal, computes the average of (1) the number of days between sales of that
item, and (2) the average number of days between purchase orders for that
item.

Standup Foods
While food items and celebrities are important aspects of the business, the day-
to-day operations depend on managing the employees. In particular, Laura wants
to reward the workers who continue to do well. The evaluation and rating system
she has implemented is a major component of this plan. Now she has to set up the

173Chapter 7: Database Integrity and Transactions

system to make it easy to use so everyone can enter the necessary data. She also
needs a way to analyze the data to help managers select the best employees for the
next job, and to reward people who do well.
1.	 Create a form to enter data about an event, with an emphasis on the jobs

performed by the employees and their evaluations. Make sure the form
includes the revenue received from the event, the costs, and the dates
involved. Create a separate form to enter and display data about employee
specializations.

2.	 Create a form for Laura that lets her select a job category and then displays
the top-rated employees in that category. (Hint: Create a subform and modify
its Record Source query using code.) Create a text box so Laura can enter an
average rating as a cut-off value. Create a second text box so Laura can enter
a percentage raise increase. Add a button and write the code to give that raise
increase to all of the selected employees.

3.	 Sometimes managers need to hire part-time workers on the spot. Create a
simple form that lets managers add basic employee data without allowing
them to see or change data for other employees.

4.	 Workers often want to estimate how much money they will make after all
withholdings are deducted. Calculating withholdings is a complex process,
but create a simple version to use as an estimate. The function should have
number of exemptions, wage rate, and hours worked as inputs. It returns an
estimate of the take-home pay. Use sample paychecks or research the Internet
to estimate the tax withholding based on the number of exemptions. Create
a simple form so employees can plug in these three values and receive the
estimate.

5.	 Laura needs to provide some documentation to the bankers regarding the
firm’s growth. Create a new table with columns for month, revenue, costs,
and percent change for revenue and cost. Write a query to compute the total
revenue and costs per month and insert those values into the new table. Write
a cursor-based program to compute the percent changes and insert the values
into the appropriate columns.

EnviroSpeed
Tracking the knowledge of the workers and experts along with recording the ex-
periences obtained in the many clean-up situations is a primary element of the
company. You need to create forms that make it easy for workers to enter the data
and knowledge gained. However, for the company to stay in business, you also
need to track costs and revenue. Revenue is generally straightforward—the com-
pany bills based on the underlying costs, but payments are generally received over
time. You will need a form to record the receipt of payments by the customers.
1.	 The company is trying to standardize its fee structure. Write a function

that has inputs for the cost of the crews, the cost of expert time, the cost
of chemicals, transportation costs, equipment, and miscellaneous costs.
Compute a billing fee based on a percentage profit from each of these costs
(crews: 20 percent, experts: 30 percent, chemicals: 15 percent, transportation:
10 percent, equipment: 50 percent, miscellaneous: 15 percent). Also include a
$50,000 fixed cost for overhead.

174Chapter 7: Database Integrity and Transactions

2.	 Create a form that enables managers to quickly put together a crew in an
emergency. The form will have selection boxes for specialty and years of
experience (subtract date hired from today). Clicking a button will retrieve a
list of crew members meeting the desired conditions. Double-clicking on a
name should add that person to the crew required for this disaster.

3.	 In the middle of an incident, crew members still need to record all of the
details so they can be retrieved later. Create a form that enables them to enter
the needed information. Be sure to include a way to quickly add a list of
chemicals encountered in the incident. Mostly they should be able to select
from a known list, but they sometimes encounter new chemicals. Be sure
to control for concurrency, since several people may be entering data at the
same time.

4.	 Write a program that evaluates payments by each customer. Assuming
payments are due at the end of each month, assess an interest charge of one-
half percent of the outstanding balance. Also, assess a late fee of $200 for
each month that a payment is late. Automatically add these values to the
customer’s balance. Note, You will have to enter several payments and late or
missing payments to test the function.

5.	 Enter enough sample incident data to cover at least a year. Write a cursor-
based program to calculate and display the percent increase in revenue per
month.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.
1.	 Make the forms easier to use by automating as many tasks as possible.
2.	 Examine the case for situations where you can use SQL to update records

selected by the users. For example, consider price increases, employee raises,
and automated inventory orders.

3.	 Look for potential reports that require comparing data over time. Write the
cursor-based code to generate the necessary change data.

Objectives

•	 Build applications that connect forms and reports.
•	 Create styles and templates for a consistent look.
•	 Add toolbars and menus to forms.
•	 Add Help files to the database application.

Chapter Outline

Applications
8Chapter

Applications, 176
Case: All Powder Board and Ski Shop, 176
Lab Exercise, 177

All Powder Board and Skip Shop Application, 177
Connecting Pages with Task Flows, 185
Testing Login Credentials, 190
A Report for One Customer Using the Login Data, 194
Connect Table Row to Detail Report, 198

Exercises, 215
Final Project, 216

176Chapter 8: Applications

Applications
The main purpose of the DBMS is to store data efficiently and provide queries to
retrieve data to answer business questions. But from the perspective of businesses,
the true value of the DBMS lies in the applications that can be built on top of the
database. Chapter 6 shows you how to build the forms and reports that make up
the heart of an application. This chapter shows you the additional steps needed to
make the application integrated and easy to use.

A finished application contains all of the forms and reports needed to solve a
particular problem. It also needs finishing touches such as menus and other navi-
gation links between forms. Additionally, you usually have to create Help files to
provide assistance to users when they first learn the system.

Case: All Powder Board and Ski Shop
The primary application at All Powder Board and Ski Shop is the need to track
sales and rentals. Of course, these applications also require you to build forms
and reports for inventory items and customers as well. Eventually, you will have
forms that store data into each of the tables in the relationship diagram. As shown
in Figure 8.1, these forms and reports are integrated into a common style and
structure. Particularly for Web sites, a home page or startup form is often used
to direct users to the rest of the application. Buttons or menus are used to link to
forms and reports. You can also create custom menus to highlight the main opera-
tions available to users on a particular form. Finally, you need to build help files to
provide additional information or instructions to users.

Figure 8.1

Startup form

Help files

Custom menuIntegrated
forms and
reports

177Chapter 8: Applications

Lab Exercise

All Powder Board and Skip Shop Application
Integrating the forms and reports is the first major step in creating the application.
You need to identify the tasks performed by various user groups. With this knowl-
edge, you can build sets of forms and reports that match the tasks of each group.
While you are integrating the forms and reports, you should also make all of them
consistent. Actually, you should create a design template and style sheet for an
application before you begin creating forms and reports. The template contains
the layout and primary elements that you want on every form, such as logo, title,
and perhaps a copyright notice or other contact links. A design standard spells out
details such as the fonts, page sizes, margins, colors, and naming conventions. A
style sheet is used on the Web to provide a standard set of fonts and styles that can
be applied by name.

Web pages have used cascading style sheets (css) for several years. Oracle
ADF has the ability to create skins—which are essentially style sheets that are
embedded in the application. For example, you can define a style for a PageTitle
that is applied to an Output Text box on the top of each page. Later, designers can
simply edit the skin or style sheet and all of the pages will pick up the changes
automatically when they are displayed. You should create a style sheet for every
application; and you will probably need to hire a graphics designer to help with
the details.

A template form in Oracle is a blank page that contains standard design ele-
ments. You simply create a new blank form, add the logo, title, menu bar, and
any code that will apply to all forms. Save the form with a name that everyone
will recognize. You can create multiple templates—such as one for input forms
and one for reports. However, it is best to stick with a small number to ensure
that developers choose the correct template. A nice feature of Oracle templates is
that even after they are applied to pages, you can go back and alter the underly-
ing template and all changes will be reflected on the pages that use that template.
However, it is difficult to apply a template to an existing page. An existing page
already uses a specific layout and each template creates its own layout containers.
Technically, if you hand-edit the XML page file, you can assign the template to
that page. But you will have to manu-
ally move all of the page elements into
the new template containers. In most
cases, it is probably easier to start from
the beginning and build a new page
based on the template, then drag the de-
sired data controls onto the new page.
Activity: Create a Skin and Style Sheet
Applications need a consistent look and
feel. In particular, it is important that
fonts and colors be consistent across
pages. Each element on a page can have
its own style, and these styles should be
defined in a style sheet. Oracle ADF en-
ables you to define a style sheet and ap-

Action
Create a new Style Sheet: Powder.css.
ViewController right-click: New, Web

Tier/HTML: CSS.
Create styles for: PageTitle,

TitleBackground, MenuBackground,
MessageText, MessageBackground.

Define the new skin by creating an XML
file:

WEB-INF, right-click, New, General,
XML: XML Document Name: trinidad-
skins.xml

Edit the trinidad-config.xml file to tell it
to use the new skin <skin-family>.

Main menu: Tools/Preferences/CSS
Editor: CSS Level 3.

178Chapter 8: Applications

ply it to the entire application—by defining a skin. With this approach, you do not
need to assign the style sheet to individual pages—you assign it in one location—
the skin definition. The styles within that skin are then automatically available to
every page in the application.

Ultimately, each project or application should consult with a graphics designer
to help define colors, fonts, backgrounds, and other styles that are appealing and
useful. Just remember that design is art, so design goes through trends and fads.
Web sites need to be aware of these trends, and each company needs to deter-
mine its identity and decide how conservative or radical it wants to be in its pre-
sentations. Large companies have in-house designers to set standards and help
with individual projects. For smaller applications, you are more likely to hire a
consultant.

Not counting the overall layout of the page (something handled by templates in
the next section), the design is controlled by identifying primary elements on the
page and assigning styles to them. A style is just a named collection of attributes,
including typeface, color, background color, borders, and so on. Web pages sup-
port hundreds of style attributes, but typically, each element needs only a handful
of changes. A style sheet is a file that contains the name and attribute settings for
every style needed. The standard CSS page has a specific syntax so it must be cre-
ated carefully. Some Web browsers are finicky about the CSS and even small er-
rors can cause major page-display errors. Some design tools are better than others
at creating CSS pages. Oracle’s JDeveloper is on the lower end of acceptability.
However, the CSS page is most commonly built by graphics designers who will
use other tools. JDeveloper can be used for small files or to make minor changes.

If you use JDeveloper to create the CSS file, right-click the ViewController and
pick New. In the Web Tier, choose HTML and then CSS. Figure 8.2 shows that
you can create a style by entering a name preceded by a dot and followed by open-
ing and closing braces.

Figure 8.2

.PageTitle {
 color : #000060;
 font-family: Arial, Helvetica, sans-serif;
 font-size: 200%;
}
.TitleBackground {
 background: #D0F0F0;
}
.MenuBackground {
 background: #F0FFFF ;
}
.MessageText {
 color: red;
 font-family: Arial, Helvetica, sans-serif;
}
.MessageBackground {
 background: white;
}
.MainBackground {
 background: white;
}

179Chapter 8: Applications

JDeveloper provides prompts to help you select attributes and values; however,
you should stick to relatively basic attributes unless you understand the details of
style sheets. For a start, you should create entries for PageTitle, TitleBackground,
MenuBackground, MessageBackground, MessageText, and MessageBackground.
The page title will appear at the top of the page, so it should have larger font,
perhaps in a different color. The message text will be used at the bottom of the
page—primarily to display status or error messages. The main background and
probably the message backgrounds should start as white. The title background can
be a contrasting color at the top of the page. The power of using the style sheet is
that it is easy to change later, so it is not critical what values you choose now—as
long as you choose text colors that are visible against the backgrounds.

The next step is to define the Powder.css file as the main component of a new
skin. This process is handled by creating a new XML file following the “Trinidad”
specification within Java. First create a blank XML file. Right-click the WEB-INF
node and choose New. In the Web Tier, select HTML, then XML Document. The
file must be named: trinidad-skins.xml (all lower-case letters).

Figure 8.3 shows the required contents of the skin file. The tags are the required
part—you can choose values within the tags. “APSkin” is a reasonable name be-
cause it defines the main skin for All Powder. The data for the <extends> tag is
important—Oracle ADF includes only a few base skins and the blafplus skin has
the most detailed specifications. Also, note that when the style sheet is specified it
needs to include the css folder: css/Powder.css because JDeveloper automatically
puts style sheets in this separate folder.

After you have defined the new skin using the XML file, you need to tell the
project to use that file. This assignment is made in the existing trinidad-config.
xml file. As shown in Figure 8.4, edit that file to change the value for the <skin-
family> tag to the <family> name you created when you defined the skin: APSkin.

These are the only changes you need to define the skin. All of the values in the
Powder.css file will now be available to any page within the project. However,
Oracle experts recommend one change that should be made to the overall settings
of the project. The skin definitions are designed to work with Level 3 style sheets,

<?xml version=”1.0” encoding=”windows-1252” ?>
<skins xmlns=”http://myfaces.apache.org/trinidad/skin”>
<skin>
 <id>APSkin.desktop</id>
 <family>APSkin</family>
 <extends>blafplus-rich.desktop</extends>
 <style-sheet-name>css/Powder.css</style-sheet-name>
</skin>
</skins>

<?xml version=”1.0” encoding=”windows-1252”?>
<trinidad-config xmlns=”http://myfaces.apache.org/trinidad/config”>
 <skin-family>APSkin</skin-family>
</trinidad-config>

Figure 8.3

Figure 8.4

180Chapter 8: Applications

but JDeveloper defaults to Level 2. On the main menu, choose Tools/Preferences.
As shown in Figure 8.5, choose the CSS Editor option and change the level to
CSS Level 3. Also select the ADF Faces Extensions by checking the indicated
box. Technically, most browsers use Level 2 style sheets, so the Oracle ADF actu-
ally converts the style sheets you create back into Level 2 sheets. However, the
Level 3 designation works better within the ADF framework.

Pages should have common elements, such as a title, menu, a message area, and
a standard location for the data elements. Many applications also include a com-
pany logo and possibly text recommended by the legal department. All of these
elements should appear in consistent colors and locations on the form. When you
built forms in Chapter 6, you probably spent most of your time just getting the
data elements to work the way wanted. Now, you have to pay attention to colors
and formats. Actually, you would normally create a standard skin and template
before you build the first forms. Later, the styles can be changed by editing the
single Powder.css file.
Activity: Create a Template for Pages
A template is created as a jspx page. It
defines the overall structure of the page
and can include fixed elements that will
be displayed on every page that uses
the template. These fixed elements can
be edited only on the template page.
Typically, templates include logos and
basic company information or links
that will appear on every page. You
build a template page almost the same
as you would build a regular jspx page.
The main difference is that you must
include “facet refs” on the template.
These facets are areas that will be available to the final page. When a new page is
based on a template, the new page picks up all of the fixed elements and the facet
refs. Developers can add new items only to the defined areas indicated by the facet
refs.

Figure 8.5

Action
Create a new template.
Right-click ViewController, New, Web

Tier, JSF: JSF Page Template.
Name: MainTemplate.
Check option for Create Associated

ADFm Page Definition.
Uncheck option for Quick Start Layout.
Define five facets: TitleArea,

ButtonArea, MenuArea, MainArea, and
MessageArea.

181Chapter 8: Applications

It is relatively easy to create a design
template. Basically, you just create a
blank page and add the items that will
be displayed on every page. Figure 8.6
shows the primary elements that you
will usually include on any form. Cre-
ate a new template by right-clicking
the ViewController project and select-
ing Web Tier/JSF: JSF Page Template.
Templates are unique to each project
and rarely shared. You can create mul-
tiple templates. For instance, reports
might use a different template than input forms. For now, just create one template
and name it: MainTemplate. Check the box to: Create Associated ADFm Page
Definition—eventually it can be used to store data. If necessary, uncheck the op-
tion to use a Quick Start Layout.

The main step in creating a template is to define areas that will be used to hold
content. Generally, a page can be defined into various sections. At this point, you
simply need to assign names to these facets. Figure 8.7 shows the definitions for
five facets: TitleArea, ButtonArea, MenuArea, MainArea, and MessageArea. You
can choose any number of predefined facets and give them any name that will be
understood by developers. The four main areas here are relatively standard: Titles
at the top of the page, Menus (probably at the side), Messages at the bottom of the
page, and the Main area in the center of the page. The Button area is somewhat
experimental to hold options that are not part of the main menu. A page does not
have to use every facet, so it is acceptable to define facets that are used only on
some pages.

After the definition is entered, the wizard will create a new blank MainTem-
plate.jspx page. To begin, drag a Panel Stretch Layout control onto the page to
provide the overall structure. Drop a Panel Group Layout the top and set its Prop-
erties/Appearance: Layout to horizontal. The top of the page will hold a logo and
the title area. First you need to locate or create an image file that you can use
as a logo. Size of the image can be a problem. You need to consider the desired
height of the top line as well as the width of the logo. Ultimately, you need to
make guesses about the final size of the page. Many developers assume brows-

Action
Drag a Panel Stretch Layout control onto

the blank MainTemplate.jspx.
Place a Panel Group Layout into the top

element and set its Appearance/Layout
to horizontal.

Place an Image Control in the left of this
group and locate an icon file.

Add a new Panel Group Layout just to
the right of the image and set its layout
to vertical.

Figure 8.6

Main
content

Title

Messages

Logo

Menu

Buttons-Tabs

182Chapter 8: Applications

ers can display approximately 1024 by
768 pixels, without too much scroll-
ing. But, as mobile devices become
popular, you might have to consider
browsers with smaller dimensions. You
can create a logo using images from
Microsoft PowerPoint. Just be sure to
rescale the image to about 70 vertical
pixels and save the image as a Web file
(png, jpg, or gif). On the project server,
create a new images folder under the
public_html folder and place your logo
file in that folder. In JDeveloper, drag
an Image control onto the top-left cor-
ner of the page and select the new im-
age file. If necessary, adjust the height
of the top section to display the entire
logo.

Now you need a panel to hold the title area and the button area, so drag a new
Panel Group Layout and place it to the right of the image—within the original
horizontal group. You might need to edit the source or use the structure window
to get the correct position. Set its Appearance/Layout to vertical. This layout will
hold the TitleArea and ButtonArea facets. From the Component window, under
Common Comonents, drag a Facet Ref and place it in the new vertical panel group
layout. Again, this step might be easier using the source view. When the Facet Ref
is selected, assign it to the TitleArea facet. Repeat the process and place a Facet
Ref for the ButtonArea just below the first one.

Figure 8.7

Action
Drop a Facet ref into the new vertical

layout and assign it: TitleArea.
Drop a second Facet ref below that one

and assign it to: ButtonArea.
Drop a third Facet ref in the start area for

the MenuArea.
Drop a fourth Facet ref in the center for

the MainArea.
Drop a fifth Facet ref on the bottom for

the MessageArea.
Delete the “end” facet on the right side of

the page.
Assign styles. Main Panel Stretch

Layout: MainBackground.
Top main horizontal Panel Group

Layout: TitleBackground.

183Chapter 8: Applications

Use a similar process to assign the other three facets. Set the left side (start) to
be the MenuArea, the center to be the MainArea, and the bottom to be the Mes-
sageArea. You can delete the “end” area on the right side of the page. Remem-
ber, developers will only be able to use areas that are defined as facets within the
template. Figure 8.8 shows the end result. Also, keep in mind that the underlying
stretch panel will resize each section to fit the data and controls when the page is
run. For example, you do not need to set the width of the title area. In fact, if you
do set the width of a section within the template—that width becomes fixed for
all pages that use the template. Eventually, you will probably have to establish a
width for the menu area, but remember that it can be done later. Because menus
are covered in a later section of this chapter, the details will be handled then.

You do need to set the styles for the main and title areas. Note that styles cannot
be applied to facets—because they are simply placeholders. You could add panel
layouts to each section before adding the template facets and then assign styles
to those panels. For now, assign the MainBackground style to the overall stretch
panel. It is easiest to select the stretch panel in the structure window and then as-
sign the style in the property window. Similarly, assign the TitleBackground style
to the main horizontal panel group in the top section. Save everything and close
the template.

The new template with its associated skin styles can be used as the foundation
for all of the pages. However, you will probably have to rebuild all of the pages.
To understand the process, create a new page to edit employee data. If you are
anxious to see how the template will work, you can start with the JSPX page. Fol-
low the standard process to create a new JSPX page, with a filename of EditEm-
ployee.jspx. As shown in Figure 8.9, simply select the MainTemplate as the layout
option instead of one of the standard layout choices. Be sure to set the backing
page in case you need code to handle page events.

Figure 8.8

184Chapter 8: Applications

You can add basic elements to the
page, but do not add the data until you
create the Employee data objects and
LOVs. First, drag an Output Text box
to the TitleArea. Enter: Edit Employee
as its value and assign the PageTitle
as the style. Similarly, drag an Output
Text to the MessageArea, change its
value to blank, and set its style to Mes-
sageText. Run the page to see how it
looks. Figure 8.10 shows a sample that
uses standard LOVs for selecting the
department and the manager. Howev-
er, the Insert button will not work be-
cause of the link to the Manager LOV.
As usual, the solution is to write your
own Insert function in PL/SQL, add the
code to the DBModule, and put custom
button code on the page.

Follow the same process with every page to ensure that they have the same
layout and colors. Remember to assign the styles to the various items and avoid
setting properties directly on the page. If you need to make changes, edit the un-
derlying Powder.css style sheet or the MainTemplate.jspx page. All pages using
this template will be updated when they are displayed.

Figure 8.9

Action
Create a new EditEmployee.jspx page

using the MainTemplate.
Drag an Output Text control into the

TitleArea.
Value: Edit Employee, Style: PageTitle.
Drag an Output Text control into the

MessageArea.
Value: “”, Style: MessageText
Run the page to test it.
Edit the Powder.css TitleBackground to

add: min-width: 100%;
Create the Employee data entity and an

LOV for Manager.
Add buttons for Commit.
Write PL/SQL and Module code to add

an Insert Employee button.

185Chapter 8: Applications

Activity: Create the Home Page and Task Flows
After you have created the forms and
reports, you need to combine them into
an application. Particularly on the Web,
a startup or home page is a key element
of an application. It is a page that forms
the starting point and contains links
to the other forms and reports. Gener-
ally, it is easy to create—the challenge
lies in determining how to organize all
of the forms and reports. You have to
create a structure, beginning with the
home page that guides them through
their tasks. This process will often in-
clude links on other forms as well. You
will have to test this sequence with the users to make sure that it matches their job
workflow.

Connecting Pages with Task Flows
Oracle handles connections between pages as task flows. Every ADF application
contains the base unbounded task flow which enables you to connect pages by
defining control flows and assigning names to them. Clicking buttons or links trig-
gers specific pages by returning the appropriate name. You can even define the
task flows using a graphical editor. Oracle also supports bounded task flows—
which are encapsulated tasks that might be started from various points—essen-
tially subroutines of a task that consist of their own pages and control flows. This
chapter uses only a few basic task flows, but once you understand how to cre-

Action
Create a new JSPX page: home.jspx

based on the MainTemplate and
including the backing bean.

Add a title and place a form and simple
text on the page: Welcome to the shop!

On the main menu: Run / Choose Active
Run Configuration / Manage Run
Configurations…

For the Default Run Target, click
Browse, search for the home.jspx page
(up a level in the folder then public_
html).

Figure 8.10

186Chapter 8: Applications

ate and use task flows, you can easily create more complex patterns. Figure 8.11
shows an example of the initial home page. Eventually, it will have more complex
menus and more content, but for now you want to focus on the layout.

To create a home page, begin with a new blank page: home.jspx. You do not
need to create data views. Add the title to the page. Eventually, you will want to
include a login button on the page—which means it needs to have a form back-
ground. So, drag a form panel onto the main area of the page, then add an output
text item so you can display a simple text message (Welcome to the shop!). More
content can be added later, but you need something in place now so you can see
what the page will look like.

This new home page needs to be defined as the starting point for the applica-
tion. This process is handled through the main menu. Select Run / Choose Active
Run Configuration / Manage Run Configurations from the main menu. If neces-
sary, select the Default option and click the Edit button. On the entry line for the
Default Run Target, click the Browse button. You need to select the home.jspx file
you created, but you will probably have to search for it. Typically, you move up
one level in the displayed folder list, then open the public_html folder to find and
select the file. If you click the Run option on the main menu, it should now open
to the home.jspx file. While testing, you can still start other pages first by opening
them and choosing the run option in the right-click menu.

The next step is to begin building the task flow diagram that will form the foun-
dation for the application. An ADF application already contains a default but basi-
cally empty task flow container. In the ViewController project under the WEB-
INF folder, you should find and open the adfc-config.xml file. If necessary, click
the Diagram tab at the bottom to switch to the graphical interface.

From the main Application Navigator window, drag the home.jspx page onto
the diagram to create a new view item. You can also create view items before you
create the underlying page. Find and expand the Components section of the Com-
ponent Palette (top right side). Drag a View item and drop it onto the diagram near
the home entry. Enter the name: login. If you already had a login.jspx page, you
could drag and drop it onto this view object to establish a connection. But wait a
minute before creating the underlying page.

Figure 8.11

Logo Title

Login

More
content
later

Future
menu

187Chapter 8: Applications

Ultimately, the home and login pages
will work together. A user should start
at the home page—perhaps explor-
ing anonymous pages for a while. The
user can then click a login button on
the home page to open the login form
and enter credentials to register with
the system. After a successful login,
the user should be returned to the home
page. This situation requires two con-
trol flows: (1) from home to login, and
(2) back to home from the login page.

As shown in Figure 8.12, click the
Control Flow Case (green arrow) in
the Components palette. Then click the
home object on the diagram to set the
starting point, followed by clicking the login object to set the target. Enter the
identifier as: toLogin. Repeat the process but build a flow from the login page
to the home page and name it: toHome. The value of the identifier is completely
arbitrary, but you should choose something that indicates the purpose or direction
because you will need to use the value later. Believe it or not, you have completed
the major step in connecting the two pages. You still have to edit the two pages
and create a trigger event (such as a button click) that returns the matching identi-
fier (toLogin or toHome), but that step is straightforward.

However, there is one critical catch with the current version of JDeveloper. For
some reason (bug?) changes made to adfc-config.xml are only picked up when
JDeveloper restarts. Save all of your work and completely close JDeveloper. Then
restart JDeveloper. The adfc-config file should still be open, but open it again if it
is closed. Remember this step later. It is a pain, but it is the only way I have found
to get the task flows to work.

As shown in Figure 8.13, now you need to create the login.jspx page. Double-
click the login view icon in the task flow diagram and it will automatically start
the JSF page wizard. As usual, add a title and the Message text box. The main sec-
tion needs a form, so drag a Panel Form Layout control onto the main page. Add

Figure 8.12

Action
Open adfc-config.xml, click the Diagram

tab.
Drag the home.jspx file onto the diagram.
From component palette drag a View

onto the diagram, name it: login.
In the component palette, click the

Control Flow Case object.
In the main diagram, click the home

object followed by login object.
Name the flow: toLogin.
Repeat the process to create a connection

from login to home: toHome.
Save everything, close JDeveloper and

restart it.

188Chapter 8: Applications

input text boxes labeled Last Name and
Phone. The database does not yet con-
tain values for username and password,
so these items are not very secure.
You could use the e-mail address as
the username, but the password would
need to be encrypted, which makes the
process more complicated. It is better
to add this feature later after you learn
the basic steps. Oracle has other built-
in features for handling security and
logins but this simple form is useful
for understanding the basic steps. You
might want to add spacers to make the
page easier to read. Also, you can ad-
just the properties of the text boxes to make them required (under the Behavior
section). To reduce problems with people spying to read passwords, you can set
the Secret property to true for the phone number—so that the browser displays
only dots or asterisks when the data is entered.

The login button is not finished, but it requires some coding, so put it off for a
minute. Save everything to be safe and return to the home.jspx page design. Add
a Panel Group Layout to the Button Area of the home page and set its layout to
horizontal. Drag an Output Text item into that group, then add a Spacer and a But-
ton next to it.

The Output text item is going to display the name of the person who is logged
in. Think about this statement for a minute. To accomplish this task, the Output
control on the home.jspx page needs to pick up the value entered into a text box
on the login.jspx page. In other words, you need to transfer data from one page to
another. Oracle has several ways to transfer data within an application, but when
the display pages are created with a backing page to hold Java code, it is rela-

Figure 8.13

Action
Double-click the login icon to create a

new login.jspx page.
Add the title and Message box.
Add a Panel Form Layout to the main

section.
Add input text boxes for Last Name and

Phone.
Set Behavior/Required to true for both

and Secret for the Phone box.
Add a command button named login.
Save everything even though the login

button is not finished.

189Chapter 8: Applications

tively easy to pick up data items across
pages. Select the Output Text object on
the page and find the Value property.
Click the drop-down indicator at the
right-side of the Value property box
and select the Expression Builder. Fig-
ure 8.14 shows the edit window for the
builder. Type the word Welcome and
leave a space at the end of it. Expand
the tree for ADF Managed Beans, then
the backingBeanScope entry, followed
by the backing_login node which rep-
resents the code for the login page. The
it1 entry is the id value for the Name
input text box. You could have set a
more descriptive ID value for the box when you created it, but it is too late now.
Something to remember for the future, but most of the Oracle examples stick with
the default ID values, so get used to them. Scroll down the alphabetical list until
you find the value entry and select it. Selecting it will enter the appropriate for-
mula in the Value window:
Welcome #{backingBeanScope.backing_login.it1.value}
Close the edit window and select the login button. Change the text for the but-

ton to: login. The real key is the next step. Select the Action property. Use its drop-
down selector on the right-side of the box to see your choices. Select the toLogin
entry. This value was entered from the adfc task flow diagram. If you do not see
this entry or something similar, you probably need to close and restart JDeveloper.
With this selection, the button is now tied to the login page. Actually, you could
change what the button does simply by editing the adfc diagram and connecting
the task flow to a different page. To test the button and the task flow, save your
work and run the home.jspx page. Click the login button and the browser should

Figure 8.14

Action
Add a horizontal group layout to the

Button Area of home.jspx.
Add an Output Text box and use

Expression Builder to set its value to:
Welcome Welcome

#{backingBeanScope.backing_login.
it1.value}

Add a spacer and a login button after the
output box.

Set the login Button Action to: toLogin
using the selection choices.

Save everything, run the home.jspx page
and test the login button.

190Chapter 8: Applications

open the login form. The login form does not work yet because you need to write
some code to compare the values entered by the user with those in the database.

Testing Login Credentials
Now that you understand the concept of task flows, you can write the code needed
to test the login credentials. The overall structure is to write a PL/SQL function
that takes the incoming Lastname and Phone values and runs a query to see if they
match a person in the database. If so, the routine returns the CustomerID value
so it can be used on other pages. If not, the routine returns a negative number to
indicate no match. Later, if you add encrypted passwords, the same PL/SQL rou-
tine can be used to handle encryption to do the comparison at the database level.
As before, you need an application module to work as an intermediary between
the page code and the database. You could use the existing DBModule or even the
AppModule, but it is convenient to store the login code in a separate module so
it is easier to find (and secure) later. Using the intermediate module also provides
the ability to count the number of failed logins—so you can issue a warning mes-
sage, trigger alters, or even block attackers who try to guess passwords.

Begin by creating the PL/SQL function. Figure 8.15 shows that without the
need to worry about encryption, the function is straightforward. The function has
two input variables (sLastname and sPhone) which will come from the login page.
The basic query checks the Customer table for a row that matches that phone num-
ber and name. If a match is found, the CustomerID is transferred to the temporary
nID variable which is then returned to the caller. If errors occur or no match is
found, a value of -1 is returned to indicate an error. Note that this simple query
does not handle cases where two people might have the same last name and phone
number. You could handle this case by adding a WHERE rownum<2 condition,
which will restrict the values returned to just the first person. In the end, convert-
ing to a username/password will solve the problem if the application enforces the
condition that usernames must be unique.

The second step is to create the LoginModule to serve as the intermediary. Re-
call that application modules are created in the Model section of the application,
and be sure to extend the underlying AP.model.AppModule module so the new
one will have direct access to the database. Also remember to check the option to
create the Application Module class. Once the module is created, open the Log-

Figure 8.15

CREATE OR REPLACE FUNCTION TestCustomerLogin(
	 sLastname NVARCHAR2, sPhone NVARCHAR2)
 RETURN NUMBER
AS
nID integer;
BEGIN
 nID := -1;
 SELECT CustomerID INTO nID
 FROM CUSTOMER
 WHERE Lastname=sLastName AND Phone=sPhone;
 return nID;
EXCEPTION WHEN others THEN
 return -1;
END TestCustomerLogin;

191Chapter 8: Applications

inModuleImpl.java file to edit the code. You still need the Oracle helper code to
connect to the database, so open the DBModuleImpl.java file and copy the helper
code with its definitions and paste it into the new module. You might need to bring
along the import statements to ensure the components are registered correctly.
Close the DBModuleImpl file to avoid accidental changes.

 Figure 8.16 shows the function needed to connect to the database. The figure
does not include the helper functions, but it does include a second function that
might come in handy later: getCustomerID. The function stores the CustomerID
internally and the second function makes the value available to other pages that
might need it for later tests to see if a customer is logged in. The code in the main
function basically just passes the input values to the PL/SQL code and returns the
result. However, the function also counts the number of times the current person
has tried and failed to log in. If the attempt is successful, the function returns the
CustomerID value (a positive number). If the attempt fails, the routine counts the
number of previous attempts. If the count is less than three (an arbitrary number),
then the function returns a zero; otherwise it returns a value of negative one. As
you will see in a minute, the calling page can check these return values and issue
different messages—or take different actions if the user is trying to attack the sys-
tem by guessing at the credentials.

Recall that these new functions will
be visible to other pages only if they
are published. Open the LoginModule.
xml file and click the Java tab. Click
the pencil icon to edit the Client Inter-
face. Move both of the new functions
to the right-side list of selected items.
Save everything and return to the Java

int loginAttempts = 0;
Number nCustomerID=-1;
public Number TestCustomerLogin(String lastname, String phone) {
 loginAttempts++;
 Number result =
 (Number)callStoredFunction(NUMBER, “ TestCustomerLogin(?,?)”,
 new Object[] { lastname, phone });
 nCustomerID=result;
 if (result.longValue() > 0) {
 loginAttempts = 0;
 } else {
 if (loginAttempts < 3) {
 result = 0;
 }
 }
 return result;
}
public Number getCustomerID() {
 return nCustomerID;
}

Figure 8.16

Action
Write PL/SQL code to search Person

table for Lastname and Phone.
Add a new Application Module:

LoginModule.
Write module code to connect to the

database TestLogin function.
Write the login.java code to call to the

TestLogin function.

192Chapter 8: Applications

code page. Right-click to run the Make option to compile the module to check for
typos then save and close it.

Finally, you can write the code on the login page to pass the values from the
input text boxes to the intermediate module and test the login with the database
code. Open the login.jspx page and double-click the login button. Accept the de-
faults to open the login.java page. Figure 8.17 shows the code. You should be
able to copy-and-paste this code into your application. However, be careful with
the quotation marks—they often need to be replaced with straight quote marks.
The first half of the code is similar to what was used earlier—pick up the input
values from the text boxes and store them as parameters. Verify that the ID values
are correct for the text boxes on your page. The conditional test (if…) checks the
return value and chooses one of two messages depending on the number of failed
attempts. Failures also clear the result value to null. Notice at the top of the code
that the result value is set to “toHome.” This is the identifier you created on the

Figure 8.17

public String cb1_action() {
 // Add event code here... Login button
 String result = “toHome”;

 // compare in database
 BindingContainer bindings
	 = BindingContext.getCurrent().getCurrentBindingsEntry();
 OperationBinding operationBinding
	 = bindings.getOperationBinding(“TestCustomerLogin”);

 String sLastname = getIt1().getValue().toString();
 String sPhone = getIt2().getValue().toString();
 Map paramsMap = operationBinding.getParamsMap();
 paramsMap.put(“lastname”, sLastname);
 paramsMap.put(“phone”, sPhone);
 Object oID = operationBinding.execute();
 long nID = Long.parseLong(oID.toString());

 String sMessage = “”;
 AdfFacesContext afContext = AdfFacesContext.getCurrentInstance();
 afContext.getPageFlowScope().put(“CustomerID”, nID);
 //System.out.println(“## Login: nID: “+nID);

 if (nID <= 0) {
 result = null;
 if (nID < 0) { // have exceeded allowed number of attempts
 sMessage = “Please stop guessing.”;
 } else {
 sMessage = “Incorrect login. Please try again.”;
 }
 FacesContext messageContext = FacesContext.getCurrentInstance();
 messageContext.addMessage(null, new FacesMessage(sMessage));
 // or just use the output text at the bottom which is faster
 }
 else {
 it2.setValue(null);
 }
 return result;
}

193Chapter 8: Applications

task flow diagram. If the test is successful, this value is returned to the calling but-
ton, which triggers the task flow to return to the home page. If the test fails, this
value is cleared and the browser stays on the login page. If desired, you could set
a third value which is returned when the number of attempts exceeds the counter.
Then edit the task flow diagram and create a new page with a stronger warning
message.

Notice near the end of the code that this routine uses a new method to display
messages to the user. The FacesContext tools will display a pop-up message box.
You do not have to use this method—it is a little slow. You could simply write the
message to the message text box at the bottom of the page. The point is simply
to show you the syntax for using the pop-up message box in case you need it for
future use.

Two additional lines are a little trickier. The AdfFacesContext lines take the
CustomerID value and store it in a new variable on the server in the pageFlow-
Scope. This variable is available to any other page in the current page flow. It will
be used in the next section to identify the current user. Similar to session scope,
variables stored in the page flow scope stay on the server and exist across multiple
pages. The main difference with session scope is that you can have multiple page
flow scopes at one time—which is particularly useful when you create bounded
task flows as subroutines or when users log in multiple times. See the Oracle doc-
umentation for more details on page flow scope.

Remember that you must edit the page bindings to link the function call to the
intermediate module. Select the Bindings tab on the login.jspx page.

Save everything, compile the page, and run the application starting from the
home page. Click the login button to open the login form. Figure 8.18 shows the
login form with some sample data you can use to test the login functions. How-
ever, first enter some fake data to ensure that the login fails. Then test the real
numbers: Peck and 213-249-4611 (with the hyphens). As you will see in a few
minutes, this particular person has placed a couple of orders, so the account pro-
vides useful data to illustrate the next steps. Once you have logged in successfully,
the browser should return to the home page. You should now see the last name
(Peck) displayed at the top of the page: Welcome Peck.

Figure 8.18

Use:

Peck

213-249-4611

194Chapter 8: Applications

A Report for One Customer Using the Login Data
Now that the customer is logged in,
your application can use that informa-
tion (the CustomerID) to present data
specifically for that customer. To han-
dle this connection, you have to build
reports and pages that specifically link
to the stored CustomerID. The process
is similar to building any data bound
page, with a couple of extra steps. You
might want to review the steps in Chap-
ter 6 used to build reports. The goal is
to create a Customer Sales report that
lists all of the sales for a single custom-
er. The customer can think select one of the sales to see the details. Eventually,
you need two report pages: one for the customer sales and one for the sale itself.

Begin by creating a new read-only view in the model section. Figure 8.19
shows that the query just retrieves basic data from the Customer table. However,
it has one critical addition: WHERE CUSTOMER.CUSTOMERID = :customer-
idVar. This line uses a bind variable (customeridVar) which will be assigned based
on values collected from the application. Notice that the colon (:)in front of the
variable name is critical. Test the query to ensure the syntax is correct.

As you work through the View wizard, you will be given the opportunity to
define the bind variable. Figure 8.20 shows the basic form. Click the New button
and enter customeridVar as the name of the bind variable. This name must match
the name of the variable you used in the query. Choose the Number data type to
ensure the variable matches the CustomerID data stored in the Customer table.
For more complex problems and queries, you can create multiple bind variables.
Most of the time, one or two variables are sufficient because you almost always
use variables that compare to primary keys. Finish the wizard to complete and
save the view object.

The report page needs a detail subsection that lists the all of the sales for that
customer. You need to create a new read-only view for that section. Figure 8.21
shows the basic query. By now, you should be comfortable with SQL queries.
Because it is a read-only query, it can compute the sum of the items (price times
quantity). Just remember to use GROUP BY to compute the subtotal for each sale.

Action
Create a new Customer report where the

Customer query uses a bind variable to
retrieve data for a single CustomerID.

Define the bind variable customeridVar.
Define the subform query and build the

View Link.
Create the new OneCustomerSalesReport

page.
Drag the OneSalesTotalsReportView2

object to create a Master-Detail: ADF
Master form, Detail table.

Figure 8.19

SELECT
 CUSTOMER.CUSTOMERID CUSTOMERID,
 CUSTOMER.LASTNAME LASTNAME,
 CUSTOMER.FIRSTNAME FIRSTNAME,
 CUSTOMER.EMAIL EMAIL,
 CUSTOMER.STATE STATE,
 CUSTOMER.GENDER GENDER
FROM
 CUSTOMER
WHERE CUSTOMER.CUSTOMERID=:customeridVar
ORDER BY CUSTOMER.LASTNAME, CUSTOMER.FIRSTNAME

195Chapter 8: Applications

This query is going to show each sale and its total. It is not going to display the
individual items sold. Those details can be displayed on a second report page that
you will create in a few minutes. Name this new view: OneSalesTotalsReport-
View to indicate it will be used as part of the OneCustomerReport.

Once the two views have been built you must create a View Link to join them.
Follow the standard wizard steps to join the two views based on CustomerID:
OneCustomerSalesReportView.Customerid = OneSalesTotalsReportView.Cus-
tomerid.With the view link created, it is possible to compute and display the to-
tal of all sales in the main OneCustomer view. It is not required, but it can be
useful to show the total of all of the sales. As you did in Chapter 6, open the
OneCustomerSalesReportView and add a new attribute. Set its Expression to: On-
eSalesTotalsReportView.sum(“Saletotal”). Be careful to match the names of the
view and the column exactly. One critical warning is needed at this point: Do not
define any dependencies for this calculation! There is an extremely strange error
in JDeveloper (or WebLogic) that causes the login process to fail if you define a
dependency here. It is strange and hard to find because it is in a completely un-
related page! Perhaps this problem will be fixed in later releases, but you do not
need dependencies, so it is not critical—just avoid them to be safe.

Now create the display page: OneCustomerSalesReport.jspx. Set the title and
the message text box. Refresh the Data Controls. Expand the OneCustomerSales-
ReportView2 and drag the nested OneSalesTotalsReportView2 onto the main

Figure 8.20

Figure 8.21

SELECT
 SALE.SALEID SALEID,
 SALE.SALEDATE SALEDATE,
 SALE.CUSTOMERID CUSTOMERID,
 SUM(SALEITEM.QUANTITYSOLD*SALEITEM.SALEPRICE) SaleTotal,
 COUNT(SALE.SALEID) SaleCount
FROM
 SALE INNER JOIN SALEITEM
 ON SALE.SALEID=SALEITEM.SALEID
GROUP BY SALE.SALEID, SALE.SALEDATE, SALE.CUSTOMERID
ORDER BY SALE.SALEDATE

196Chapter 8: Applications

section of the page. Choose the
Master-Detail: ADF Master form,
Detail table option. Clean up the
subform.

The next step is to create the
page bindings so that the Cus-
tomer query underlying the report
page picks up the CustomerID of
the current customer. Remember
that the login page stores the Cus-
tomerID in a pageScope variable
called CustomerID. You simply
need to define the page bindings
to connect that variable to the un-
derlying customeridVar used in
the query. On the OneCustomer-
SalesReport.jspx page, click the
Bindings tab. In the Bindings
window (left side of page), click
the green plus sign to add a new
binding. Choose the “action”
method and click the OK button
to proceed. Figure 8.22 shows the
main steps. The underlying data
view is in the AppModuleDataControl so select it first. In the Iterator selection
box, choose OneCustomerSalesReportView2Iterator. This iterator retrieves the
data for the top part of the report, which contains the Customer query with the
bind variable. For the Operation, select ExecuteWithParams, which opens the pa-
rameters window. The first two entries should be populated automatically; cus-
tomeridVar and the oracle.jbo.domain.Number data type. All you have to enter is

Action
OneCustomerSalesReport page, click the

Bindings tab.
In Bindings window click the green plus sign,

choose “action.”
Select the main AppModuleDataControl
Select Iterator:

OneCustomerSalesReportView2Iterator.
Select Operation: ExecuteWithParams.
For parameter: customeridVar, oracle.jbo.

domain.Number
Value: #{pageFlowScope.CustomerID}
In Executables window click the green plus

sign, choose “invokeAction”
id: invokeExecuteWithParams
binds: ExecuteWithParams
In the Executables window select the new

invokeExecuteWithParams entry and click
the edit pencil icon.

Select the Common tab and set Refresh to
“ifNeeded” and

RefreshCondition: #{adfFacesContext.
postback == false}

Figure 8.22

197Chapter 8: Applications

the value. The value needs to come
from the pageFlowScope variable cre-
ated on the login page, so carefully
enter:
#{pageFlowScope.CustomerID}

Choose the buttons to finish the
binding entry until you return to the
main binding page. This binding en-
try establishes the connection from the
scope variable to the query, but it does
not cause the query to actually run. You
need to create a new executable func-
tion to run the query. In the Executables
window (middle of the page), click the
green plus sign and choose “invoke-
Action” as the method. In the pop-up
box, set the id to invokeExecuteWithParams and choose ExecuteWithParams in
the binds selection box. Return to the main binding page. This function is used
to execute the query and process the binding data, but it does not run automati-
cally. You need to set its refresh parameters to cause it to run whenever the page is
loaded the first time.

In the Executables window, select the new invokeExecuteWithParams method
and click the pencil icon to edit the parameters. As shown in Figure 8.23, in the
Refresh selection box choose “ifNeeded.” You then need to type in a special con-
dition for the RefreshCondition:
	 #{adfFacesContext.postback == false}

Be sure to enter the equals sign twice—which the comparator operator in Java.
This context causes the page to requery the first time it is processed (when post

Action
Open adfc—config.xml diagram.
Drag OneCustomerSaleReport onto the

diagram.
Add a Control Task Flow from home to

the new report, name it: toSalesReport.
Add a return control flow named: back.
In home.jspx, add a Panel Group Layout

set to vertical and place a command
button in it.

Set the button label to: Sales Report and
select its action as: toSalesReport.

Add a button to the Sales Report, label it
Back and set its Action to back.

Test the login and open the Sales report
for Peck.

Figure 8.23

198Chapter 8: Applications

back is false). But if you put buttons on the page to process data the page will not
be requeried.

The main pages have now been created. The next step is to create a new Task
Flow to connect them. Open the adfc-config.xml diagram and drag the new One-
CustomerSaleReport onto the page. Add a Control Task Flow from home to the
new report and name it: toSalesReport. Add a return control flow named: back.
Now all you need is a couple of buttons on the pages. However, you will probably
have to close JDeveloper and restart it to force the changes to be available.

Open the home.jspx page and add a Panel Group Layout to the menu area. Set
its layout to vertical and Valign property to top. Place a command button in the
new group and label it Sales Report. In the Action property select the toSalesRe-
port action. Repeat the process on the new OneCustomerSalesReport page and set
the button label to Back. Choose back for its Action so that it will return to the
home page.

Finally you are ready to save everything and test the form. Save everything and
choose the Make or Rebuild option to check for syntax errors. When everything
is correct, run the home page. Login and click the button to open the new Sales
Report. As shown in Figure 8.24, it should show customer data for Peck and list
his corresponding sales.

Connect Table Row to Detail Report
You are making great progress and the project is beginning to look like a useful
application. Looking at the last report, one more commonly-used concept comes
to mind. It would be nice to include a button on the Sale detail table so the cus-
tomer can click one button and see the details for the selected sale. Oracle ADF
has a process for building this type of form and action without using code. You
can find the detailed steps in some of the documentation. However, it is worth-

Figure 8.24

199Chapter 8: Applications

while to write the code yourself so
you can see the underlying process. It
is rare that you will be able to use the
Oracle process—most of the time you
will need to edit the underlying code
or make special tweaks, so you should
know how to do it yourself.

The basic process is to add a column
to the detail table on the OneCustomer-
SalesReport page. Write a short func-
tion that takes the SaleID key value and
puts it into a page scope variable. Then
create a new Sale Report query with a
bind variable for SaleID. Create a dis-
play page for the Sale Report and set
the bindings to match the page scope
variable to the query bind variable.
Add a return button to the report page
and you are done. A couple of the steps
have some new twists, but the concepts
are straightforward.

Begin by adding a new column to
the detail table in the OneCustomer-
SalesReport. Open that page in design
view. It seems to be challenging to add
the column graphically, so switch to
the source tab. It is straightforward to
create a new column using the XML
for the existing columns as a pattern. Figure 8.25 shows the full XML for the new
column which includes a command button. You could use an expression builder
to set the Action for the button, but it can be figured out by looking at other ex-
amples. The goal is to call a function on the java backing page for the report, so
the action is:

	 #{backingBeanScope.backing_OneCustomerSalesReport.showSale}

The name of the new function will be: showSale. You can switch to the Design
tab on the page to see if the table is displayed correctly. You probably have to reset
the width of the table to display the new button column.

The trickiest part of this new process is to write the showSale function. The
concept is easy: Get the SaleID value from the currently selected row of the table
and store it in a page scope variable. Then return an id value that will be defined as

Action
Add a column to the

OneCustomerSalesReport detail that
includes a command button.

Write code function in
OneCustomerSalesReport2.java.

Create a new Sales view
(DisplaySaleReportView) with a bind
variable for saleidVar.

Create the subreport query
(DisplaySaleItemsView)
and the view link
(DisplaySalereportToItemsViewLink).

Create a new page for DisplaySale.jspx
using the Master-Detail form/table for
the DisplaySaleItemsView2 object.

Add the page bindings setting saleidVar
to #{pageFlowScope.SaleID}.

Add the DisplaySale page to the adfc-
config diagram.

Add a Control Flow Case from
OneCustomerSalesReport to
DisplaySale using: showSale.

Add a reverse control flow with the
keyword: back.

Add a button to the DisplaySale.jspx
page and assign the back Action.

Save everything and test the reports.

Figure 8.25

<af:column headerText=”Details“
 sortable=”false” id=”c6” width=”60”>
 <af:commandButton id=”cbT0” text=”Details“
 action=”#{backingBeanScope.backing_OneCustomerSalesReport.showSale}”
/>
</af:column>

200Chapter 8: Applications

a task flow to the new Sale Report page. The only part you have not done before
is getting the key value from the Sale table. However, there is one slight twist. Re-
member that the OneCustomer report page was based on the oneCustomerSales-
ReportView2. Therefore, you need to place the new function in the file: OneCus-
tomerSalesReport2.java. Be sure to open the correct file.

Figure 8.26 has the showSale code—you should be able to copy-and-paste it
into your file. Most of the steps are used to extract the key value from the form
using the proper transformations. The getT1 function returns the table and its get-
RowKey function returns the key list for the selected row. Because primary keys
might contain multiple columns, the data is returned as a list. In this case, we
know that list contains only a single column (SaleID). The code uses the lists to
obtain the first (zero) entry. It then explicitly converts the key value to a string and
parses it to a long integer. You could have used a simple cast, but this approach
makes it easier to test for numeric conversion errors. It will also be easier to edit
if Oracle changes the way key values are passed in the future. The rest of the code
simply writes the value into a new SaleID variable stored in the page scope. Last-
ly, notice that the function returns a string value of “showSale.” You could pick
any phrase, but remember this value because you will need it when you define the
task flow to the new page.

public String showSale() {
	 RichTable tbl = getT1();
	 List<oracle.jbo.Key> kList = (List<oracle.jbo.Key>)tbl.getRowKey();
 // Could be multiple keys, but know there is only one key with a single value
	 oracle.jbo.Key key1 = kList.get(0);
	 Object oList[] = key1.getAttributeValues();
	 long nID=-1;
	 try {
		 nID = Long.parseLong(oList[0].toString());
	 } catch (Exception ex) {
		 nID=-1;
	 }
	 AdfFacesContext afContext = AdfFacesContext.getCurrentInstance();
	 afContext.getPageFlowScope().put(“SaleID”, nID);
	 return “showSale”;
}

SELECT Sale.SaleID, SaleDate, Sale.CustomerID,
ShipAddress, ShipCity, ShipState, ShipZIP, SalesTax, PaymentMethod,
Sum(SalePrice*QuantitySold) As SaleTotal,
LastName, FirstName, Phone, Email
FROM Sale
INNER JOIN SaleItem ON Sale.SaleID=SaleItem.SaleID
INNER JOIN Customer ON Sale.CustomerID=Customer.CustomerID
WHERE Sale.SaleID=:saleidVar
GROUP BY Sale.SaleID, SaleDate, Sale.CustomerID, ShipAddress, ShipCity, ShipState,
ShipZIP, SalesTax, PaymentMethod, LastName, FirstName, Phone, Email

Figure 8.26

Figure 8.27

201Chapter 8: Applications

Now you need to create the two views and the view link for the new report.
Much like the Sale input form, the goal is to display basic Sale and Customer data
on the top of the form along with a detail section listing the Items purchased.

Figure 8.27 shows the query for the read-only view (DisplaySaleReportView)
used on top-half of the report that combines the Sale data and a couple of columns
from the Customer table. Notice that the query also computes the subtotal of price
by quantity for that sale. On the original Sale form, this total was computed on the
fly using the view link. Here, it is easier to handle on this query because the data
cannot change on the report. Be careful to include the clause WHERE Sale.SaleID
= :saleidVar and remember the leading colon. Then remember to define the bind
variable on the appropriate wizard screen using the standard Number data type.

Creating the read-only view (DisplaySaleItemsView) for the subreport is eas-
ier. As shown in Figure 8.28, it pulls all of the columns from the SaleItem table
and a couple of display columns from the Inventory table. It’s a good thing you
learned the SQL syntax so you can build all of these queries by hand.

A new view link is needed to associate the detail subsection with the main form.
Name it DisplaySaleReportToItemsViewLink and set the SaleID values from the
two queries equal to each other.

By now you should know how to create the new display page (DisplaySale.
jspx). Set the usual title and message lines. Refresh the data controls. Drag the
nested DisplaySaleItemsView2 object onto the page and choose the Master-De-
tail, ADF Master form, Detail table option. Clean up the displays and double-
check the width and height of the detail table.

Because the main view uses a bind variable in the query, you need to go through
the binding steps for the page. Click the Bindings tab and in the Bindings window,
click the green plus button. Choose “action,” select the AppModuleDataControl
and choose the iterator: DisplaySaleReportView2Iterator. Choose the Execute-
WithParams option. For the saleidVar, set its value to #{pageFlowScope.SaleID}.

The tricky part is to remember that you also need to create the invokeAction in
the Executables window. Set the id to invokeExecuteWithParams which binds to
the ExecuteWithParams function. You also have to edit this new invoke… method
and set the refresh to “ifNeeded,” and the RefreshCondition to: #{adfFacesCon-
text.postback == false}. Save everything.

The last big step is to define the task flow. Open adfc-config.xml and drag the
new DisplaySale.jspx page onto the diagram. Add a Control Flow Case to con-
nect OneCustomerSalesReport to this new page using the keyword: showSale.
Remember that this keyword must match the keyword returned by the showSale
function. Add a reverse control flow with the keyword: back. Again, you probably
have to close and restart JDeveloper for the changes to take effect—until Oracle
manages to fix this problem.

Open the DisplaySale.jspx page and select the Design tab. Add a button to re-
turn and select the back Action. The button on the OneCustomer page has already

SELECT SaleID, SaleItem.SKU, QuantitySold, SalePrice,
ModelID, ItemSize,
QuantitySold*SalePrice As LineTotal
FROM SaleItem
INNER JOIN Inventory on SaleItem.SKU=Inventory.SKU

Figure 8.28

202Chapter 8: Applications

been created, so you are done. Save everything and rebuild the project to check
for syntax errors. Run the home page, login, open the Customer Sales report and
click the Detail buttons to ensure the browser opens the matching Sale report.
Figure 8.29 shows an example of the report. This particular customer (Peck) was
selected because he has a couple of usable Sales.

 This lab section was long and somewhat complicated. But now you know how
to connect pages in an application. You learned several ways to share data across
multiple pages and how to use variables in queries to show specific data on a
page. These are the primary concepts used to build any application. Oracle ADF
includes many other tools that can be used to display complex data on a page,
such as pivot tables and charts. Many of them are useful at displaying and under-
standing data. The concepts for building a page and connecting them are the same
for all of these controls.
Activity: Build Menus
The home startup form is important for Web sites, but you often need to build
menus that make it easy for users to
find the other pages in the application.
Some application tasks need to follow
a specific set of steps. For instance,
Web checkout procedures often require
users to enter data on several differ-
ent forms. Control task flows can be
used to navigate users automatically
through pages. Menus, bread crumbs,
and “trains” can be used to show users
where they are in the task and provide a
means to move back to an earlier step.

Figure 8.29

Action
If you have time create more forms.
Create the Rentals form following the

details for the Sales form.
Create edit forms (tabular) for

ProductCategory, SkiBoardStyle, and
Binding Style.

Add the forms to the adfc-config.xml
diagram. If you lack time, just add
View objects.

Do not add flow connectors.

203Chapter 8: Applications

Oracle ADF provides support for menus, bread crumbs, and train steps. This sec-
tion focuses on the menus because they form the foundation for the methods. You
can find details and examples of bread crumbs and train stops in the Oracle docu-
mentation and on the Web. However, the Oracle documentation points out that
the current version of ADF has some problems. Notably, the browser “Back” and
“Refresh” buttons. Because of the way ADF handles task flows and session state,
these browser buttons can cause the application to get out of synchronization with
the page. So, you should avoid investing huge amounts of time and energy build-
ing a complex application that attempts to force people to follow a fixed sequence.
Instead, try to design a flexible system that enables users to choose the way they
want to work and the way they want to proceed through the pages.

JDeveloper has some tools that help you create menus. This section will use
one of the tools to get started, but it is better if you learn how to do a couple of
steps manually. Customizing menus is easier to do by editing the underlying XML
files. A menu is simply a list of possible options. Typically, it is displayed at the
top of the page, but you can choose where it will be displayed and you can select
from a handful of standard formats. Menus can be hierarchical—items in the top
level can be selected to display a set of sub-choices. The default options in Oracle
menus are basically static—users click each option to open a page—which might
contain submenus. If you want dynamic menus with hover-over effects, you can
install add-in components, such as Adobe Flex Menu.

The first step in building a menu is to think about the overall structure of the
application. It often helps if you build the pages first—or at least design them—so
you can see how users might need to navigate through the application. If you have
time, you should build the Rentals form and tabular input forms for the Product-
Category, SkiBoardStyle, and BindingStyle tables. If you lack the time, you can
still build the menus using View placeholder objects; but at least look through the
database to see what forms and reports might be needed. Then you can think about
the overall structure of a menu. Figure 8.30 shows one possibility. Ultimately, you
might want to control the menus programmatically so that users only see the op-
tions that they are allowed to use. For instance, anonymous customers would see
only a couple of basic choices. After users log in, they can see the Customer link
which would let them edit their personal data and see their specific sales. These
options can be controlled through the menu item visibility or by dynamically in-
stalling different menus for each user, but these details are not covered in this sec-
tion. For now, focus on the steps needed to design and build the basic menu.

You can use the JDeveloper wizard to create the foundation for the main menu.
Open the afdc-config.xml file and click the Diagram tab. Add the pages to the
diagram that will make up the nodes (points) on the menu. If you have not yet
built the jspx pages, drag View objects onto the page and assign the appropriate
name. The diagram might become crowded, and it might be easier for you to read

Figure 8.30
Home Login Checkout Customer Admin Help

Sales
Rentals

Edit Customer
Edit Employee
Setup

 Categories
 Ski Style
 Binding Style

204Chapter 8: Applications

if you organize the pages in groups. For
now, it only matters that the pages or
views are located in the diagram. When
you are ready, save everything and then
right-click a blank space on the dia-
gram and choose the Create ADF Menu
Model option. Accept the default file
name (root_menu) which creates a new
XML file.

Open the new root_menu.xml file to
see what you have. It should consist of
a single <menu> tag entry that contains
several <itemNode> entries—one item
node for each page on the diagram. Because you did not define any hierarchical
task flows, all of the item nodes are at the same level. This XML file is the key

Action
Right-click the main diagram and

choose: Create ADF Menu Model.
Sketch a potential menu layout.
Edit the root_menu.xml file to add

groupNodes.
Change the label values.
Create three main groups: Checkout,

Customer, and Admin.
Create a nested group (Setup) inside the

Admin group.

<?xml version=”1.0” encoding=”windows-1252” ?>
<menu xmlns=”http://myfaces.apache.org/trinidad/menu”>
 <itemNode id=”itemNode_home” label=”home” action=”adfMenu_home”
 focusViewId=”/home”/>
 <itemNode id=”itemNode_login” label=”login” action=”adfMenu_login”
 focusViewId=”/login”/>
 <groupNode id=”groupNode_Checkout” label=”Checkout” idref=”itemNode_Sales”>
 <itemNode id=”itemNode_Sales” label=”Sales” action=”adfMenu_Sales”
 focusViewId=”/Sales”/>
 <itemNode id=”itemNode_Rental” label=”Rental” action=”adfMenu_Rental”
 focusViewId=”/Rental”/>
 </groupNode>
 <groupNode id=”groupNode_Customer” label=”Customer”
	 idref=”itemNode_OneCustomerSalesReport”>
 <itemNode id=”itemNode_OneCustomerSalesReport”
 label=”One Customer Sales Report”
 action=”adfMenu_OneCustomerSalesReport”
 focusViewId=”/OneCustomerSalesReport”/>
 </groupNode>
 <groupNode id=”groupNode_Admin” label=”Admin” idref=”itemNode_EditCustomer”>
 <itemNode id=”itemNode_EditCustomer” label=”Edit Customer”
 action=”adfMenu_EditCustomer” focusViewId=”/EditCustomer”/>
 <itemNode id=”itemNode_EditEmployee” label=”Edit Employee”
 action=”adfMenu_EditEmployee” focusViewId=”/EditEmployee”/>
 <groupNode id=”groupNode_Setup” label=”Setup” idref=”itemNode_EditProductCategory”>
 <itemNode id=”itemNode_EditProductCategory”
 label=”Edit Product Category”
 action=”adfMenu_EditProductCategory”
 focusViewId=”/EditProductCategory”/>
 <itemNode id=”itemNode_EditSkiBoardStyle” label=”Edit Ski Board Style”
 action=”adfMenu_EditSkiBoardStyle”
 focusViewId=”/EditSkiBoardStyle”/>
 <itemNode id=”itemNode_EditBindingStyle” label=”Edit Binding Style”
 action=”adfMenu_EditBindingStyle” focusViewId=”/EditBindingStyle”/>
 </groupNode>
 </groupNode>
</menu>

Figure 8.31

205Chapter 8: Applications

to your menus—it defines all of the en-
tries for the menu.

If you were to build a menu with the
current model, it would contain every
one of the pages on a single menu lev-
el. This approach would create a menu
that is too long to read, so you need to
group some of the pages together. You
need to add groups to the XML file
by creating <groupNode … > entries.
Figure 8.31 shows the XML file with
three primary groups added (Checkout,
Customer, and Admin) and one sec-
ondary grouping (Setup under the Ad-
min group). This XML file will create
a menu layout to match the design in
Figure 8.30.

A groupNode tag needs a couple of
parameters:
	 <groupNode id=”groupNode_Checkout”
		 label=”Checkout” idref=”itemNode_Sales”>

The ID value can be almost any unique identifier. The Label entry is the value
that will be displayed as the menu entry. Check your XML file and you will see
that you need to change all of the labels that were generated automatically. The
IDRef parameter must match the ID value of one of the item nodes within the
group. It represents the page that will be displayed first when the menu is se-
lected. Sub-level groupings are created by defining a groupNode nested within
another groupNode. In the example, the Setup group node is defined within the
Admin group node XML tag. You can use as many subgroup levels as you want—
but if you get too many levels, the users will become confused so try to keep it
reasonable.

The root_menu.xml file is the heart of the menu system. You can edit this file
later to add new pages or change the menu structure. The only remaining step is to
display the menu. Notice that each menu item contains an action and focus param-
eter, so the menu system knows what to do when each item is selected.

The best place to display the menu is on the MainTemplate. The template is
used by every page in the application, so the menu will be displayed on every

Action
In MainTemplate.jspx, add three

navigationPane tags—one for each
menu level.

Place the tags in the top facet beneath the
title and button panes.

Set var=“menuInfo” value=“#{root_
menu}” hint=“tabs” level=“0”.

In the commandNavigationItem
tag, set text=“#{menuInfo.label}
destination=“#{menuInfo.destination}”
action=“#{menuInfo.doAction}”

For the second and third versions of
navigationPane, set level to 1 and 2
respectively.

For the third version of navigationPane,
set hints=“list”

<af:navigationPane id=”np1” var=”menuInfo” value=”#{root_menu}”
		 hint=”tabs” level=”0”>
	 <f:facet name=”nodeStamp”>
	 <af:commandNavigationItem text=”#{menuInfo.label}”
		 id=”cni1” icon=”#{menuInfo.icon}”
		 destination=”#{menuInfo.destination}”
		 action=”#{menuInfo.doAction}”
		 visible=”#{menuInfo.visible}”
		 rendered=”#{menuInfo.rendered}” />
	 </f:facet>
</af:navigationPane>

Figure 8.32

206Chapter 8: Applications

page—simply by defining it in one location. If you need more dynamic menus,
you can create pop-up menus or use code to define buttons and menus on other
areas of the page.

Open the MainTemplate.jspx page and switch to Source view to edit the XML.
Find the top section that contains the title and button areas defined for the tem-
plate. Just below the button area but still within the vertical group panel layout,
add a navigationPane. Figure 8.32 shows the tag options for the navigationPane
control. You can drag the control onto the page or simply type the XML shown
in the figure. Note that either way you need to edit the various attributes. Most
of these could be entered using the Property viewer, but it is usually easier to
simply edit the tag directly. The var attribute assigns a name for the binding op-
tions. The value attribute must be set to match the Menu Model XML file: #{root_
menu}. The hint attribute sets the type of display, you can experiment with the
other choices once the menu is running to see which version best fits your design.
The commandNavigationItem tag needs the most editing. The default attributes
use fixed values. You need to change all of them to use binding items that will be
extracted from the menu model file. As shown in the figure, the basic format is:
#{menuInfo.label}, where menuInfo is the var name assigned in the navigation
pane.

Recall that the current XML menu model has three levels. Therefore, you need
to define navigation panes for all three levels. The easy method is to create the
first entry and copy-and-paste it to create the base for the other two entries. Figure
8.33 highlights the differences. You need to include the full commandNavigation-
Item tag in each entry, but it is the same in all three cases. The main change you
need to make is to ensure each navigationPane has a different ID value and that
each one is defined for a different level: 0, 1, and 2. The last pane (level 2) also
uses a “list” display instead of “tabs” just to show a different layout.

 That is all you need to do. Two steps: (1) Create and edit the root_menu.xml
file and (2) define a navigationPane in the MainTemplate.jspx page for each of the
levels. Although, check the Design layout quickly to ensure that the three menu

<af:navigationPane id=”np1” var=”menuInfo” value=”#{root_menu}”
		 hint=”tabs” level=”0”>
	 <f:facet name=”nodeStamp”>
	 <af:commandNavigationItem text=”#{menuInfo.label}” … />
	 </f:facet>
</af:navigationPane>
<af:navigationPane id=”np2” var=”menuInfo” value=”#{root_menu}“
		 hint=”tabs” level=“1”>
	 <f:facet name=”nodeStamp”>
	 <af:commandNavigationItem text=”#{menuInfo.label}“ id … />
	 </f:facet>
</af:navigationPane>
<af:navigationPane id=”np3” var=”menuInfo” value=”#{root_menu}“
		 hint=“list” level=“2”>
	 <f:facet name=”nodeStamp”>
	 <af:commandNavigationItem text=”#{menuInfo.label}“ id … />
	 </f:facet>
</af:navigationPane>

Figure 8.33

207Chapter 8: Applications

levels will fit in the header section. If necessary, drag the boundaries to add more
space.

Because the template is already applied to every page, you can simply rebuild
and run the application. Each page based on the template will pick up the menu.
As you select menu items, the new page will be displayed and the menu will be
updated to show the current location. As shown in Figure 8.34, when a group tab
(Admin) is selected, the next level menu is displayed as well. The figure shows
the Admin and subgroup Setup tab selected, which displays all three menu levels.
The user is free to select among the three items in the lowest menu or switch to an
completely different section of the menus.

Notice that the menus on the page are static. They do not use hover or pop-up
actions and lower-level menus are not displayed until the user selects the group
tab. All of the basic Oracle choices work the same way—only the visual display
is different. If you want to create other types of menus, you need to install other
tools. Fortunately, you can find notes on the Web that can extract your menu mod-
el data and feed it to these other menu tools automatically. So you can use this
same process to create your menus and then install other tools later if you want to
change the appearance and usability.

Menus have additional options that are explained in the Oracle documentation.
For instance, you can use resource binding to store the label text in a separate re-
source file instead of typing the name directly onto the tab. Resource files can be
translated into multiple languages and the system can automatically display menu
labels in the appropriate browser language. You can also use an ampersand to sig-
nify a shortcut key, such as &Home to highlight the H on the label.
Activity: Write Help Files
A finished application also needs customized Help files. Users should be able
to select the Help menu option and receive additional information to help them

Figure 8.34

208Chapter 8: Applications

perform a task or understand the data
that needs to be entered. Detailed Help
systems can become complex, with
large applications requiring hundreds
of pages of Help text and instructions.
On large projects, companies often hire
a special team just to create and edit
the Help files. For these situations, you
will want to purchase a dedicated Help
system editor. However, you can build
Oracle Help files with a text editor and
a couple of free downloads. Search the
Oracle OTN site for the Java help or
Oracle Help (OHW) files (http://www.
oracle.com/technology/tech/java/help/
index.html). Figure 8.35 shows the ba-
sic steps involved in creating a Help
system. First you write individual Help
pages as HTML text files. These pages
can have links to each other and to external Web sites. One of the pages should be
the startup page. You should also keep a list of keywords and topics for each page
so you can create the index and table of contents (TOC) later. You should also cre-
ate a mapping file that assigns a topic identifier to each page. The Help system file
contains links to these other files so the Help system can find everything. Finally,
in each Oracle form, you define a custom Help menu item that uses a hypertext
command to open the Help topic for that form. The Help form also includes a
Table of Contents page, as well as an index of keywords, and a full-text search
engine so users can find additional information.

Figure 8.36 shows that you can create Help pages using a simple text editor, or
you can use most HTML editors. You should create a style sheet just for the help
files. Overall, the help pages are created as a separate Web site.

Once you have created the individual HTML pages, you should create the map-
ping file that assigns a name to each topic. In HTML, you refer to each topic by

Form

Help File
Helpset: AllPowderHelp.hs
Map: map.xml
Index: index.xml
TOC: toc.xml
Search: search.idx

HTML
Topic

HTML
Topic

HTML
Topic

HTML
Topic

HTML
Topic

HTML
TopicHelp Topic ID:

Topic_A

1 Topic_A
2 Topic_B
3 Topic_C
4 Topic_D
5 Topic_E
6 Topic_F

Figure 8.35

Action
Create at least three HTML Help files for

the All Powder forms using an HTML
editor or Wordpad.

If necessary, download and install
the Oracle Web Help and Java Help
systems.

Create the Map, Index, TOC, and Link
files.

Build the search.idx file.
Create the new HelpSystem .hs file.
Edit the ohwconfig.xml file to add your

helpsystem project.
Copy your files to the server and test the

project.
Add a help link to a page using http://

localhost:7101/ohw-rcf-demo-thin/
APHelp?topic=Customers.help.

209Chapter 8: Applications

the name of the file, but Oracle references topics by a name. The name should
contain only letters, numbers, and underscores. As shown in the sample in Figure
8.37, you can assign almost any name, but it should be recognizable because you
will need it later. Note that the URL can also include a link to an identifier within
a page, such as AllPowder.html#section2. This process enables you to place multi-
ple, related topics within a single file. However, it is generally best to write shorter
help pages and link them together.

Unless you have an automated Help editor, you will have to create the table of
contents and index files manually. They are separate xml files with considerable
flexibility. You can provide multiple levels of indented listings. Essentially, you
enter a heading, followed by individual items. The individual items can link di-
rectly to a Help Topic page. Of course, you do not have to use headings, and you
might not need them in the index. Figure 8.38 shows a sample TOC file. Notice
the indentation used to show the levels of the final contents. The text entry is what
the user will see, while the target entry is the name of the topic to be displayed.
The topic must match an entry in the map file.

Figure 8.39 shows a sample index file. In general, index files can be quite long.
Automated generators are sometimes useful in creating an initial word list. How-
ever, it helps if someone goes through and adds synonyms or other search topics
that might be more useful to users. Again, the text entry provides the list of words
the user will see, and the target is the topic that is displayed when the user selects
a keyword. The IndexEntry values provide a simple hierarchical list of items, en-

<html>
<head>
<title>All Powder Board and Ski Shop</title>
<link rel=”stylesheet” type=”text/css” href=”Styles.css”>
</head>
<body>
<h1>Introduction to the All Powder Board and Ski Shop</H1>
<table>
<tr>
 <td></td>
 <td>All Powder Board and Ski Shop sells and rents snowboards and skis for all levels
of riders and skiers.</td>
</tr>
</table>
<h2>The Board and Ski Shop</h2>
Customers
Sales
</body>
</html>

<?xml version=’1.0’ ?>

<map version=”1.0”>
 <mapID target=”AllPowder_help” url=”AllPowder.html” />
 <mapID target=”Customers_help” url=”Customers.html” />
 <mapID target=”Sales_help” url=”Sales.html” />
</map>

Figure 8.36

Figure 8.37

210Chapter 8: Applications

abling the indexer to group related topics together. For example, you might have a
Customer topic, with Add, Delete, and so on as subtopics.

The search index is a little trickier, because it is a proprietary binary file. You
need a tool to create the file for you. Commercial help editors can build it auto-
matically. Oracle’s Java Help system also has a Java-based tool to create the file.
If you install the Java Help system (which is separate from the Oracle Web Help
system), you can run a command-line Java program that reads the HTML files
and builds the full-text index automatically. Figure 8.40 shows the two basic com-
mands you need. However, you must customize the CLASSPATH variable and the
folder name for your particular system. These commands might change as new
versions of the tool are released. Hit the Enter key after you have entered the full

<?xml version=’1.0’ ?>
<toc version=”1.0”>

 <tocitem text=”Introduction to All Powder Board and Ski Shop”>
 <tocitem target=”AllPowder_help” text=”The Board and Ski Shop” />
 <tocitem text=”Sales Options” target=”Sales_help” />
 </tocitem>
 <tocitem text=”Customer Options”>
 <tocitem target=”Customers_help” text=”Adding New Customers” />
 <tocitem target=”Sales_help” text=”Sales Options” />
 </tocitem>
</toc>

Figure 8.38

<?xml version=’1.0’ ?>
<index version=”1.0”>

<indexitem text=”All Powder”>
 <indexentry target=”AllPowder.html” text=”All Powder” />
</indexitem>
<indexitem text=”Management”>
 <indexentry target=”AllPowder.html” text=”Management” />
</indexitem>
<indexitem text=”Start”>
 <indexentry target=”AllPowder.html” text=”Start” />
</indexitem>
<indexitem text=”Client”>
 <indexentry target=”Customers.html” text=”Client” />
</indexitem>
<indexitem text=”Customers”>
 <indexentry target=”Customers.html” text=”Customers” />
</indexitem>
<indexitem text=”Sales”>
 <indexentry target=”Sales.html” text=”Sales” />
</indexitem>
<indexitem text=”Introduction”>
	 <indexentry target=”AllPowder.html” text=”The Company” />
	 <indexentry target=”Customers.html” text=”Customers” />
	 <indexentry target=”Sales.html” text=”Sales” />
</indexitem>
</index>

Figure 8.39

211Chapter 8: Applications

CLASSPATH statement, and at the very end. Do not put line breaks in the middle
of either command. The long folder name (D:\Oracle\...) is the full pathname of
the folder holding your HTML files. The search.idx parameter is the name of the
file to be created. You can change the name, but search.idx is a reasonable name
for most applications.

As shown in Figure 8.41, the next step is to create the HelpSystem file. This is
another XML file, although it is typically saved with an .hs suffix. It contains links
to the other important files. For the most part, you can simply copy this example
and change a couple of lines. For instance, you will want to change all of the
<title> entries. But, as long as you stick with the standard names for the other files
(map.xml, toc.xml, index.xml, search.idx, and link.xml), you can leave most of
the file alone. The Links file is a little different. In many cases, you will not need
it. It provides a way to consolidate several items into one associative link. You can
simply copy the Oracle sample Link file: it will be ignored unless you need to cre-
ate these special links.

The next step is to copy your Help system to the server and install it. This
process might be slightly easier if you are using the full Oracle WebLogic server.
In this case, the Help Listener service should already be installed (or you can in-

set CLASSPATH=%CLASSPATH&;c:\program files\ohelp\help4-indexer.jar
java -mx64m oracle.help.tools.index.Indexer -l=en_US -e=8859_1 D:\Oracle\ohw\oc4j\
j2ee\home\applications\ohw-eapp\ohw\helpsets\AllPowder search.idx

Figure 8.40

<?xml version=’1.0’ ?>
<helpset>
 <title>All Powder Board and Ski Shop</title>
 <maps>
 <mapref location=”map.xml” />
 </maps>
 <links>
 <linkref location=”link.xml”/>
 </links>
 <view>
 <label>Contents</label>
 <type>oracle.help.navigator.tocNavigator.TOCNavigator</type>
 <data engine=”oracle.help.engine.XMLTOCEngine”>toc.xml</data>
 </view>
 <view>
 <label>Index</label>
 <type>oracle.help.navigator.keywordNavigator.KeywordNavigator</type>
 <title>All Powder Board and Ski Shop</title>
 <data engine=”oracle.help.engine.XMLIndexEngine”>index.xml</data>
 </view>
 <view>
 <label>Search</label>
 <title>All Powder Board and Ski Shop</title>
 <type>oracle.help.navigator.searchNavigator.SearchNavigator</type>
 <data engine=”oracle.help.engine.SearchEngine”>search.idx</data>
 </view>
</helpset>

Figure 8.41

212Chapter 8: Applications

stall the Help system’s Deploy tool). A special folder and the ohwconfig.xml file
should already exist. Create a new subfolder under the helpsystem folder, and edit
the ohwconfig.xml file to add a line pointing to your new Help system (.hs) file.
If you are running the Developer Suite, you will have to install yet another 0C4J
servlet,, find the helpsystem subfolder, and locate the ohwconfig.xml file. Figure
8.42 shows the portion of the configuration file you need to edit. Simply add a row
that lists the location of your new .hs file.

You can now open the help file with a Web browser. On most systems, the Help
file will open with the link: http://localhost:7101/ohw-rcf-demo-thin/ohguide.
Figure 8.43 shows the initial Help file for the All Powder case. Notice the tabs for
Contents, Index, and Search. Clicking these tabs displays the appropriate forms
that you created. You should test each one to ensure that they work properly. Also,
be sure to test all links. The configuration file enables you to set a few addition-
al options. For instance, you can change the branding text (“Oracle Help for the
Web”) and even add an image.

The final step is to link your Help topics into the database forms. Because Ora-
cle has changed Help systems several times, and the help system and ADF system
are both new, there are two methods of adding context-sensitive help. Figure 8.44
shows one approach. Simply enter the help topic into the HelpTopicId property
for a control. The topic name must match one of the entries in the map file that
you created earlier.

For this approach to work, you must also include a reference file in your ap-
plication that builds a link to the Oracle help server. Figure 8.45 shows a sample

<books>
	 <helpSet id=“APHelp” location=“APHelp/APHelp.hs” />
	 … other help set files
</books>

Figure 8.42

Figure 8.43

213Chapter 8: Applications

adf-settings.xml file. This file needs to be manually created in your project’s .adf/
META-INF folder.

The adf-settings file contains a link to the Oracle Web server and the ohwconfig.
xml file. In theory, these settings should enable JDeveloper to add a help icon to
the page (question mark) which then links to the specified topic. However, I have
been unable to find the combination of options to make it work automatically.

Instead, you can add a help link on the page and point it to the help server.
Move all of your help files to a new helpset folder on the Oracle Help server. If

Figure 8.44

<?xml version=”1.0” encoding=”windows-1252” ?>
<adf-settings xmlns=”http://xmlns.oracle.com/adf/settings”>
 <help-provider>
 <help-provider-class>oracle.help.web.rich.helpProvider.OHWHelpProvider
	 </help-provider-class>
 <property>
 <property-name>ohwConfigFileURL</property-name>
 <value>/helpsets/ohwconfig.xml</value>
 </property>
	 <!--property>
	 <property-name>group</property-name>
	 <value>null</value>
	 </property-->
	 <property>
		 <property-name>baseURI</property-name>
		 <value>http://localhost:7101/ohw-rcf-demo-thin/ohguide/</value>
	 </property>
 </help-provider>
</adf-settings>

Figure 8.45

214Chapter 8: Applications

you installed the demo project, you can search for the “Shakespeare” folder that
contains some of the demonstration files. Create a new APHelp folder in parallel
with that one and add the APHelp book to the associated owhconfig.xml file. The
WebLogic server needs to be running (start a form in JDeveloper if necessary).
Then test the link by opening a Web browser directly to the server: http://local-
host:7101/ohw-rcf-demo-thin/ohguide. If you can manage to find the main web.
xml file, you can replace the ohguide entry with the new APHelp folder. Then you
can create context-sensitive help links by adding the topic name at the end of the
URL: http://localhost:7101/ohw-rcf-demo-thin/APHelp?topic=Customers_help.
Eventually, you will want to create a global bind variable to hold the base URL,
and store its initial value in a file to make it easier to move the application to a dif-
ferent server. However, as long as you know the name of the help server when you
build the pages, you could just use the simple link on each page.

In the end, placing a single Help link on each page is probably more useful than
defining help topics for every single text control on the page. So, building a sepa-
rate link—probably with your own icon—is the most efficient approach.

Did the help system seem like a lot of work to you? It is. And getting every-
thing to run within an Oracle application is even more work. There is a better
answer: just write your own help files in HTML and stop worrying about Oracle’s
approach. You can add your own TOC and index system easily. In fact, if you
license a standard Web search engine, you can save even more time and provide
better search capabilities. You still have to write the HTML pages either way, and
you still need to build a table of contents page. You can use standard server-side
scripting in the help system to pick up name of the sending page and use that to
display the appropriate topic. With this approach, you can also make the help pag-
es directly available to your users via a simple Web link, without going through
the Oracle system. With the wealth of HTML development tools available, it is
much easier to build the help system as a regular Web site.
Activity: Deploy Application
Creating an Oracle application is a complex task. You have to define the database
tables, create the forms and reports as well as the help files, and integrate every-
thing together into a consistent application. But you are still not finished: You
have to deploy the application to an application server so it can be accessed by
the users. Because users access the application over the Internet, the deployment
process is easier than it used to be—but it still requires the assistance of a database
administrator, and considerable test-
ing. One of the most important steps is
to build SQL script files to create the
database and transfer the initial data.
Once the database tables and triggers
have been created, the DBA can help
assign the proper security permissions.
(Security and other DBA tasks are cov-
ered in Chapter 10.)

As shown in Figure 8.46, you also
have to transfer your compiled forms,
reports, and help files to the applica-
tion server. Of course, that means you
have to purchase the application serv-

Action
Create SQL scripts to rebuild your

database on a new server.
Try to get to an Oracle Application

Server.
Have a DBA configure a new database

and the AS for a new application.
Change your global variables to point to

the new locations.
Build the new database.
Compile and transfer the application

files.
Test everything.

215Chapter 8: Applications

er license, and get an administrator to configure the new application. Once the
files have been transferred and tested, the users can open the startup form with
a browser. See Chapter 36 in the Fusion Developer Guide for details on deploy-
ing applications to the server. JDeveloper has an option to deploy directly to the
server or to create an archive (EAR) file which can then be installed on the server.

When you copy your forms to the application server, you will probably have
to reconfigure most of your global variables. Recall that global variables are used
to point to locations for files, which means you can change the pathname in one
location without needing to edit every single function call. You will have to re-
compile the forms, transfer the executable versions, and test everything. Although
the configuration process can be cumbersome, and you will need the assistance of
an application server administrator, once the system is configured, it is relatively
easy to change. If you need to modify a form or report, you simply post the new
version on the server and everyone will be using the new copy. Remember that
any changes to the application will require substantial testing.

Exercises

Crystal Tigers
The Crystal Tigers club is mostly interested in tracking members and events. The
officers who will use the system do not know much about computers, but they
can enter data into forms. They are also interested in a few key reports. For in-
stance, they want to be able to get totals for the number of hours members devoted
to charity events. They also want monthly summaries of the amount of money
raised. The vice president also wants to be able to print a simple listing of the of-
ficers, their phone numbers and e-mail addresses. Sometimes, she also wants a
similar list for members who have participated in the initial steps of an event. She
wants to be able to carry the list with her when the event starts so she knows who
to contact if problems arise.
1.	 Create a design template and standardize the forms and reports.
2.	 Build the forms and reports into an application with a start-up form.
3.	 Create the Help files for the system, and remember that the users have limited

computer experience.

Developer files

Application users

Application server

Database scripts
Data loading
Compiled forms
Compiled reports
Help files

Figure 8.46

216Chapter 8: Applications

Capitol Artists
Job tracking is the most important aspect of the application needed by Capitol Art-
ists. In particular, the employees need to be able to quickly select a job and enter
the time and expenses for the task performed. This data is then used to create a
monthly billing report for the client. Consequently, you need to focus on creating
the forms to capture this data. You need to make sure they are fast and easy to use.
The managers also want weekly reports showing the hours and money generated
by each employee so they can use the data in personnel evaluations.
1.	 Create a design template and standardize the forms and reports.
2.	 Build the forms and reports into an application with a start-up form.
3.	 Create Help files for the system.

Offshore Speed
Special orders have always been a complex problem for the Offshore Speed man-
agers. Customers come to the shop because it is one of the few that can obtain the
custom parts they want. But the company has always had problems training em-
ployees to collect all of the order data and, keep track of getting the orders placed
and delivered in a timely manner. Some of these orders include contracts with
other local firms to perform customization and finish work on the boats. Although
these firms do excellent work, most are terrible at keeping records. Consequently,
the managers want to use the system to generate reports on individual boats for
each contract shop that can be used to remind the other owners of the details. The
company also needs reports on the inventory status of the specialized parts. They
are having trouble keeping some items in stock, and other items seem to sit on the
shelves forever; but they have no good way of keeping track at the moment.
1.	 Create a design template and standardize the forms and reports.
2.	 Build the forms and reports into an application with a start-up form.
3.	 Create Help files for the system.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you pick one
or your instructor picks one, perform the following tasks.
1.	 Define a form template and standards for consistency.
2.	 Build the forms and reports into an application with a start up form.
3.	 Build a menu toolbar that makes the application easier to use.
4.	 Create help files for the system.

217

Objectives

•	 Extract data from spreadsheets and import it to a data warehouse.
•	 Create and browse an OLAP cube.
•	 Analyze time-series data.
•	 Analyze data classifications.
•	 Analyze data with regression.
•	 Analyze association rules for market baskets.

Chapter Outline

Data Warehouses and Data
Mining

9Chapter

Data Warehouse, 218
Tools and Downloads, 219

Case: All Powder Board and Ski Shop, 220
Lab Exercise, 220

All Powder Board and Ski Shop, 220
Introductory Data Analysis, 236

Exercises, 246
Final Project, 248

218Chapter 9: Data Warehouses and Data Mining

Data Warehouse
Data warehouses have evolved because of the need for online analytical process-
ing (OLAP) and its conflicts with online transaction processing (OLTP). The goal
of a data warehouse is to hold consistent data, possibly obtained from several
sources, which can be quickly searched and analyzed. Oracle has several data
warehouse and OLAP capabilities. Over time, Oracle has acquired several other
firms that specialize in data mining tools. Two of the bigger purchases were Seibel
and Hyperion. Consequently, Oracle has several tools to create data warehouses
and analyze data. Unfortunately, it will take years for them to be integrated. So,
one of the first problems you face in using Oracle for data warehousing and analy-
sis is to determine which set of tools to use. The purchased components largely re-
main as separate tools so they are not covered in this chapter. The older tools (Dis-
coverer series) still exist and they work reasonably well. Those tools are covered
in the 10g Workbook. They are particularly useful if you need a consistent set of
tools that can deliver content over the Web. Because they are covered in the 10g
Workbook, they are not covered here. Oracle also has some interesting extensions
to SQL (and Java) that are useful for data analysis that needs to be automated.
These tools work reasonably well and are explained in the Oracle data warehouse
documentation.

Oracle has two newer tools for OLAP and data mining. Oracle Web Analytics
Workspace Manager is positioned to be used to define multidimensional cubes
for data browsing. Because it follows relatively standard processes, it is used to
explain the creation of data cubes. However, it has some problems (in early 2010)
that might or might not be fixed by the time you work with it. Be sure to download
the most recent version. For Data Mining, Oracle Data Miner provides a graphical
interface to the underlying analysis tools. It is a relatively painless way to begin
exploring some traditional data mining tools.

Figure 9.1 shows the basic concepts involved in the Oracle data storage meth-
od. First, you have to import all of the necessary data into Oracle tables. Second,
you define the OLAP business perspective queries in terms of a star (or snow-
flake) design by creating dimensions that are related to the fact measures. You
often create hierarchical groupings on the dimensional data. Although this process
appears similar to the traditional OLAP approach, the big difference is that the
new star design does not hold any of the data. It is simply a meta-data definition
that describes how to retrieve data from the relational tables. But since data stored

Figure 9.1

Customer
Sale

SaleItem

Item

Relational
Tables

Fact
Measure

DimensionDimension

Dimension Dimension

Star Design

Sale +

Customer

Materialized
Views

219Chapter 9: Data Warehouses and Data Mining

across multiple tables requires joins that can be slow to compute, Oracle intro-
duced materialized views. A materialized view is essentially a temporary, non-
normalized table. When extensive joins or complex calculations are needed, you
can create a materialized view that holds the results of the computations and joins.
The OLAP system then pulls the data from this temporary view instead of return-
ing to the original tables. To improve performance, Oracle relies on snapshots of
the data called materialized views. These snapshots can be designed to reload data
automatically on a schedule.

Tools and Downloads
The OLAP and data mining tools needed in this chapter are not automatically
installed with the database. In a production environment, you need to pay extra
money for the components. However, they are available as free downloads from
OTN for learning and trial purposes. At a minimum, you need to download and
install the Analytic Workspace Manager and the Oracle Data Miner software. In-
stallation for both of these tools largely consists of unzipping the files to sepa-
rate folders (not in the Oracle database directory). Then create a shortcut to the
startup file—see the Read Me instructions with the two files because the process
changes with different releases. Figure 9.2 shows the main links to the Business
Intelligence tools at Oracle including the download URLs. You might also want to
download many of PDF documentation files.

After you install the tools, you might need additional permissions on your ac-
count to use the new features. Figure 9.3 summarizes the additional permissions
you need to create cubes and to use the data miner tools. See the Oracle documen-
tation for details. For example, the EXECUTE permission for ctxsys.ctx_ddl is

Figure 9.3

Figure 9.2

Additional DB Permissions
CREATE MATERIALIZED VIEW
CREATE CUBE
CREATE CUBE DIMENSION
CREATE MINING MODEL
CREATE SESSION
OLAP_USER
CREATE MINING MODEL
CREATE JOB
CREATE TYPE
CREATE SYNONYM
EXECUTE ON ctxsys.ctx_ddl

http://www.oracle.com/technology/products/bi/olap/index.html Main Business
Intelligence site.

http://www.oracle.com/technology/products/bi/odm/index.html Oracle Data Mining
including download

http://www.oracle.com/technology/products/discoverer/index.html Discoverer

http://www.oracle.com/technology/software/products/ias/htdocs/101320bi.html OTN BI Suite EE

http://www.oracle.com/technology/products/bi/olap/olap_downloads.html Analytic Workspace
Manager Download

220Chapter 9: Data Warehouses and Data Mining

only needed for text mining in ODM. That feature is not used in this workbook, so
it is not needed here.

Case: All Powder Board and Ski Shop
Like most businesses, the managers of All Powder need to analyze data to spot
trends and solve problems. One of the most challenging aspects of a board and
ski shop is the huge variety of inventory needed. As vendors produce even more
styles and variations, it becomes difficult to stock all of the items in a collection
of sizes. Yet, if the store does not have items in stock, it will lose sales. This bal-
ancing act between inventory costs and sales revenue has destroyed many other
firms. The owners of All Powder are committed to running a large enough shop so
that they can afford to carry a large selection of snowboards and skis. However,
managers need to constantly evaluate styles and products so items can be cleared
out if needed. For that analysis, one of the main tools they need is an OLAP cube
browser or perhaps the Microsoft PivotTable that shows sales split by several fea-
tures and categories. Figure 9.4 lists some of the main dimensions that managers
want to examine in terms of sales. They are not certain about the validity of the
last three, so they are displayed with question marks.

Managers also occasionally raise some more challenging statistical questions,
such as whether customers who rent equipment are likely to buy that equipment,
and whether skiers buy certain types of poles or boots with their skis. They also
need to forecast sales by categories. In particular, they often argue about whether
certain styles are increasing or decreasing in popularity. Some of these analyses
might require the help of a statistician to build a formal model, but the managers
would at least like to see some rough analyses.

Lab Exercise

All Powder Board and Ski Shop
Note: You might want to skip the first lab and jump to the second lab. The first lab
explores issues in importing data and building data warehouses. It is useful, but
time consuming. You can jump to the second lab and install the sample data files
that already have the data.

As organizations grow over time, the internal processes undergo changes, data
changes, systems improve, and number systems rarely stay the same. Conse-
quently, most information systems consist of a mix of technologies and databases.

Sales Dimensions
State (ship)
Month
Category
Style
SkillLevel
Size
Color
Manufacturer
BindingStyle
WeightMax?
ItemMaterial?
WaistWidth?

Figure 9.4

221Chapter 9: Data Warehouses and Data Mining

Rarely is the data consistent across all of these systems. For the All Powder shop,
before the database was created, the managers kept limited records in Microsoft
Excel. These records are not perfect: They are organized by Sales and by Rentals
and the data is not normalized. Also, they are focused primarily on the equipment
and did not keep data on customers. From our more modern database perspective,
the records are a pain, but at least they are electronic and not paper so you do not
have to enter all of the data by hand.

Nonnormalized data is common in business, and you will often be asked to
convert this data into a relational database. Fortunately, you can use the power
of SQL as a magical super tool to impress mere mortals with your skills. Figure
9.5 shows the layout of the data in the two worksheets. Again, notice that lack of
normalization. Each row represents an item that is sold or rented. Fortunately, the
worksheets repeat the SalesID and RentalID so you can still recover which items
are grouped onto a single sale or rental. Likewise, they repeat the descriptive item
data for each time the model was sold. To ensure your information is really ac-
curate, you should eventually check to see that the managers were consistent in
recording this data. For example, ModelID BVG-290 might have been given a
different description at different times. If there are many inconsistencies of this
type, it will be difficult and time-consuming to clean up this data. Most of the
corrections would have to be handled manually, unless you have a third source
of data that you know is correct. These are the types of problems you often face
when extracting data from diverse systems.
Activity: Extract and Transform Data
One of the most challenging and time-consuming steps in creating a data ware-
house is transferring and cleaning the data. This section explains some of the tools
Oracle provides for this process, but Oracle also has a complete data warehouse
system with even more options. In terms of an in-class lab, this section is time-
consuming. If you do not have time to go through the data loading steps in this

Figure 9.5

222Chapter 9: Data Warehouses and Data Mining

section, you can run the BuildAllPow-
der file for this chapter. This command
will delete your existing tables, re-
build them, and load them with the full
dataset.

The first step in extracting and
transforming this data is to get it into
the database where you can use SQL to
work on it. Oracle provides two relat-
ed tools to import data from text files:
the SQL*Loader and external tables.
SQL*Loader is a command-line utility
(sqlldr) that reads data from a variety
of text files and transfers it into SQL tables. It uses a sophisticated control file to
specify the location of the data and the format of the data in the files. The files
have to be plain text files but can have delimited or fixed-width columns. It often
takes considerable time to set up the control file correctly. However, once the con-
trol file is correct, you can use it to extract data from the same source time after
time. It is a useful tool for transferring data on a regular basis.

External tables have similar capabilities—since the data reader is based on the
SQL*Loader engine. However, data is not really transferred out of the flat files.
Once you define the data format and declare it as an external table, you can use
SQL and treat the data as if it were stored in a regular Oracle table. Because
an external table is declared using PL/SQL, it is a little easier to set up and to
work with interactively until you get the definition correct. At that point, it takes a
simple SQL SELECT INTO command to transfer all of the data from the external
file and copy it into a standard Oracle table. Oracle also provides the Warehouse
Builder tool that has similar features to import data from flat files. This tool is
actually better at handling other tasks, such as cleansing addresses and rebuild-
ing OLAP cube dimensions. Since the older sale and rental data only needs to be
loaded one time, and it requires some effort to split it into normalized form, it is
easier to do the transformation one time. If you check the initial AllPowder files
you used to load the sample database, you will see that the CSV approach was
used to load that data. Now you get to look at the process in a little more detail so
you can use it for your projects.

Because they are a little easier to set up, you should use an external table to
extract the data for this activity. Unfortunately, the loader cannot read an Excel
worksheet directly; consequently, the two worksheets have been saved as comma-
separated value (CSV) files. CSV files are a common format used to transfer data.
The files are simple text files that hold one row of data on a line. The values for
each column are separated by commas (hence the name). Although the system is
relatively easy, you must be careful that the text data does not contain additional
commas that would throw off the parser.

In the All Powder case, some of the earlier exercises have added new data
to the Sale table. You need to ensure that the sales being imported do not have
SaleID values that conflict with the existing data. To be safe, delete any sales with
a SaleID greater than 2000 in the existing Oracle database. A related problem
arises from the trigger that automatically generates a new key value for SaleID
whenever a row is inserted. This trigger should be disabled while you import the
new data: ALTER TRIGGER GenKeyForSale Disable;

Action
Decide if you want to skip this section.
Delete all sales with SaleID>2000.
Disable the trigger that creates SaleID

keys:
ALTER TRIGGER GenKeyForSale

Disable;
Modify and run the code to create the

external tables for the old Sale and
Rental data.

Insert CustomerID 0 and EmployeeID 0.

223Chapter 9: Data Warehouses and Data Mining

You are now ready to create external table links in Oracle that point to the two
CSV data files. The data files and the PL/SQL code to create the links are on the
student CD. Copy these three files to a folder on the server. Figure 9.6 shows the
code for the first half of the ReadOldSalesAndRentals.sql code file. At the top of
the file, you will have to edit the name of the folder that contains the two CSV
files. Then you can save and run the program to create the links. Before running
the code, it is worth examining it so that you can modify it to handle similar prob-

rem change the folder to point to the location of the CSV files
create or replace directory csv_dir as ‘D:\students\BuildAllPowder\
AllPowderSampleDataCSV’;

create table OldSale_Ext
(SaleID	 INTEGER,
 SaleDate	 DATE,
 ShipState	 VARCHAR2(50),
 ShipZIP	 VARCHAR2(50),
 PaymentMethod	 VARCHAR2(50),
 SKU	 VARCHAR2(50),
 QuantitySold	 INTEGER,
 SalePrice	 NUMBER(10,2)
 ModelID	 VARCHAR2(250),
 ItemSize	 NUMBER,
 ManufacturerID	 INTEGER,
 Category	 VARCHAR2(50),
 Color	 VARCHAR2(50),
 ModelYear	 INTEGER,
 Graphics	 VARCHAR2(50),
 ItemMaterial	 VARCHAR2(50),
 ListPrice	 NUMBER(10,2),
 Style	 VARCHAR2(50),
 SkillLevel	 INTEGER,
 WeightMax	 NUMBER,
 WaistWidth	 NUMBER,
 BindingStyle	 VARCHAR2(50)
)
organization external (
	 type oracle_loader
	 default directory csv_dir
 access parameters (
 records delimited by newline
 fields terminated by ‘,’
 optionally enclosed by ‘”’ lrtrim
 missing field values are null
	 (
		 SaleID,
		 SaleDate char date_format date mask “mm/dd/yyyy”,
		 ShipState, ShipZIP, PaymentMethod, SKU, QuantitySold,
		 SalePrice, ModelID, ItemSize, ManufacturerID, Category,
		 Color, ModelYear, Graphics, ItemMaterial, ListPrice, Style,
		 SkillLevel, WeightMax, WaistWidth, BindingStyle
)
)
 location (‘Lab 08-01 Early Sales.csv’)
)
	 reject limit unlimited;

Figure 9.6

224Chapter 9: Data Warehouses and Data Mining

lems in the future. The first section is
just a standard CREATE TABLE com-
mand that identifies the columns and
data types used in the table. These el-
ements are necessary because they de-
scribe the table as it will be accessed by
SQL. The phrase “organization exter-
nal” and the associated parameters are
the features that establish the link to the
actual data file. Notice the specification
of oracle_loader and the directory. If
you look near the bottom of the code,
you will see the actual name of the file
specified in the location parameter. The
main section describing the parameters
indicates that each record is stored on
a single line and the fields are separated by commas. Some CSV systems place
quotation marks (“) around text items, so that option is specified to be safe. The
null values note is probably not needed, but it makes it clear how missing data
should be handled. The listing of the fields must match the order and type of data
as it is listed in the table. Note that you will almost always have to specify a mask
for dates, because Oracle reads only dd-MMM-yyyy formats by default, and most
other software uses the mm/dd/yy format. Numeric and character fields gener-
ally do not need formatting hints, but you can provide them if necessary. One
final note of warning: Currency data must not contain a $ character. Many export
systems, including Excel, use them by default, and you must remove them from
the file before trying to load it. Generally, you can quickly remove all dollar sign
symbols using global search and replace in a text editor. You should now be able
to save and run the code to attach to the two files.

Once the external files have been defined, you can access them with SQL as if
they were Oracle tables. Without indexes, they will be a little slower, but you need
SQL to extract the data correctly and move it into the main relational tables. Once
the data has been extracted, you can delete the links to the external tables.

Looking through the temporary Sale table, you will see that the data needs to
be split into four tables: SaleItem, Sale, Inventory, and ItemModel. Go back and
examine the relationships for those tables, and you will see that because of the
dependencies, you will have to enter data first into the tables for ItemModel, In-
ventory, Sale, and finally SaleItem. The relationships and foreign keys require that
data be entered in that order. You must also be careful with the Customer and
Employee data. If you try to create a row in the Sale table, the system will try to
set a value of zero for the CustomerID and EmployeeID. But there is no match-
ing data for a zero ID in either of these tables. So, either you try to force a blank
CustomerID and EmployeeID, or you create a new Customer and new Employee

Figure 9.7

INSERT INTO Customer (CustomerID, LastName)
Values (0,’Walk-in’)

INSERT INTO Employee (EmployeeID, LastName)
Values (0,’Staff’)

Action
Create a new query that retrieves

DISTINCT values from the saved
UNION query.

Verify that it works.
Add an INSERT INTO statement above

the SELECT statement to copy the data
to the ItemModel table.

Run the query.
Use a similar process to add SKU,

ModelID, and Size to the Inventory
table.

Follow a similar process to copy
the Sale, Rental, SalesItem, and
RentalItems tables.

225Chapter 9: Data Warehouses and Data Mining

called “walk-in” and “staff.” This latter approach is slightly better than relying on
blank data. So your first task is to create these new entries in the respective tables.
Figure 9.7 shows the basic SQL commands needed to create these two entries.

SQL makes it relatively easy to extract the new model data and copy it to the
ItemModel table. The first step is to create a SELECT query that retrieves the
model data from the temporary tables and removes the duplicates. This process
is slightly complicated because of the two tables. It is possible that an item mod-
el has been sold but not rented and vice versa. The easiest way to handle this
problem is to write two queries and use UNION to combine the results. Figure
9.8 shows the basic query to retrieve the model attributes from the OldSale table.
Move this query to the side and build a similar one from the OldRentals table. Be
extremely careful to list the columns in exactly the same sequence.

Add the data rows from the two queries with the UNION statement. Figure 9.9
shows the basic structure of the query but yours will contain several more col-
umns. Save this query as qryOldModels so you can use it as one set of data.

Now that you can retrieve the new model data, it is relatively easy to write a
query to insert these rows into the base ItemModel table. Build a new SELECT
query using the qryOldModels query with all of its columns. Add the DISTINCT
keyword to be absolutely certain that all duplicates are removed. Run the query
to make sure it retrieves the data. As shown in Figure 9.10, at the top of the query

SELECT DISTINCT ModelID, ManufacturerID, Category, …
FROM OldSales
UNION
SELECT DISTINCT ModelID, ManufacturerID, Category, …
FROM OldRentals

Figure 9.9

Figure 9.10

Figure 9.8

INSERT INTO ItemModel (ModelID, ManufacturerID, Category, Color, ModelYear,
Graphics, ItemMaterial, ListPrice, Style, SkillLevel, WeightMax, WaistWidth,
BindingStyle)
SELECT DISTINCT qryOldModels.ModelID, qryOldModels.ManufacturerID,
qryOldModels.Category, qryOldModels.Color, qryOldModels.ModelYear, qryOldModels.
Graphics, qryOldModels.ItemMaterial, qryOldModels.ListPrice, qryOldModels.Style,
qryOldModels.SkillLevel, qryOldModels.WeightMax, qryOldModels.WaistWidth,
qryOldModels.BindingStyle
FROM qryOldModels;

SELECT DISTINCT OldSale_ext.ModelID, OldSale_ext.ManufacturerID, OldSale_ext.
Category,
OldSale_ext.Color, OldSale_ext.ModelYear, OldSale_ext.Graphics, OldSale_ext.
ItemMaterial,
OldSale_ext.ListPrice, OldSale_ext.Style, OldSale_ext.SkillLevel, OldSale_ext.
WeightMax,
OldSale_ext.WaistWidth, OldSale_ext.BindingStyle
FROM OldSale_ext;

226Chapter 9: Data Warehouses and Data Mining

add the phrase: INSERT INTO Item Model (ModelID, …). Because you do not
have data for all of the columns, you must list them in the parentheses and they
must be in the order of the columns being selected. Run the query and all of the
new models will be added to the ItemModel table.

Follow a similar process to add the SKU, ModelID, and Size data to the Inven-
tory table. Note that you should set the QuantityOnHand to zero for each of these
items since the store probably does not have any of the old models in stock. If
they do happen to have a few items around, the quantity can be entered by hand
later. Figure 9.11 shows the final step that inserts the data into the Inventory table.
Remember that you have to create the UNION query first. Notice the use of the
column alias to force a zero value into the QuantityOnHand column for each row.

The Sale and Rental data is considerably easier because they are separate and
you will not need the UNION command to merge the two sets of data. In fact, you
can copy the Sale (or Rental) data with one SQL command. First, build a query to
retrieve the distinct sales data from the OldSale_ext table. Be sure to include the
DISTINCT keyword in the SELECT statement. After you test the SELECT state-
ment, add the INSERT INTO line above it. Figure 9.12 shows an additional trick
that is often helpful. If you added new rows of data to your Sale table, the system
might have generated values that would conflict with the values from this older
dataset. To avoid this problem, you can add an offset number to the old SaleID
(+5000 in this example). If you choose a large enough offset, this step will ensure
that all of the new ID values will be safe. However, you must also remember to
add the same calculation in the final step of transferring the SaleItem rows.

Figure 9.13 shows that the query for the SaleItem table is almost identical to
the query that copied the sale data, but with slightly different columns. Remember
that if you transform the SaleID in the Sale table, you must make the identical
transformation for the SaleItem table. Otherwise, the data will never match and
cannot be joined. If you forget, you will usually receive several error messages.
But some of the data might be joined to your existing Sales data, making it dif-
ficult to reverse the query. Finally, you need to do the same two steps for the
Rental and RentalItem tables. The Rental table uses columns RentID, RentDate,
ExpectedReturn, and PaymentMethod. The columns for the old rental table do
not include repair charges and are limited to RentID, SKU, RentFee, and Return-
Date. At this point, you have successfully imported the old data and cleaned it

Figure 9.12

Figure 9.11

IINSERT INTO Sale (SaleID, SaleDate, ShipState, ShipZIP, PaymentMethod)
SELECT DISTINCT OldSale_ext.SaleID+5000, OldSale_ext.SaleDate,
OldSale_ext.ShipState, OldSale_ext.ShipZIP, OldSale_ext.PaymentMethod
FROM OldSale_ext;

INSERT INTO Inventory (ModelID, SKU, Size, QuantityOnHand)
SELECT DISTINCT qryOldInventory.ModelID, qryOldInventory.SKU,
qryOldInventory.ItemSize, 0 As QuantityOnHand
FROM qryOldInventory;

227Chapter 9: Data Warehouses and Data Mining

up so it can be used within your database. Finally, now that the data loading is
finished, you might want to reenable the data trigger that generates keys for the
sale table (GenKeyForSale). At this point, you should also drop the two external
tables because they are no longer needed. You can use a simple DROP TABLE
OldSale_ext command.
Activity: Use Analytic Workspace Manager to Create a Cube
Investigating sales by a variety of dimensions is an important task for the manag-
ers and owners of All Powder. It would be difficult to train all of them to build
queries to examine all of the items that might be of interest. A faster and more
flexible solution is to create an OLAP cube that contains the sales value (price
times quantity) as the factor, along with the dimensions. Using the Analytic Work-
space Manager, the cube can be manipulated to see subtotals and sort or filter the
dimensions. Managers can also create charts and select the data to be displayed.
The critical first step in any project is to interview managers to determine what
types of data they need to see and how it will be analyzed. For this example, you
will create a simple business area that enables managers to analyze sales by vari-
ous dimensions.

Begin the process by running the OLAP Analytic Workspace Manager. Create
a connection to the server using your normal account login. In a production envi-
ronment, you would create a separate login account just to handle the data storage
for the OLAP tables. The system also creates several views in the account, so you
have to be careful not to delete them. These tables and views can be confusing
when they are stored in your regular schema, but for experimentation it is easier to
stick with a single account.

When the system is set up, right-click the Analytic Workspaces node and
choose the option to create a new Workspace. Name it AllPowder and accept the
default tablespace. Expand the new workspace and check out the options.

The basic steps to creating an OLAP cube with this tool are to define the di-
mensions (such as time, location, and product color). The dimensions are essen-
tially look-up values that contain the available data. For example, a color dimen-
sion would contain a list of possible colors. Ultimately, these data values must be
loaded into the dimension so they can be selected by the users. Dimensions can
be defined in terms of hierarchies. The most common hierarchies in business are
time (Year, Quarter, Month) and location (Nation, State, City). However, you can
create hierarchies based on any type of data, such as manager-employee relation-
ships, or product categories. Hierarchies give managers the ability to drill down or
rollup the data to see subtotals and compare values at different levels.

Once the dimensions have been created, you can define a cube. A cube is de-
fined by assigning dimensions to it and creating measures. Measures are the val-
ues that managers want to see. The most common example is total sales which is
the sum of price times the amount purchased.

Figure 9.13

INSERT INTO SaleItem (SaleID, SKU, QuantitySold, SalePrice)
SELECT DISTINCT OldSales.SaleID+5000, OldSales.SKU, OldSales.
QuantitySold, OldSales.SalePrice
FROM OldSales;

228Chapter 9: Data Warehouses and Data Mining

The first task is to define a new di-
mension. You might as well start with
the hardest one first: time. Time is a
classic hierarchy, and Oracle has spe-
cial procedures to handle time dimen-
sions. Creating the dimension and the
hierarchy is relatively straightforward.
Right-click the Dimension entry and
choose the option to create a new di-
mension. Name it: Dim_Sale_Date.
Because of some acknowledged bugs
in the program, it is important to
choose slightly mangled names. You
must avoid using any name that might match a reserved word—and there are hun-
dreds of reserved words.

As shown in Figure 9.14, on the same first page, set the Dimension Type to
Time Dimension. Next click the Levels tab and enter the three levels in order:
Sale_Year, Sale_Quarter, and Sale_Month. Finally, select the tab for Implementa-
tion Details. Change the key type from generated surrogate key to Use Key from
the Data Source. It is almost always easier to use the keys in the database. How-
ever, if data in different levels can be the same, then you will need to use the
generated keys. For instance, if you built a dimension on geographic data that
had a state of New York and a city of New York, you could not use these as keys
because they match exactly. Yet, rather than using generated keys, it would be
simpler to change the name of the city to its proper name: New York City so it no
longer exactly matches the state key. Anyway, you can click the Create button to
save the new dimension.

In the main navigator, expand the new dimension and right-click the Hierar-
chies entry. Select all three of the defined levels and place them in the right-side
selection box. Double-check to ensure they are in the correct order from most
general down to detail: Year, Quarter, Month. You have now defined a dimension.

Figure 9.14

Action
If you skipped the first activity, run the

BuildAllPowder file for this chapter.
Run the Analytic Workspace Manager

and connect to the database with your
login.

Right-click Analytic Workspaces, to
create a new Analytic Workspace.

Name it AllPowder and accept the
default tablespace.

Expand the new workspace and check
out the various options.

229Chapter 9: Data Warehouses and Data Mining

The problem is that the dimension
does not contain any data. Each dimen-
sion ultimately needs to have the data
loaded into it. That means you need
a table or query that lists every year,
quarter, and month for the data in the
desired time period. To understand
what data is needed, select the Attri-
butes entry for the dimension. Figure
9.15 shows the list of items needed for
the time dimension. To assign dates
the appropriate category, Oracle uses
the end date for the period—such as
31-DEC-2009 for the year 2009. To
facilitate aggregations, the dimension
also needs to know the number of days
(span) in each interval. Each level is
also given a short and long description.
Technically, each description also can
be translated into multiple languages. These data items have to be generated in
a view or stored in a table before they can be loaded into the dimension. If you
are using multiple languages, you ultimately will have little choice but to create
a table to hold all of the data. Remember that you have to define these entries (as
columns) for every month in your database.

A slightly easier approach is to create SQL views that extract the desired values
directly from the Sale table. The approach uses SQL date functions to compute the
desired columns. The time span entries are the most challenging because the que-

Action
Right-click the Dimension entry and

choose the option to create a new
dimension.

Name it: Dim_Sale_Date
Select the option to make it a Time

dimension (not user).
Click the Levels tab and add: Sale_Year,

Sale_Quarter, Sale_Month
Click the Implementation Details tab and

select to use Keys from Data Source,
not the surrogate keys.

Expand the new dimension and right-
click Hierarchies to add a new
hierarchy.

Name: Sale_Calendar
Choose the levels in order: Year, Quarter,

Month.

Figure 9.15

230Chapter 9: Data Warehouses and Data Mining

ries need to find the ending and starting
dates for each period and subtract them
to obtain the number of days.

You need to create three separate
queries—one for each level in the hi-
erarchy. The queries need to contain
some matching data so they can be
linked through “parent” values. For in-
stance, the data for quarters needs to in-
clude the year value. Figure 9.16 shows
all three queries. Use copy-and-paste
to place them into a SQL Developer
window. Run them to create the three
views. You should use SELECT * from
each view to verify that the data col-
umns contain the correct values. Spend
a couple of minutes to examine the
queries to check out the date functions.
Ultimately, if you need to create many
views of this type, you should create
new user-defined functions to handle
the basic tasks with a single function.
For example, finding the starting and
ending dates for a time period would be a useful function that would greatly sim-
plify the three queries.

Action
Click the Attributes entry for the

dimension to see the data needed for
each level.

Create three queries (year, quarter,
month) to build the data needed for the
dimension.

Select the Mappings entry in the new
time dimension.

Select the Snowflake schema instead of
Star.

Drag the entries from the time views and
drop them onto the matching rows in
the dimension.

Click the Apply button.
Right-click the dimension in the

navigator and choose Maintain… to
load the data.

Right-click the dimension and choose
View Data.

Verify that the hierarchy and data are
correct.

Figure 9.16

CREATE or REPLACE VIEW SaleYears AS
SELECT DISTINCT To_Char(SaleDate,’YYYY’) As YearID,
To_Char(SaleDate,’YYYY’) As YearValue,
To_Date(Extract(Year from SaleDate) || ‘1231’, ‘YYYYMMDD’) As YearEnd,
To_Date(Extract(Year from SaleDate) || ‘1231’, ‘YYYYMMDD’)-To_Date(Extract(Year
from SaleDate)-1 || ‘1231’, ‘YYYYMMDD’) As YearSpan,
TO_CHAR(SaleDate, ‘YYYY’) As YearDesc, TO_CHAR(SaleDate, ‘YYYY’) As
YearLongDesc
FROM SALE
ORDER BY YearValue;

CREATE or REPLACE VIEW SaleQuarters AS
SELECT DISTINCT To_Char(SaleDate,’YYYY’) As YearID,
To_Char(SaleDate,’YYYYQ’) As QuarterID,
To_Char(SaleDate, ‘Q’) As QuarterValue,
Add_Months(TO_DATE((Extract(Year from SaleDate)*100 + TO_CHAR(SaleDate, ‘Q’)*3
)*100 +1, ‘YYYYMMDD’),1)-1 As QuarterEnd,
Add_Months(TO_DATE((Extract(Year from SaleDate)*100 + TO_CHAR(SaleDate, ‘Q’)*3
)*100 +1, ‘YYYYMMDD’),1)
-Add_Months(TO_DATE((Extract(Year from SaleDate)*100 + TO_CHAR(SaleDate,
‘Q’)*3)*100 +1, ‘YYYYMMDD’),-2) As QuarterSpan,
TO_CHAR(SaleDate,’YYYY-Q’) As QuarterDesc,
TO_CHAR(SaleDate,’YYYY-Q’) As QuarterLongDesc
FROM SALE
ORDER BY QuarterDesc;

231Chapter 9: Data Warehouses and Data Mining

The next step is to map the values from these new views to the time dimen-
sion you created. Select the Mappings entry under the sale dimension. Notice that
the “Source Column” entries are empty. Select the Snowflake Schema (instead of
Star) to indicate the data come from multiple views. Expand the AllPowder entry
in the schema list, and expand the Views list. Find the three time views you just
created and expand those to see the columns. Start with the Year and drag the
view columns onto the appropriate location in the hierarchy source. For example,
YearID in the SaleYears view becomes the Member value for the Sale_Year level.
Figure 9.17 shows the final matching list. With the Snowflake schema, you need
to indicate the parent for the two lower levels (Quarter and Month). Click the Ap-
ply button when you have finished.

To verify the dimension, in the main navigation window, right-click the new
time dimension and choose the option to “Maintain..” the list. Accept the defaults
to load the data from the queries into the dimension. When it has finished, right-
click the dimension again and choose the View Data option. Figure 9.18 shows
the sample time data expanded to display the months for a given year and quarter.

Figure 9.17

CREATE OR REPLACE VIEW SaleMonths AS
SELECT DISTINCT To_Char(SaleDate,’YYYYQ’) As QuarterID,
To_Char(SaleDate,’YYYYMM’) As MonthID,
To_Char(SaleDate, ‘MM’) As MonthValue,
Add_Months(To_Date(Extract(Year from SaleDate)*10000+Extract(Month from SaleDate
)*100+1,’YYYYMMDD’),1)-1 As MonthEnd,
Add_Months(To_Date(Extract(Year from SaleDate)*10000+Extract(Month from
SaleDate)*100+1,’YYYYMMDD’),1)
-To_Date(Extract(Year from SaleDate)*10000+Extract(Month from
SaleDate)*100+1,’YYYYMMDD’) As MonthSpan,
TO_CHAR(SaleDate, ‘YYYY-MM’) As MonthDesc,
TO_CHAR(SaleDate, ‘YYYY-Mon’) As MonthLongDesc
from sale
ORDER BY MonthID;

232Chapter 9: Data Warehouses and Data Mining

Now that you have created the hard-
est dimension, it should be straightfor-
ward to create the rest of them. The ba-
sic steps: (1) Create a dimension, assign
levels, set it to use keys from the data
source. 2) Define a hierarchy if needed.
(3) Create a SQL View to obtain unique
data if necessary. (4) Map the view col-
umns to the dimension attributes. (5)
Load and test the dimension.

Begin by creating a location dimen-
sion for State-City with two levels.
Create two queries to extract unique
data from the Sale table using the Ship-
State and ShipCity columns. You could
also create a generic City table (perhaps borrow it from Rolling Thunder). How-
ever, Figure 9.19 shows that the two views are straightforward to create—only the
time dimensions are painful.

While you are at it, you will need to create views for Color, Graphics, and Item-
Material. These queries are also listed in Figure 9.19. The key all of the queries is
the DISTINCT statement to retrieve unique values for each dataset.

The location dimension needs a hierarchy with two levels. Similarly, you need
to create a category-style dimension with two levels (category over style). This di-
mension can pull data directly from the ProductCategory table so it does not need
a separate view. You then need several flat dimensions: Color, Graphics, Item-
Material, BindingStyle, PaymentMethod, ModelID, and Manufacturer. The catch
is that the current version of the cube browser does not handle flat dimensions
correctly. So, you have to define every dimension with at least one level and then
create a hierarchy using that single level.

Action
Create views for location (ShipState and

ShipCity).
Create dimensions with hierarchies for

location and product category style.
Create views to retrieve distinct data for

Color, Graphics, and ItemMaterial.
Define dimensions for other attributes:

Color, ItemMaterial, BindingStyle,
ManufacturerID (with Name),
Graphics, PaymentMethod, and
ModelID.

Load data (Maintain) into each
dimension and test them.

Figure 9.18

233Chapter 9: Data Warehouses and Data Mining

The process is the same as for hierarchies. Name the dimension, add one level,
and set it to use keys within the data source. Define a hierarchy using the single
level. When you map columns to the dimension, use the views created or pull the
columns directly from tables. Generally, you can use the same column for all three
attribute entries: Member, Short Description, and Long Description. However, for
Manufacturer, set the Member as the ManufacturerID and use Name for the de-
scriptions. Load data into each dimension as you create it and view the resulting
data to test it. Remember to use longer names to avoid conflicts with reserved
words.

With the dimensions defined and tested, you can define the actual cube. A cube
consists of a measure (fact value) and a collection of dimensions. Because the
dimensions are already defined, you primarily need to create the measure. Right-
click the Cube node in the navigator and choose the option to create a new one.
Name it Sales_Main. Expand it and right-click the Measures entry to define a new

Figure 9.19

Figure 9.20

CREATE VIEW ShipStates AS
SELECT DISTINCT ShipState
FROM Sale
ORDER BY ShipState;
CREATE VIEW ShipStateCities AS
SELECT DISTINCT ShipState, ShipCity
FROM Sale
ORDER BY ShipState, ShipCity;
CREATE OR REPLACE VIEW ItemColorList AS
SELECT DISTINCT COLOR As ItemColor
FROM ITEMMODEL
ORDER BY ItemColor;
CREATE OR REPLACE VIEW GraphicsList AS
SELECT DISTINCT GraphicsName
FROM ITEMMODEL
ORDER BY GraphicsName;
CREATE OR REPLACE VIEW ItemMaterialList AS
SELECT DISTINCT ItemMaterial
FROM ITEMMODEL
ORDER BY ItemMaterial;

CREATE OR REPLACE VIEW SaleDetails AS
SELECT SaleDate, CustomerID, EmployeeID, ShipCity, ShipState,
PaymentMethod, To_Char(SaleDate, ‘YYYY’) As SaleYear,
To_Char(SaleDate, ‘YYYYQ’) As SaleQuarterID, To_Char(SaleDate,
‘YYYYMM’) As SaleMonthID, QuantitySold,
SalePrice*QuantitySold As SaleValue,
Inventory.SKU, Inventory.ModelID, ItemSize, QuantityOnHand,
ManufacturerID, Category As ProductCategory, Color As ColorName, Cost As
ItemCost, ModelYear, Graphics As GraphicsName, ItemMaterial, ListPrice, Style
As SkiStyle, SkillLevel, WeightMax, WeightMin, WaistWidth, EffectiveEdge,
BindingStyle, RentalRate
FROM SALE
INNER JOIN SaleItem ON Sale.SaleID=SaleItem.SaleID
INNER JOIN Inventory ON SALEITEM.SKU=Inventory.SKU
INNER JOIN ItemModel ON Inventory.ModelID=ItemModel.ModelID;

234Chapter 9: Data Warehouses and Data Mining

measure. At this point, you simply need
to enter its name: Sales_Value. Ulti-
mately, you can define multiple mea-
sures for a cube. Typically, you use the
cube tools to define calculated mea-
sures, such as year-to-date values and
percentage comparisons. However, it
is best to start with a simple cube and
expand it later.

Similar to the way dimensions were
created, you now need to create a view
that retrieves the data needed for the
cube. Figure 9.20 shows the query
needed to retrieve the underlying data
for the cube. Notice that it has to in-
clude all of the data to match the di-
mensions and it includes a calculation
for the sales value measure. It is actually important to compute price times quan-
tity within the SQL query. Do not attempt to perform this computation within the
OLAP cube. The cube operates on aggregated data. SQL computations are applied
one row at a time—which forces the multiplication to be performed before the
sums are computed.

Again, similar to the way dimensions were created, you need to select the Map-
ping entry under the new cube. As shown in Figure 9.21 mapping has a couple
of tricks. The measure (Sales Value) is straightforward. The flat dimensions are
straightforward—simply drag the column from the SaleDetail view and drop it
onto the matching dimension. The hierarchical dimensions also require you to
drop the data column onto the dimension—just be sure to drop only the lowest
detail entry. For instance, drop SaleMonthID onto the Sale_Month value. Then
you have to define the join condition that matches the same SaleMonthID to the
key value in the Calendar hierarchy view. You can drag and drop both values into

Figure 9.21

Action
Create a view to retrieve data from

multiple tables: Sale, SaleItem,
Inventory, ItemModel.

Create a new Cube and assign all of the
dimensions.

Create a measure (Sales_Value).
Map the columns from the data view to

the Cube values.
Create join conditions to match the cube

data to the view columns.
Load the cube data through the Maintain

option.
View the data in the View that was

generated.
Test the cube browser.

235Chapter 9: Data Warehouses and Data Mining

the join box and it will automatically insert the equals sign. The join condition for
the time hierarchy is:

ALLPOWDER.SALEDETAILS.SALEMONTHID
=ALLPOWDER.DIM_SALE_DATE_SALE_CALEND_VIEW.DIM_KEY
You need to repeat this step for the other two hierarchical dimensions. When

the mapping is complete, click the Apply button to assign and save the values. If
you receive error messages, delete the assignments and try again.

You need to load data into the cube. Actually, in a production environment, you
will want to schedule loading so that new data is transferred on a regular basis.
The tool has options to build an automated schedule. For now, right-click the new
cube and choose the Maintain option to load the data. It might take a couple of
minutes. When the process is finished, expand the View entry under the cube and
select the Sales_Color_View that was created. Select the Data tab and you should
be able to scroll through the data that was loaded.

If you use a limited number of dimensions, and all of the dimensions are cre-
ated as hierarchies, the cube browser will work—to a limited extent. Right-click
the cube and select the View Data option. Figure 9.22 shows the basic structure
of the cube. You can drag the dimensions around (as columns or rows) to change
the layout. As long as the dimensions include hierarchies, you can select specific
data points in the drop-down lists for the page dimension. However, notice that
the All option is not available for any of the dimensions—so you cannot rollup the
cube data—the cube must always display data for only one selected value. Per-
haps there is a way to change the dimension definitions to obtain the All option—
perhaps not. With a small number of page dimensions, this limitation is tolerable,
but if you try to include all of the dimensions, you end up with a very restricted
list of data.

Hopefully, your cube will be interactive and you can use it to explore the data.
But, even then, this cube browser is limited to running on a desktop—the tool
cannot be accessed across the Web. Oracle also provides an Add-in for Microsoft

Figure 9.22

236Chapter 9: Data Warehouses and Data Mining

Excel that can connect to the database, retrieve the data, and use an interactive
cube within the spreadsheet. But, it also runs on the desktop instead of the Web.

However, remember that Oracle has many tools. The APEX report system and
the Business Intelligence Publisher can create static cubes used as the basis for
charts and tables. Oracle Discoverer can create Web pages that host interactive
cubes—but you need to use Discoverer to create the cubes. Discoverer tools are
covered in the 10g Workbook. Eventually, Hyperion tools could probably be used
to build Web-based cubes as well.

Introductory Data Analysis

Activity: Analyze Time-Series Data
Collecting data and browsing is use-
ful for exploring the data and manu-
ally searching for patterns. Ultimately,
managers want to use statistical and
analytical tools to search for patterns
automatically. Oracle has several built-
in tools for analyzing data. Some of
them run as special functions in SQL,
others are based on Java programs. In
large projects, it is possible to config-
ure these tools to run programmati-
cally, with minimal human involve-
ment. However, to explore the data
and to learn how the tools work, it is
often easier to begin with a graphical tool that can help you set up and run the
analyses. Oracle Data Miner provides access to several common analytical tools.
It will be used in the following sections. Unfortunately, it does not currently sup-
port time series analysis. Because time series analysis is useful in many problems,
it is worth taking a few minutes to learn some of the tools available within Oracle.
For more extensive time series analysis, you might want to find other tools. A
couple of open-source tools are available for free download on the Web. These are
explored in greater detail in the Data Mining textbook: http://www.JerryPost.com/
Books/DMBook.

Oracle has some powerful extensions within SQL to analyze data. In many cas-
es, you can accomplish useful analyses without ever leaving SQL. In particular,
the extensions to analyze data over time are useful in many problems. Recall that
basic SQL allows you to perform calculations and reference data on a single row
at a time. Aggregate functions (Sum and Average) operate across multiple rows
and can create subtotals for groups. But, what if you have a set of data over time,

Action
Create a view to compute the total sales

per month using TO_CHAR(SaleDate,
‘YYYY-MM’) to get the month.

Create a query to display the Month,
SalesValue, and the Sales Value
from the prior month using the LAG
function.

Create a query to compute the 3-month
moving average of the sales.

Copy the data to Excel and draw a chart
showing sales and the 3-month moving
average.

CREATE VIEW MonthlySales AS
SELECT To_Char(SaleDate,’YYYY-MM’) As SaleMonth,
Sum(SalePrice*QuantitySold) As SalesValue
FROM SALE
INNER JOIN SaleItem ON Sale.SaleID=SaleItem.SaleID
GROUP BY To_Char(SaleDate,’YYYY-MM’)
ORDER BY SaleMonth;

Figure 9.23

237Chapter 9: Data Warehouses and Data Mining

such as monthly sales data, and you want to compare the value for one month
with the data from the prior month? You need a way to operate on data in multiple
rows.

Begin by creating a view to retrieve sales data by month. Figure 9.23 shows
the query—using the To_Char function to format the date as year and month and
using a simple GROUP BY clause to compute the subtotals. Run the query, or se-
lect all from the new view to verify that the query computes total sales by month.
Technically, you do not have to create this view—you could compute the sums
later within the following queries—but it is easier see the queries if you build
them in pieces.

Now the fun part: test a couple of the Oracle analytic SQL statements. A com-
mon problem is the need to compare sales in one time period with sales in the
prior period—for example, to compute growth rates. Figure 9.24 shows how this
query is built using the analytic LAG function and the OVER clause to establish a
data window. The PARTITION BY statement is optional, but it can be useful for
complex problems. For example, you might need to compare prior sales by time
and ProductCategory. Each category is separate, so you would use PARTITION
BY ProductCategory to restart the time window for each new category value.
When you do not have this additional column, you can partition by a constant or
you can just drop the PARTITION BY clause.

In terms of time series analysis, a useful function is the ability to compute mov-
ing averages. A moving average uses a sliding window to compute the average
of fixed number of rows. For example, an MA3 is a three-period moving average
that averages three contiguous values. Begin by averaging items 1, 2, and 3; then
slide to numbers 2, 3, and 4; and repeat the process to the end. The analytic win-
dow method can accomplish this task with a single query. Figure 9.25 shows the
syntax for the sample sales data. Notice that it does not use the partition clause,
but it could be added if necessary. Beyond the Avg function, the key lies in speci-
fying the “ROWS 2 PRECEDING” clause. This statement causes the system to
use the two preceding rows along with the current row to compute the average of
all three values.

If you have one of the Oracle graphics packages installed, you could build a re-
port to chart the results. However, it is straightforward to copy the results from the
SQL Developer output and paste them into Excel. Figure 9.26 shows the resulting
chart. The moving average is a smoother chart because it averages out some of the

Figure 9.24

Figure 9.25

SELECT SaleMonth, SalesValue, LAG(SalesValue, 1, 0)
 OVER (PARTITION BY 1 ORDER BY SaleMonth) AS PriorSales
FROM MonthlySales
ORDER BY SaleMonth;

SELECT SaleMonth, SalesValue, Avg(SalesValue)
 OVER (ORDER BY SaleMonth
 ROWS 2 PRECEDING) AS Avg3
FROM MonthlySales
ORDER BY SaleMonth;

238Chapter 9: Data Warehouses and Data Mining

detail variations. Hence, moving averages are often called “smoothing” functions.
More sophisticated time series analytical tools use moving averages and lagged
values to estimate the effects of trends and seasonal components. Still, the ability
to derive these values with an SQL query is useful.
Activity: Classify Sales Data
Oracle Data Miner (ODM) provides a
graphical interface to several common
data mining tools. It is worth examin-
ing a couple of them just so you get a
feel for how Data Miner works. First,
be sure you have downloaded the Data
Miner tool. When you run ODM the
first time, you will have to specify the
connection to the database. Use your
standard connection with the server
name, port (1521), and SID (orcl). The
goal of this section is to set up and run
a basic classification problem to create
a decision tree. The sample data for this
case is not particularly interesting, but
it does illustrate the process. Real-world data has many more details and poten-
tially useful results.

As with most data mining problems, you first need to put the data in the proper
format for the tool. Classification tools require a categorical variable as the target
or forecast. In this example, you want to know if some dimensions lead to higher
or lower sales. As shown in Figure 9.27, first create a view that computes the
subtotal of sales for various dimensions: ShipState, ColorName, ProductCategory,
SkiStyle, PaymentMethod, and SaleYear. You should look through the data to get
a feel for the type of data. Computing the average (278) and standard deviation
(182) can be useful to indicate what values might be considered “high” or “low.”

0

10000

20000

30000

40000

50000

60000

All Powder Monthly Sales

SalesValue

MA3

Figure 9.26

Action
Download, install, and start Oracle Data

Miner.
Set the initial database connection.
Create a SaleGroups view to compute

subtotals.
Create a SaleTreeData view to classify

the sales totals into four categories.
Run the Classification/Decision Tree

analysis.
Set the target as the new classification

column.
Explore the results.

239Chapter 9: Data Warehouses and Data Mining

Using the average and the standard deviation, and consulting with the manag-
ers, you can define categories that might be interesting. Figure 9.28 shows the
query to create a new view that uses a CASE statement to assign category labels
to various data ranges. Of course, the company would like to know if any of the
variables lead to high sales, but it would also be useful to know if some categories
or colors lead to particularly low sales so those items could be cut from the inven-
tory. ODM can build a decision tree that will identify any significant data points
that lead to the various categories.

If necessary, start ODM and establish the data connection. In the main menu,
select the Activity / Build option. As the Function Type, choose Classification,
and then the Decision Tree algorithm. You can read the data mining textbook to
learn the difference between the various algorithms, but the common choices are
Decision Tree or Naïve Bayes. If necessary, choose the schema that holds your
data (AllPowder). Then select the table or view that you created (SaleTreeData).
Because this data is based on several groups, no separate key was created, so se-
lect the option for Compound or None. All of the columns are selected by default.
You do not need the SalesTotal value for this analysis, so uncheck it. As shown
in Figure 9.29, on the next screen, select the SalesCat column as the Target—be-
cause that is the value you want the system to predict. The preferred target value
is “High” because higher sales lead to more profits. Accept the defaults and finish
the wizard.

After a few seconds, ODM presents the basic output page. Scroll to the Build
section and click the “Result” link. Figure 9.30 shows the summary results with
two nodes in the decision tree. Overall the results are somewhat boring because
both nodes are based only on the year and both lead to low sales. Again, more
realistic data would often lead to more interesting results. However, this type of
simple result has some value because it indicates that the selected dimensions do
not have a significant effect on the sales classification. Hence, the managers need
to look at other factors that might play a role. Sometimes eliminating dimensions
is as important as finding critical ones.

CREATE VIEW SaleGroups AS
SELECT ShipState, ColorName,ProductCategory, SkiStyle,
PaymentMethod, SaleYear, SUM(SaleValue) As SalesTotal
FROM SaleDetails
GROUP BY ShipState, ColorName, ProductCategory, SkiStyle,
PaymentMethod, SaleYear;

Figure 9.27

CREATE VIEW SaleTreeData AS
SELECT ShipState, ColorName, ProductCategory, SkiStyle,
PaymentMethod, SaleYear, SalesTotal,
CASE
 WHEN SalesTotal<100 THEN ‘Very Low’
 WHEN SalesTotal BETWEEN 100 AND 300 THEN ‘Low’
 WHEN SalesTotal BETWEEN 300.01 AND 500 THEN ‘Average’
 WHEN SalesTotal>500 THEN ‘High’
END As SalesCat
FROM SaleGroups;

Figure 9.28

240Chapter 9: Data Warehouses and Data Mining

The results contain additional information. If you select the Target Values tab at
the bottom you can see a chart of the number of observations in each category—
which is somewhat bleak because it consists primarily of low sales levels. You
should also examine the measurement statistics to see how good the model tree
is at prediction. Select the Results tab at the top of the screen. Expand the Test
Metrics tab and select the item within that node. Click the View button to see the
prediction data. Select the Accuracy tab in the new window and click the button
for More Detail. Figure 9.31 shows the number of items that the model predicts
correctly. First, notice that it does not predict any values for the Average or Very

Figure 9.29

Figure 9.30

241Chapter 9: Data Warehouses and Data Mining

Low categories. Overall, the model is marginal, and you should look at using dif-
ferent dimensions, a different model, or getting better data. If you are curious and
have enough time, you can rerun the analysis using the Naïve Bayes model. It has
slightly better results, but they are still unexciting.
Activity: Analyze Data with Regression
Linear regression is a tool that is rela-
tively easy to use and is supported by a
variety of platforms. Oracle Data Min-
er has a relatively standard multiple re-
gression tool. Multiple regression is a
powerful statistical tool used for many
research purposes. One challenge to us-
ing it is that it works only with numeric
data. If you have categorical data (such
as gender or product style), you can
recode the data to numbers instead of
text.

Regression is often used to analyze
economic data—particularly any back-
ground information you have about
customers. Because the database does
not include detailed customer data, you
can use government data based on the customer location. Federal data on per-
sonal income and state production (GDP) are readily available from the Bureau of
Economic Analysis (BEA). You can begin your search for data at www.FedStats.
gov, or go directly to the interactive tables from the BEA at http://www.bea.gov/
regional/index.htm#gsp. Someday you should take a look at those Web sites be-
cause they contain an enormous amount of useful data. However, you can also
pull the data from the CSV file on this book’s Web site (StateDemogBEA2008.
csv).

Action
Create a new table to hold the

demographic data.
Read the data from the CSV file into the

new table.
Create a view that computes total sales

by state for 2008.
Create a view that combines the state

sales and demographic data.
In ODM, select Action/Build and choose

the Regression: Multiple Regression
(GLM) model.

Use SPI2008, GDP2008, POP2008, and
Sales2008 in the model.

Set Sales2008 as the target.
Run the analysis and explore the results.

Figure 9.31

242Chapter 9: Data Warehouses and Data Mining

You need to import the CSV data into a new table in Oracle, so first you have
to create the table to hold the economic data. Figure 9.32 shows the command to
create the table. Check the data in the CSV file and you will see that it includes
a FIPS column—which is assigned by the government to uniquely identify every
region. Unfortunately, the existing data in the database does not have a FIPS num-
ber, so the CSV file also contains the two-letter postal code for each state—which
can be used to match the values in the database.

The shortest method to import data into Oracle is to define an external table and
use a INSERT…INTO statement to transfer the data from the external CSV file
into the database table. Figure 9.33 shows the command needed to define the ex-
ternal table. Be sure to modify the folder directory to point to the exact location of
your file. After you run the command to create this external connection, you can
use a simple INSERT statement to transfer the data:
INSERT INTO StateDemo(FIPS, StateCode, AreaName, DPI2008,
GDP2008, POP2008)
SELECT FIPS, StateCode, AreaName, DPI2008, GDP2008,
POP2008
FROM StateDemoCSV;

Figure 9.33

Figure 9.32

CREATE TABLE StateDemo
(
 FIPS NUMBER(5,0),
 StateCode NVarchar2(10),
 AreaName NVarchar2(100),
 DPI2008 NUMBER(10,0),
 GDP2008 NUMBER(10,0),
 POP2008 NUMBER(10,0),
 CONSTRAINT pk_StateDemo PRIMARY KEY (FIPS)
)

CREATE OR REPLACE directory csv_dir AS ‘C:\Database\’;
CREATE TABLE StateDemoCSV
(
FIPS NUMBER(5,0),
StateCode NVarchar2(10),
AreaName NVarchar2(100),
DPI2008 NUMBER(10,0),
GDP2008 NUMBER(10,0),
POP2008 NUMBER(10,0)
)
organization external (
	 default directory csv_dir
	 access parameters (
		 records delimited by newline
		 fields terminated by ‘,’
		 optionally enclosed by ‘”’ lrtrim
		 missing field values are null
)
	 location (‘StateDemogBEA2008.csv’)
)
	 reject limit unlimited;

243Chapter 9: Data Warehouses and Data Mining

You should issue a DROP TABLE command to release the external file. Once
the new data is in the database, you can create views to organize it in a form that
can be used by the regression tool.

Create a new view that computes the total sales by state. If you have com-
pleted the earlier labs in this chapter, you should alread have the SaleDetails table
that computes price by quantity and includes the ShipState. Figure 9.34 shows the
simple query that uses that view. If you do not have that view, you can modify the
query to use the Sale and SaleItem tables.

Finally, you can create the view needed by the regression tool by combining the
sales data with the demographic data. Because both views contain the state postal
code, it can be used to join the views. Using an INNER JOIN, the resulting view
will contain only data on states that are included in the sales database. Figure 9.35
shows the query.

As usual, getting the data and organizing it for the tool is the hardest part of
the analysis. At this point, you can run the Data Miner, choose the tool, select the
view, and run the tool with a few clicks of the mouse. Start ODM, choose Activ-
ity / Build. Select the Regression tool and pick the Multiple Regression (GLM)
method. For the data view, select the StateEconSales view you just created. The
tool will not accept the character state code as a key, so choose the option for
None. In the list of columns, deselect the ShipState column. On the target screen,
select StateTotal as the target and pick the three economic values as input values.
Finish the wizard with the default options and wait for the results to run. Scroll to
the Build section and click the Results link.

 The initial regression results page presents a table of summary statistics. Typi-
cally, the most important value is the R-squared statistic which shows the percent-
age of variation in the dependent variable that is explained by the input variables.
At 72 percent, this value is relatively high for a model with only 47 observations.
From a business perspective, the coefficients of the equation are the most valu-
able results. Figure 9.36 shows the values on the Coefficients tab. First, the values
seem small because population and disposable personal income (DPI) are large
numbers (millions and billions). You could divide by six zeros if you want to talk
about millions instead of raw numbers. For instance, the population coefficient
states that the store receives an extra $83.26 in sales for an increase of one million
people. The fact that the population and DPI coefficients are positive indicates
that the company should target sales to larger states with higher income levels.

Figure 9.35

Figure 9.34

CREATE VIEW SalesByState AS
SELECT ShipState, Sum(SaleValue) As StateTotal
FROM SaleDetails
WHERE SaleYear=2010 GROUP BY ShipState;

CREATE VIEW StateEconSales AS
SELECT ShipState, DPI2008, GDP2008, POP2008, StateTotal
FROM SALESBYSTATE
INNER JOIN StateDemo ON SalesByState.ShipState=StateDemo.StateCode;

244Chapter 9: Data Warehouses and Data Mining

The coefficient data presents an additional measure of the model validity. The
T-ratios (coefficient divided by standard deviation) are shown in the Wald statis-
tic column. In all three cases, they are a little low. Ideally, all coefficients values
should be greater than 2. But, remember that the model was estimated with only
47 observations.

Analyzing regression results, and learning to identify problems, takes practice.
A strong background in statistics or econometrics also helps. Still, the basic re-
sults are relatively easy to understand and can be valuable in many situations. It
also often helps to chart the data and draw the linear regression line onto the data
points to show trends.
Activity: Analyze Association Rules for Market Baskets
Association Rules, particularly market basket analysis is one of the classic data
mining tools. In the sales context of a market basket, the question is to determine
which items are commonly purchased together. The method uses basic probability
to find a set of rules that might or might not provide insights into the sales process.
The classic apriori algorithm (used by Data Miner) relies on two calculations to
limit its searches. Support is the percentage of baskets (or Sales) that contain the
items under consideration. So support
is just the relative frequency definition
of probability. Confidence is the condi-
tional probability that the second item
exists in a basket given that the first
one is already there: P(B|A) = P(A and
B)/P(A). The confidence measure is
directional and the system can test both
whether item B appears if A exists, and
whether A appears if B exists.

Implementations of the apriori algo-
rithm typically use one of two meth-
ods to organize the data. (1) List each
Sale/Basket as a single row and include

Figure 9.36

Action
Create a query that lists the SaleID and a

concatenation of Category and Style.
Create a new Activity / Build in Oracle

Data Miner.
Choose Association Rules: Apriori

algorithm.
Choose the new view as the data source

and set the ItemCategory as the ItemID.
For TransactionID, select SaleID.
Click the Results link then the Get

Results button.
Explore the results.

245Chapter 9: Data Warehouses and Data Mining

every item in the basket on that row. (2) The relational approach similar to the
SaleItem table which contains a column (SaleID) to identify the Sale/Basket, and
a second column to list one Item within the basket. Because of the relational back-
ground, ODM uses the second, relational approach. Hence, it is straightforward to
create a view that includes the SaleID and an identifier for the item.

One of the most important steps in association analysis is to identify the lev-
el of detail needed. Consider the SaleItem table, with key columns: SaleID and
SKU. Remember that SKU represents not only a type of item (Model), but also its
size. If you run analysis at the SKU level, you would be searching for rules that
an item of a specific size might be related to some other item of a specific size and
color. Does the size, color, and so on, really matter to the analysis? Perhaps. But
working at that level of detail requires good data and a lot of patience. For now,
it makes sense to start at a much higher level: product category and style. For ex-
ample, are people who buy downhill skis likely to buy clothes?

Figure 9.37

CREATE VIEW CategoryItemsSold AS
SELECT SaleID, ItemModel.Category || N’-’ || ItemModel.Style As ItemCat
FROM SALEITEM
INNER JOIN Inventory ON SaleItem.SKU=INVENTORY.SKU
INNER JOIN ItemModel ON Inventory.ModelID=ITEMMODEL.MODELID
ORDER BY SaleID;

Figure 9.38

246Chapter 9: Data Warehouses and Data Mining

As usual, you need to create a query to organize the data. The goal is to create
a view with columns for SaleID and the product category and style. Figure 9.37
shows the query. The only trick is to use string concatenation to join the category
name to the style. Note that the tool only needs to know the presence of each item,
the quantity and price do not matter.

With the data defined, the process is straightforward. In ODM, use the menu
Activity / Build to create a new model. Choose the Association Rules and the
Apriori algorithm (it is probably the only choice). For Table/View, select the new-
ly created CategoryItemsSold view. Pick the ItemCat column as the Item identi-
fier. If you had used an ID value for that choice, you could also add a second table
as a lookup to find the associated name. You can skip the second option for this
example. On the next screen, select the SaleID as the transaction identifier. Each
SaleID represents a unique basket or purchase.

By default, ODM starts the apriori algorithm with minimum support of 5 and
minimum confidence of 10. It also limits the number of items compared together
to just 3. These values will work reasonably well for this sample problem. In other
cases, you will have to edit them using the Advanced Settings button—or by alter-
ing the options after the initial run. The values are critical to the apriori algorithm
because the algorithm uses them as cutoff values for its search. Typically, you can
start with these values. If the system returns too few rules, you can reduce the con-
fidence number. If the system returns too many rules (either too slow to process or
too hard to read), increase the confidence and support numbers.

After the system runs, you can click the Results link. However, the Results
page is largely blank. Look for the number of rows found near the top of the page.
As shown in Figure 9.38, click the Get Results button to retrieve the rules. The
data is stored in a table and the viewer can sort or filter the rules. By default, the
rules are sorted in descending order of confidence.

To illustrate the results, consider the first rule: Ski-Freestyle => Clothes with
a confidence of 48.1 and support of 9.8. Almost half the people who purchased
freestyle skis also purchased clothes at the same time. In fact, all of the first sev-
en rules show that people who purchased equipment tended to purchase clothes.
From a management and marketing perspective these rules imply that the store
should offer discounts on equipment, and then make up the profits on the clothing
that people will buy at the same time. Of course, business situations can be more
complex—perhaps people are buying the clothing because the prices are so low
now, and increasing the prices might significantly alter the buying behavior. The
application of the rules depends on understanding the actual business details. Still,
the rules can provide interesting ideas that might have been hidden from the man-
agers. Plus, the tool is relatively easy to configure and run, so it should be easy to
set up and let the managers look through the results.

Exercises

Crystal Tigers
The Crystal Tigers club does not have a huge amount of data to analyze within the
organization. However, the club members are interested in comparing their ser-
vice data and the organizations they work with to see if they are serving the needs
of the community. Periodically, they survey people in the surrounding areas to
determine if they have heard of the club, if they know what charities the club sup-
ports, and their overall opinion of the club. In the process, they also ask citizens

247Chapter 9: Data Warehouses and Data Mining

about the events and problems that most affect their lives. A substantial part of
the survey is a listing of support organizations with which the club is considering
partnering. Crystal Tigers has collected this survey data every six months for the
last three years, and they get several hundred responses each time. All of the data
is stored in Excel spreadsheets.
1.	 Create two sample spreadsheets with the survey data. Create tables in Oracle

to hold the normalized data. Write the SQL statements to transfer the data.
Build this code into a form and button that will automate the transfer.

2.	 Create a query and a Discoverer worksheet that will enable managers to
analyze the survey data.

3.	 Create a worksheet that will enable managers to analyze the existing club
service data. Use two possible fact fields: hours worked and money raised.
Include all of the dimensions you think managers might need.

4.	 Do a time series analysis of the money raised. Managers are particularly
interested in trends and in identifying the months that raise the most money.

5.	 Assume you have data on money raised for several years (make up
monthly totals if necessary). Obtain personal income data for your state or
metropolitan area over those years and see if the income level is correlated
with the money raised.

Capitol Artists
The managers of Capitol Artists are primarily interested in identifying the best
employees and the most profitable customers. The job-tracking system ultimately
generates a considerable amount of data—at the hourly and daily levels. Note that
all employee tasks are supposed to be recorded in the system based on the client,
job, and task involved. The firm has considerable information on clients, including
a size classification (tiny, small, medium, and large), and type of company (such
as printing shop, marketing, retail, and medical). This additional client informa-
tion is currently stored in a spreadsheet, with one page devoted to each client.
1.	 Create three sample client worksheets with sample data. Modify the tables as

needed to handle this new data. Create a form that will enable a clerk to find
the worksheet and transfer the data to Oracle.

2.	 Create a Discoverer worksheet that will enable managers to analyze the hours
worked and revenue generated by employees, day of week, client, client size,
and so on.

3.	 Create a Discoverer worksheet that compares employees based on billable
hours by day during the past month.

4.	 Assume that you have approximate sales numbers representing the size of
each of the clients (make up the data). Create a categorical variable for the
client industry (for example, 1 = printing shop, 2 = marketing, and so on).
Perform a regression to see if the client size or industry influence the amount
of sales revenue Capitol Artists generates.

5.	 Analyze the data with the association rules to see if there are relationships
between the items purchased.

248Chapter 9: Data Warehouses and Data Mining

Offshore Speed
Inventory control is critical for Offshore Speed because it has to stock thousands
of small parts for different engines and drives. All of these parts are grouped into
categories in terms of the manufacturer and the location within the engine or boat.
Lately, the owners think there has been an increased demand for oil pump impel-
lers, but they are not certain because there are several different brands. They also
suspect that sales of electronic navigation devices have tapered off. Although they
have the sales data available, they are not sure how to analyze and compare it.
Of course, the sales data for the past three years is stored in Excel spreadsheets.
One sheet for each month of sales, and each line contains a sale number, date,
part number, quantity, and price. Unfortunately, the part numbers do not match
the new ones entered into the database. However, there is a separate spreadsheet
that maps the two numbers. The first column lists the old number and the second
column contains the new number.
1.	 Create at least two sample spreadsheets for the older sales, and the

spreadsheet that maps the old numbers to the new ones. Create a form that
can be used by a clerk to pick a spreadsheet and import the data into the new
database.

2.	 Create a Discoverer worksheet that will enable managers to analyze sales by
category, manufacturer, and time. Note that category should be a hierarchy.
For example, managers might want to see detailed parts, or just the parts that
are used in engines (or drives, or steering, and so on).

3.	 Create a worksheet chart that analyzes sales of the major categories over time
based on monthly sales.

4.	 For some reason, an employee of the company has kept records of the
weather for the last three years. She has a spreadsheet that contains the date,
the amount of rain on that day, and the high temperature for the day. Create a
regression to see if there is a relationship between the weather and your sales.
(Make up some sample weather data, or find it on the Internet for your area.)

5.	 If you have access to software that performs association or market basket
analysis, this case would be a good application to see what types of parts
might be purchased together.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.
1.	 Identify at least one primary fact attribute that managers would want to track,

along with several dimensions. Create the query and Discoverer worksheet to
analyze the data.

2.	 Identify any data that could be analyzed over time, and create a Discoverer
chart and an Excel spreadsheet to forecast the data.

3.	 Identify any data that could benefit from market basket or association
analysis. If you have access to the software, create the queries and analyze
sample data.

249Chapter 9: Data Warehouses and Data Mining

4.	 Identify any data that could benefit from geographic analysis. If you have
access to the software, create the queries and analyze sample data.

5.	 Identify any correlations or regression analysis that might help managers
better understand the operations and effects of various attributes. If possible,
collect sample data and analyze it.

Objectives

•	 Evaluate and improve the application performance.
•	 Establish backup and recovery methods and plans.
•	 Install simple security controls to provide basic protection of the data.
•	 Protect the forms, reports, and code form unauthorized changes.
•	 Protect the data with user-level security controls.

Chapter Outline

Database Administration
10Chapter

Database Administration Tasks, 251
Case: All Powder Board and Ski Shop, 252
Lab Exercise, 253

All Powder Board and Ski Shop, 253
Security and Privacy, 261

Exercises, 268
Final Project, 269

251Chapter 10: Database Administration

Database Administration Tasks
One of the powerful features heavily pushed by Oracle is its performance under a
heavy load of users. However, obtaining this performance often requires detailed
work by the database administrator. Oracle provides a variety of options to tune
the storage, query execution, and other control features of the database. Addition-
ally, these options change over time as Oracle finds new ways to improve per-
formance. The job of an Oracle DBA is not easy and requires constant learning.
However, a good DBA can make a tremendous difference in the database perfor-
mance. Fortunately, Oracle is beginning to include more automated tools to help
analyze the database and queries and recommend improvements.

Every DBMS maintains an internal list of all of the database objects, such as
table, query, and report names. The SQL standard proposes a common method
to obtain these names from the Information_Schema. However, Oracle has never
implemented this interface. Instead, Oracle has many internal views to retrieve
metadata. For example, you can use the describe command to list the columns in
a table (such as: desc Sale). You can also use the Web-based administration tool to
graphically explore the database. As a side note, an interesting open-source proj-
ect has been developed to create the standard Information_Schema within Oracle.
If you want to use these standardized views, you can download them from https://
sourceforge.net/projects/ora-info-schema/.

Oracle stores a considerable amount of metadata within system tables and sys-
tem views. To make them easier to use, Oracle defines several synonyms that re-
trieve data from these static data dictionary views. Figure 10.1 shows some of
the commonly used synonyms. Any of the three prefixes can be used with the
command synonym to specify which level of objects you want to see. The All
prefix lists all tables in any schema that you have rights to read. The DBA prefix
specifies objects with permissions for the DBA. The USER prefix lists objects
within the current schema. Each schema returns different columns. You can read
the Oracle documentation to identify the columns, or simply run a short query:
SELECT * FROM USER_TAB_COLUMNS WHERE rownum<5; The rownum
constraint reduces the amount of data displayed to a small number of rows so you
do not have to wait for thousands of rows of data. The sample query in Figure
10.1 provides a list of the tables in the schema along with the percentage of space
remaining that is allocated to each table.

Figure 10.1
Prefixes Synonym Description

ALL_

DBA_

USER_

CONSTRAINTS
IND_COLS
MVIEWS
SEQUENCES
SYNONYMS
TAB_COLUMNS
TABLES
TRIGGER_COLS
TRIGGERS
TYPES
USERS
VIEWS

Table constraints and keys
Indexed columns
Materialized views
Sequences
Synonyms
Table columns
Tables
Trigger columns
Triggers
User-defined data types
Users
Views (saved queries)

SELECT Table_Name, Pct_Free FROM USER_TABLES

252Chapter 10: Database Administration

Performance is always a tricky issue in a DBMS. Small tables with a limited
number of joins and a handful of simultaneous users rarely encounter performance
problems. Also, with hardware improvements, performance improvements sim-
ply come down to “buy more processors and disk drives.” However, since one of
Oracle’s strengths is its ability to handle huge amounts of data, you will encounter
some databases that will need changes to improve performance. To understand
some of the performance controls in Oracle, you need to be aware of how Oracle
stores data on the file system. At the base level, the DBA allocates data files on
disk drives. If you are not using a RAID system to automatically store data on
multiple drives, you can accomplish a similar effect by creating separate storage
files on different disk drives. Tablespaces are logical folders that can utilize mul-
tiple data files. Tables are assigned a specific tablespace to store the data. Oracle
also uses rollback segments and redo logs to handle transactions and other situa-
tions where device failure might cause serious problems. As indicated in Figure
10.2, you get a substantial gain in performance if you store the table data and
rollback segments in separate tablespaces on different drives. Two drives spinning
independently means (1) the computer can write the data simultaneously, and (2)
there is less chance of a loss in the event of a hardware failure. Oracle provides a
tablespace map tool to help DBAs monitor the current storage allocation.

Backup and recovery are critical aspects to a database designed to handle thou-
sands of users and processes running at once. In many cases, the database must
run 24-7, so you cannot stop it to make a backup copy. Consequently, even while
you are backing up data, new rows are being added and data is changing. Oracle
has systems to protect all of this data, but if there is a hardware crash, you need to
be careful about putting everything back together.

In some ways, security in Oracle is straightforward. Security and user identi-
fication are an integral component of the DBMS. By default, users have minimal
access to any data in the database. Consequently, the major security efforts con-
sist of identifying the access that people need and then enabling it with an SQL
command. Of course, the security team will want to monitor system and database
activity for potential breaches. Database triggers can be used to provide additional
security controls by logging changes to sensitive tables.

Case: All Powder Board and Ski Shop
Ultimately, the owners of All Powder want to assign individual user permissions.
Although the shop trusts its employees, it often hires students to work as clerks,
and the owners would like to limit what the clerks can do with the application.
The issue is only partly a matter of trust. It is also useful to protect the database

Figure 10.2

Disk Drive

Data Files Data Files

Disk Drive

Data Files Data Files

Tablespace

Table Data

Tablespace

Rollback segments

Redo logs

253Chapter 10: Database Administration

so clerks and other users cannot start changing form layouts or accidentally delete
items.

The managers are also somewhat concerned about performance, particularly at
the checkout machines. Sometimes the checkout lines get hectic, and the applica-
tion has to be fast. Some of the issues can be handled by installing more comput-
ers, that way the salesperson can enter the basic customer data immediately, and
the checkout clerk simply selects the customer and enters the product numbers. Of
course, more computers mean that the company will need a network, and it means
that more people will be simultaneously accessing the data, so the risk of colli-
sions and locks increases.

Lab Exercise

All Powder Board and Ski Shop
DBMS developers learned early that indexes can significantly improve the per-
formance of a relational DBMS. Primary key columns are almost always indexed
because they often represent single-item lookups. Without an index, the computer
has to search each row sequentially to find a match. Oracle automatically builds
indexes on primary keys. However, you also need to think about building indexes
on foreign keys to provide performance gains for joining tables. Most of the ex-
ercises in this chapter require that you have DBA permissions. Occasionally, you
might need system DBA privileges. Usually, only the SYS user is given system
DBA privileges—and you will only be able to use that account if you are running
the database. It is a little tricky to log into SQL Plus as a system DBA. Usually
you log in as yourself first, and then issue the connect command:
CONNECT sys/password@server as sysdba

Be sure to use the correct password and server name.
Activity: Monitor the Application Performance
Most Oracle DBAs use SQL to moni-
tor and manage the database. Howev-
er, this approach requires experience
because it usually means you have
to memorize several system views as
well as create custom views to keep
track of the database. Oracle has devel-
oped several versions of an Enterprise
Manager tool to help less experienced
DBAs perform common tasks. The 11g
version runs as a separate service and
can be accessed as a Web site: http://
server:1158/em/console. You need
DBA privileges to run the system.

Although you can run most of Oracle’s administration tools through SQL,
many of the more useful tools have been consolidated in the graphical enterprise
manager. The Home page of the Enterprise Manager provides an overview of the
database activity. It also contains tabs to three primary areas: Performance, Avail-
ability, and Server. Begin by selecting the Performance tab. Figure 10.3 shows the
basic performance activity charts. These charts are relatively boring because they
show minimal activity on a development machine. In a production setting, where

Action
Log into the enterprise manager and click

the Performance tab.
Select the Advisor Central link under the

Related Links.
Select the Top Activity link under the list

of monitoring links.
Open a PL SQL session and issue several

queries while you monitor the database
performance.

Run some reports or get several people to
alter data at the same time.

254Chapter 10: Database Administration

hundreds or thousands of people are using the DBMS, you will see considerably
more active charts. When you see peaks in usage, you can click the links to obtain
more details information about which users, SQL statements, or applications are
creating the loads.

The Automatic Database Diagnostic Monitor (ADDM) is a powerful man-
agement advisory tool. The system runs in the background and observes several
performance aspects. To view the ADDM results, click the Advisor Central item
under the Related Links section of the Performance page. The ADDM link is the
first item in the Advisors list. The DBMS has to run for a while—preferably a few
days—before the system gets enough data to make good recommendations. Fig-
ure 10.4 shows some of the performance daa from a session—with minimal activ-
ity. With higher usage rates, the system can provide better recommendations, such
as hardware recommendations (I/O subsystem) that suggest moving the data to a
RAID drive. In terms of SQL recommendations, the ADDM advisor just makes
overall recommendations to help you pinpoint areas that can be improved. To im-
prove SQL queries, you need to look at each one.

You can use similar charts in the Performance monitor to locate other potential
problems. If you identify a problem (say CPU usage has jumped), you can drill
down or open related charts to identify the source of the problem.
Activity: Analyze Query Performance
SQL statements can be difficult for humans to improve. Developers and users
look at the query to make sure it correctly answers the business question. How-
ever, queries often can be written in different ways. Long queries involving mul-

Figure 10.3

Activity monitors
Click for details

255Chapter 10: Database Administration

tiple tables and subqueries are even
more complex. Throw in the fact that
few people understand exactly how the
Oracle query optimizer works, and you
start to see that improving the efficien-
cy of a query is difficult. The SQL Tun-
ing Advisor was designed to find the
queries that need the most work, and
help you improve the query with mini-
mal effort on your part.

Oracle uses two major concepts to
improve query performance: statistics and indexes. Internal statistics help the
query optimizer find the smallest set of rows, which reduces search time. But,
generating statistics takes time and requires additional storage, so you again need
to evaluate the tradeoffs.

To drive the optimization process, you must tell Oracle to analyze the data-
base and collect statistics about each table. You can use the older Analyze Table
command, but Oracle now recommends using a special procedure to analyze the
entire database with one command. Figure 10.5 shows the three main commands
in the DBMS_STATS package that gather statistics. Generally, you want to use
the first version because it applies to the entire database. However, the first com-
mand requires SYS DBA permissions and if your database has many schemas

Figure 10.4

Exec DBMS_STATS.Gather_Database_Stats
Exec DBMS_STATS.Gather_Schema_Stats(‘powder’)
Exec DBMS_STATS.Gather_Table_Stats(‘powder’, ‘Customer’)

You might have to run the catproc.sql script first.

Figure 10.5

Action
Find a SELECT query in the Top SQL

list—preferably one from Chapter 5.
Select the query to see the SQL statement

and Oracle’s plan.
Run the SQL Tuning Wizard.
Click the button to implement any

suggestions.
Run the Gather_Statistics command.

256Chapter 10: Database Administration

with relatively static data, you might want to update one schema at a time. Note
that you might have to run the special catproc.sql script that installs the DBMS_
STATS package. This script takes a while to run but only has to be done once. The
DBMS_STATS commands should be run by a user with DBA privileges. Other
procedures within the DBMS_STATS package will return the statistics to special
tables that you can analyze to understand the structure of the database and manu-
ally tune the system. Hold off on running the data gathering commands for a cou-
ple of minutes.

Before starting the SQL Tuning Advisor, you might want to start SQL Devel-
oper and run some queries. You might try running some of the more complex que-
ries from Chapter 5. To run the SQL Tuning Advisor, start the Enterprise Manager
screen, select the Performance tab, and scroll down to the bottom to find the sec-
tion of Related Links. Click the Top Activity link to see charts of the main activi-
ties. From the Top SQL list, select the top entry and click the Go button to analyze
that query.

Figure 10.6 shows how you can choose a time interval to see the statements ex-
ecuted over that period. You can see the actual SQL statement by clicking on the
SQL ID. You can also select several of the statements and ask the SQL Tuning Ad-
visor to examine them and make recommendations. In this example, you would
find that almost all of the statements are background housekeeping processes,
many of them are run simply to provide the data for the Enterprise Manager dis-
play. However, if you run a relatively complex query, you should be able to find it
in the list. From a DBA perspective, this list makes it easy to see which queries are
taking the most resources and therefore need the most attention.

Figure 10.7 shows one of the queries from Chapter 4. Run the query in SQL
Developer. Check the performance monitor to see if the query shows up in the

Figure 10.6

Slide to choose
interval

Select statement
to run advisor

257Chapter 10: Database Administration

top SQL list. If not, use the search page to find it (search for %Customer.Custom-
erID%). The initial screen shows the basic statistics for the query. Select the Plan
tab to see how Oracle intends to retrieve data to answer the query. Steps with high
cost numbers take longer to execute. In this example, the ORDER BY statement
is going to take more resources because it involves a few thousand rows of data.
In a real-world situation, you should examine the use of the query to ensure that
it truly does need to be sorted, and make sure that people really need to see all of
the thousands of rows. Adding a WHERE clause back to this statement to limit the
number of rows would improve the efficiency of the query. You can run the SQL
Tuning Advisor on the query but it will probably not return any useful advice be-
cause the query is relatively simple. For complex nested queries, the Tuning Advi-
sor can provide useful hints on how to improve the query performance.

Figure 10.8 shows a common set of recommendations. The SQL Advisor no-
tices that the query optimizer does not have statistical data on the composition
of tables. If it knows more about the data in each column, it can fine tune the
query process. For example, if it knew that only a few skis are black, the opti-
mizer would know to apply that condition first when a user specifies the color in a
WHERE clause, because this approach would significantly reduce the number of
rows that need to be searched for other conditions. If you trust the Tuning Advi-
sor’s recommendations, you can click the Implement button. You can then click
the Show SQL button to see exactly how to implement the suggestions. You can
also run the commands immediately. You can certainly trust the advisor in this ex-
ample. However, if you look at the SQL, you will see that it creates three separate
SQL statements—one to analyze each table. Since all of the tables in the schema
need to be analyzed, you might as well issue the command to gather statistics for
the entire schema, instead of doing it one table at a time:
	 Exec DBMS_STATS.Gather_Schema_Stats(‘AllPowder)
If you have time, you can rerun the query to see if it the statistics make a dif-

ference. In most cases, the difference is great enough that the query will probably

Figure 10.7

258Chapter 10: Database Administration

not make the Top SQL list, and you will have trouble finding the details. If you
include multiple SELECT statements, or a larger portion of database activity, the
query analyzer can make more sophisticated recommendations.
Activity: Evaluate Storage Options and Indexes
Oracle has several other methods to improve query performance—related to how
the data is stored. The two main tools are indexes and materialized views. An
index can exponentially reduce the number of lookups in a search. On the other
hand, indexes have to be updated whenever data is changed, deleted, or added. A
materialized view is a snapshot of the data that is periodically updated. Remem-
ber that joins can be expensive in terms of resources. Indexes help by providing
faster search capabilities in a sorted list. For instance, to find a name in a phone
book, you would not want to start at the beginning and read every name. Instead,
you know the list is sorted, so you can start in the middle, and move forward or
backward in large jumps to find a specific name. A sorted index works the same
way, by exponentially decreasing the time required to find an entry—as few as 20
lookups for a binary search on one million entries.

A materialized view goes even further. It creates a temporary table structure that
holds non-normalized data. It builds all
of the joins across the tables and moves
everything into the new view. The
DBMS no longer has to perform the
joins when retrieving data. But, queries
will not have completely up-to-date
data since the materialized view is only
recomputed at certain intervals. Many
decision support systems can live with

Figure 10.8

Main
recommendation

Action
Run several queries from Chapters 4 and

5 to establish base data.
Run the SQL Access Advisor.
Pick the option for Both Indexes and

Materialized Views.
View the recommendations and examine

the proposed SQL.

259Chapter 10: Database Administration

this slightly out-of-date data. When a manager runs a query asking for total sales,
it rarely matters if the query missed a couple of sales that took place in the last five
minutes. But, as DBA, you still need to make the final decisions—both in terms of
indexes and materialized views.

Placing too many indexes on a table can result in even worse performance.
Your job is to find the balance with enough indexes to improve performance for
key tasks, but not so many that other portions become too slow. This balance is
unique to each application and can be difficult to find. Ultimately, you will have to
fine-tune the application over time. A few simple rules help you begin: (1) All pri-
mary keys should be indexed, (2) Join columns should be indexed—particularly
in large tables, (3) Heavily searched or sorted columns should be indexed, and (4)
Transaction tables that are constantly changed (such as SaleItem) should have few
indexes.

An important step for the query processor is to select the best approach for
joining tables and restricting rows to retrieve data as quickly as possible. Part of
this decision depends on the availability of indexes. Ultimately, the best perfor-
mance depends on the amount and distribution of the data in the table. For these
reasons, Oracle has implemented a cost-based optimizer that examines some sta-
tistics about the data to determine how to execute a query. This same optimizer
can be used to help tune a query and identify which columns should be indexed.

You can use the SQL Access Advisor to obtain recommendations on both in-
dexes and materialized views. The most reliable way to run the advisor is to first
execute several queries that use JOIN statements on your database. You should
consider running several of the queries from Chapters 4 and 5 to provide a set of
data for the advisor. (The advisor does contain an option to create a hypothetical
workspace where you can pick all tables in a schema, and maybe it will work
someday.) After you have run a few queries, go to the Advisor Central page and

Figure 10.9

Choose all options

260Chapter 10: Database Administration

select the SQL Access Advisor link. For the most part, you can use the default
choices. As shown in Figure 10.9, you usually select the option to evaluate Both
Indexes and Materialized Views on the second step. On the third step (not shown),
make sure you change the Window to Standard and verify Start Immediately is
selected.

The advisor will schedule the job and you can click the Refresh button on the
task page to see when it finishes. Click the option to View Recommendations, and
click the Show SQL link to see the detailed proposal.

Figure 10.10 shows a portion of the recommendations. Your results will vary.
With small workloads, the Advisor might not find any useful recommendations.
The tool is designed to analyze heavy workloads and complex queries. Remember
that you already gathered statistics for the underlying tables in the prior exercise.
Also, Oracle automatically builds indexes for primary key columns. Consequent-
ly, the main recommendation is to create a materialized view between the Sale
and Customer tables and then gather statistics for it. Oracle even makes it easy
to run the SQL statement to accept the recommendations. However, you should
think about the implications of the materialized view for a few minutes. In a retail
store, the Sale table is a transactions table where rows are constantly inserted into
the table. You might consider using the materialized view if you limit the times it
is updated to once or twice a day so that it does not bog down the system during
the major selling times. You should also make sure users understand that the data
from the queries is likely to be dated. Also, make sure that your application forms
use the raw underlying tables instead of the materialized view.

If you have problems running the Access Advisor, you can obtain the same
results by running a SQL procedure directly. You need the Advisor role to run the
scripts. You can find the scripts in the DBMS_ADVISOR package. The Oracle

Figure 10.10

CREATE MATERIALIZED VIEW “JPOST”.”MV$$_00160000”
REFRESH FAST WITH ROWID
ENABLE QUERY REWRITE
AS SELECT POWDER.SALE.ROWID C1, POWDER.CUSTOMER.ROWID C2,
“POWDER”.”CUSTOMER”.”ADDRESS”
M1, “POWDER”.”CUSTOMER”.”CITY” M2, “POWDER”.”CUSTOMER”.”CUSTOMERID” M3,
“POWDER”.”CUSTOMER”.”DATEOFBIRTH” M4, “POWDER”.”CUSTOMER”.”EMAIL” M5,
“POWDER”.”CUSTOMER”.”FIRSTNAME” M6, “POWDER”.”CUSTOMER”.”GENDER” M7,
 “POWDER”.”CUSTOMER”.”LASTNAME”
M8, “POWDER”.”CUSTOMER”.”PHONE” M9, “POWDER”.”CUSTOMER”.”STATE” M10,
“POWDER”.”CUSTOMER”.”ZIP”
M11, “POWDER”.”SALE”.”CUSTOMERID” M12, “POWDER”.”SALE”.”EMPLOYEEID” M13,
“POWDER”.”SALE”.”PAYMENTMETHOD” M14, “POWDER”.”SALE”.”SALEDATE” M15,
“POWDER”.”SALE”.”SALEID”
M16, “POWDER”.”SALE”.”SALESTAX” M17, “POWDER”.”SALE”.”SHIPADDRESS” M18,
“POWDER”.”SALE”.”SHIPCITY” M19, “POWDER”.”SALE”.”SHIPSTATE” M20,
“POWDER”.”SALE”.”SHIPZIP”
M21 FROM POWDER.SALE, POWDER.CUSTOMER WHERE
POWDER.CUSTOMER.CUSTOMERID = POWDER.SALE.CUSTOMERID;

begin
dbms_stats.gather_table_stats(‘”JPOST”’,’”MV$$_00160000”’,NULL,
 dbms_stats.auto_sample_size);
end;

Primary materialized view
joining Sale and Customer

Gather statistics for the new view

261Chapter 10: Database Administration

documentation explains the process and provides sample scripts. The basic steps
are:
DBMS_ADVISOR.CREATE_TASK(…);
DBMS_ADVISOR.CRAETE)SQLWKLD(…);
DBMS_ADVISOR.ADD_SQLWKLD_REF(…);
Sql_text := ‘SELECT …’;
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(…);
DBMS_ADVISOR.EXECUTE_TASK(task_name);

A copy of the script is included with the files for this chapter (SetupAccessAd-

visor.sql). You can define multiple SQL statements and add them to the work load.
Including more queries gives the advisor more information to work with and it
can design more sophisticated recommendations. After you have edited the script,
run it (Exec SetupAccessAdvisor). You have to retrieve the results into a variable
to see them:
VARIABLE buf CLOB;
Set long 50000;
Execute :buf := DBMS_ADVISOR.GET_TASK_SCRIPT(‘First_
Task’);
Print :buf;

Oracle has additional options for controlling how data is physically stored.
These options are usually established when a table is created, so you can read
the Oracle documentation on CREATE TABLE to see the list of options. Com-
mon examples include partitions, clusters, and hashed tables. Partitions are used
to split tables so portions are stored on different physical devices. Clusters are
used to group items together. For example, storing the sales data along with each
customer so all of the data is retrieved in one pass. Hashed tables are similar to
specialized indexes, where a single row can be physically retrieved based solely
on the key value. Although these tools have been useful in the past, hardware
solutions are generally preferable today. In particular, you can get substantially
greater performance gains by storing data on RAID controllers.

The expert recommendations are an easy way to quickly identify good index
candidates. However, you must still be cautious. Remember that adding indexes
to a table speeds up queries but slows down deletes, inserts, and updates. Every
time a row of data is changed, all of the indexes on the table have to be rebuilt.
The expert analyzer tries to evaluate how the tables are used—based on recent
queries, particularly the slow-running queries. However, you should still careful-
ly evaluate its recommendations. Once the database is in production mode, you
should keep good records of any changes you make and then observe the process-
ing times carefully for a couple of weeks to see how your changes affected the
overall database performance.

Security and Privacy

Activity: Backup and Recovery
Backup and recovery of an Oracle database can be straightforward, or it can be
complex. If you are able to shut down the entire database, you could simply use
the operating system utilities to copy the underlying data files and the system con-
trol file. More realistically, the business will want to run the database without in-
terruption. Oracle uses its redo logs to handle this situation. The underlying data

262Chapter 10: Database Administration

is backed up at a certain point in time.
Data that is being changed as the back-
up is taking place is written to the redo
logs. These logs are also backed up so
the database can recover everything up
to the point of the backup, and then roll
forward the additional changes from
the redo logs.

In the Oracle Management Server,
Oracle provides the RMAN (recovery
manager) tool to automatically back up
a database, as well as initiate the recov-
ery steps if something happens to the database. You run this tool from the com-
mand line on the server (rman target sys/password@database). Use the SHOW
ALL command to get a status listing of the current configuration. You will have to
read the Oracle documentation for a complete explanation of the commands. Once
you have identified and configured the backup tape or disk drives, you can issue
the backup command to make a copy of the database.

In order to back up the database while it is running, Oracle requires that the
database be running in Archive Log Mode. By default, the initial database is usu-
ally running in No Archive Log mode. The easiest way to change this setting is
to use the enterprise manager, select the database, the instance, and the configura-
tion options in the tree view. Under the Recovery property tab, you can check the
box to select Archive Log Mode. This action does mean that your database will
continually use more disk space. As changes are made to the database, they will
be permanently saved to a set of archive files. You will generally have to stop and
restart the database for this change to take effect.

You can use the Maintenance tab in the Enterprise Manager to configure most
backup and recovery actions. Figure 10.11 shows the main options under the
Availability tab. You should first check the Recovery Settings link. Most likely
the NoArchiveLog option is set, so you will not be able to perform a hot back-
up of the database. By default, the only way to backup the database is to shut
it down and make copies using the operating system utilities. This option is set
when you installed Oracle and chose the default database. For now, you do not
need to change the settings because you might have to rebuild your database. In a
production environment, you would alter the setting when you build a customized
initial database.

 You can also check the Backup Settings link to see how to specify the backup
device. If you have a tape system attached to the server, you can tell Oracle to
dump the entire database to tape. The backup process will automatically write
everything to multiple tapes if necessary. The other option is to write the files to
removable hard drives. Drives are considerably faster than tapes for both writing
and retrieval.

Ultimately, the actual backup options within Oracle are becoming less useful
as the underlying hardware changes. In most cases, you will want to run a RAID
system of drives and configure the system so that it automatically writes a backup
copy of every item stored to a drive. If one drive fails, you can simply replace
the drive and they system will automatically recover—in many cases while leav-
ing the entire database online. RAID systems generally require their own backup
systems, so you will use the operating system tools to backup the drives. In a situ-

Action
Start the Enterprise Manager as

SYSDBA and switch to the Availability
tab.

Click the Recovery Settings option to
check the NoArchiveLog status.

Return to Availability and check the
Backup Settings link.

If you have permission, and if you have
drive or tape facilities you can try to
create a backup.

263Chapter 10: Database Administration

ation where you absolutely need to guarantee recoverability of the data, you could
run both the operating system and Oracle backup tools; essentially making two
copies of the data. But, you need enough time and storage space available to copy
that much data. In any case, it is always easiest to recover a cold database copy
than a hot copy. If at all possible, you should try to schedule downtime so that you
can make complete copies of the database at least once in a while.
Activity: Setting User-Level Security Controls
The Oracle database system is built and distributed with a complete security sys-
tem. Users must log in to the system to see any of the data. The DBA can create
new users and assign rights to the users or to groups of users. Initially, users have
no permissions. Users and security rights can be created through SQL commands
or by using the enterprise manager. The enterprise manager provides a relative-
ly easy-to-use graphical interface, and is useful when you need to make simple
changes or check on a particular item. However, if you need to set several security
permissions at one time, it is often easier to write the SQL commands into a text
file and execute the file in SQL Plus. If you do not happen to remember the exact
SQL syntax, it is sometimes helpful to set up a test example using the enterprise
manager interface, and copy the SQL command that it writes.

The first issue to face is that Oracle needs to be able to identify the individual
users. Figure 10.12 outlines the basic process. The main database application con-
tains forms, reports, and tables. As the
DBA, you want to assign individual
permissions to separate users for each
object. For instance, sales clerks would
be able to read some supplier data, but
not change it, and probably would not
need access to the main supplier form.

Figure 10.11

Action
Identify the SalesClerk and

SalesManagers roles and determine
what permissions are needed on the
basic Sale, SaleItem, Customer, and
Inventory tables.

Create three new users and assign them
simple passwords.

264Chapter 10: Database Administration

But, before you can assign any permissions, the database application needs to be
able to identify the user.

Identifying a user is an important step in securing a database or a computer sys-
tem. Oracle has two primary means of identifying users: (1) Individual accounts
can be created within the database, where users are assigned a unique username
and a password, or (2) User accounts can be created on the computer that is re-
sponsible for handling the login and passing the username to Oracle. Each organi-
zation must balance the costs and benefits of the two methods. It is relatively easy
to set up a new user account within Oracle. The main drawback to this approach
is that users need to remember yet another username and password. Firms are
increasingly looking for single sign-on systems where users log into a central di-
rectory and all computers and applications pull the user identity from this central
server.

Before attempting to create users and assign security, you should write down a
list of usernames and initial passwords that will be asked to enter into the work-
group database. While you are identifying users, you should also classify them
in terms of tasks or groups. You almost never want to assign permissions to in-

Figure 10.12

Database Application

Form1 Form 2 Form 3 Form 4

User 1 User 2

Workgroup database
Usernames and
passwords

Database
Administrator Assign permissions

Sales clerksSales Managers

Sales
table

Customer
table

Item
table

Sales clerks S,U,I S,U,I S
Sales Managers S,U,I,D S,U,I S
Rental Managers S,U,I S

Individual users

Figure 10.13

265Chapter 10: Database Administration

dividual users. Instead, you place users
into groups and assign database per-
missions to the roles of these groups.
Figure 10.13 illustrates the main con-
cept. By assigning permissions to the
role, you should only have to set per-
missions once. As individual roles are
added to or removed from users, their
permissions automatically change.

Creating a new user account is rela-
tively easy with the enterprise manager
tool. With DBA permissions, click the
Server tab and then the Users link under the Security listing. Click the Create but-
ton to open a form for new users. As shown in Figure 10.14, you really only need
to enter the name of the new user account and the password. If necessary, you can
specify that the user is to be authenticated by using the operating system account
(external) or an Oracle global directory (global). You can also specify the main
tablespaces for this user, but it is easier to change those later. Remember that all
tasks in Oracle are really handled by SQL. Click the Show SQL button to see the
commands used to create a new user. The command is usually straightforward. In
fact, most DBAs keep a simple script handy to generate user accounts since it is
faster than opening the Enterprise Manager. You can also write a PL/SQL program
that would read the list of names and passwords from a file or table and execute
the statement to create each account automatically.

The next step is to create the roles of SalesClerk and SalesManager. Return to
the main Administration page and click the Roles link under the Security listing.

Action
Create the SalesClerk and SalesManager

roles.
Assign appropriate table permissions to

the new roles.
Assign one of the roles to each of the

new users.
Use the Sales form to test the accounts

and roles.
Test the roles by using SQL statements.

For many accounts at
once, use SQL

Internal or external
authentication

Need to assign
quota later

Figure 10.14

266Chapter 10: Database Administration

The list of system roles already created is extensive, and someday you should ex-
plore those choices to see what actions are supported. For now, you simply click
the Create button to build a new role. Enter SalesClerk as the name of the new
role. Double-check Figure 10.13 to see what permissions are needed by users in
this group. You will also need to assign a quota on the main tablespace (Users).

Note that all of the permissions are object privileges, so click the Object Privi-
leges link in the Role screen. Select the Table option and click the Add button. The
form is configured to assign permissions to a group of tables. Click the flashlight
icon to open the table browser. Pick the tables where the sales clerks will need the
SELECT permission—which is most of the tables. When you click the Select but-
ton on the table form, the names of the selected items will be entered in to the box
on the first form. Choose the SELECT option and click the arrow button to move
it to the right-side box. When you click the OK button, you will be returned to the
main assignment screen. Repeat the process for tables that the sales clerks can up-
date, insert, and delete. This list is shorter, and probably includes Sale, SaleItem,
Rental, RentalItem, and possibly Customer. More importantly, it does not include
the Inventory or Model tables because clerks should not have the ability to change
prices or delete items. When all of the permissions are correct, you can click the
Show SQL button to see the assignment command. As a DBA, you generally want
to copy this list and store it in a text file to make it easier to modify later and to
provide an easy record of the permissions granted to this role. You can click the
OK button to run the script and assign the permissions to the SalesClerk role.

Once the users and the roles have been created, it is relatively easy to assign the
roles to each user. Figure 10.16 shows the process using the enterprise manager.
Return to the Users administration page and select the CJackson user you created
earlier. Click the Roles link at the top of the page. You will notice that he has been
granted the CONNECT role by default. You really need to look at the permissions
granted to the CONNECT role. Most DBAs are reluctant to assign this role to
general business users—because it gives them permission to create tables, views,
and sequences. Most DBAs would only grant users the CREATE SESSION per-
mission—which is required to enable the user to log in. So, you really should re-

Figure 10.15

Select table
object

Grant
permissions

267Chapter 10: Database Administration

move this role, then return to your SalesClerk role and add CREATE SESSION as
a System Privilege. As shown in Figure 10.16, it is straightforward to add roles or
remove them from a user account. Again, once you click the OK button, you can
check the SQL statement to see how the simple commands. Although the Enter-
prise Manager seems easy because of its ability to pick items from lists, it is much
simpler to write SQL scripts when you have to perform a process several times.
How often are you going to have to create users and assign roles? If you use a
script, you can test it and verify that the permissions are correct. In the future,
when you create a new user, you simply run the script and you know that it will be
accurate. If you have to configure each new account person individually with the
Enterprise Manager, you are likely to make mistakes.

When defining roles and assigning them to users, it is important to remember
that users are often assigned multiple roles. Security is more effective when the
roles are assigned with relatively small granularity. That is, instead of creating two
or three all-encompassing roles and assigning one to a person, it is better to break
roles into smaller pieces and assign multiple roles to each person. In the All Pow-
der case, you should consider separate roles for Sales, Rentals, Receiving, Add-
ing Customers, and so on. Then sales clerks would be granted the roles for sales,
adding customers, and perhaps one or two other tasks. If a person is promoted or
moved to a different position, you simply have to change the role assignment to
match the new job. It is important that the roles and their names closely match the
business jobs.

Of course, you need to test the security assignments. Try the test first using the
forms—which is how the sales clerks will generally use the application. Notice
that the forms themselves are stored outside the database, so they are not directly
subject to the security conditions. However, as soon as the form tries to retrieve
data, the security conditions are imposed, so unauthorized users will not be able to
see any data. In fact, the first time you try to run a form as a sales clerk, you will
probably receive an error message. You often need to test and retest each form
until you get the security permissions right.

Figure 10.16

268Chapter 10: Database Administration

It is also possible to add security roles and conditions to the JDeveloper forms
themselves. The roles created within the database in this lab are the best place to
start. You must always protect the data at its source, so that if someone bypasses
the forms the database controls will still limit the access and changes. However, as
briefly explored in Chapter 9, you can create separate logins for the forms. In fact,
for the employees, JDeveloper has tools that enable you to use the logins within
Oracle. That way, employees can be given separate Oracle logins that work for
both the database and the applications. This approach is a bad idea for custom-
ers—because you do not want to create accounts within your database for each
external customer. Instead, you add a username and password column to the Cus-
tomer file and use those credentials to validate the user. Then the application can
use the information to customize menus and block access to the forms.

Exercises

Many Charms
Samantha and Madison do not believe that security will be a critical issue at Many
Charms. The database will run on one machine and rarely be used by anyone ex-
cept the two of them. On the other hand, they do need a system on which it is easy
to create backup copies. And, for some security, they are willing to use the single
database password. On the other hand, they are concerned about performance.
Although they do not expect too many orders arriving at one time, they do want to
examine some lengthy reports to evaluate sales trends.
1.	 Run the performance analyzer to improve the performance of the database

and identify indexes needed. Also check the performance for the report
queries.

2.	 Create a backup option that makes it easy for the managers to create a backup
copy. As much as possible, keep it down to one button. But provide some
notices about moving the backup copy offsite in case of fire.

3.	 Add the security provisions needed by Samantha and Madison.

Standup Foods
Security is a serious concern for Laura. The database contains a large amount of
data about employees—and celebrity preferences. Managerial employees will
need access to the database to enter a considerable amount of information regard-
ing other employees and the status of the event. Consequently, employee access
has to be carefully thought out. Managers should have the ability to enter data on
employees who report to them, but should not be able to even see most data on
other employees. You will have to use queries to provide this level of security.
Assigning access to the entire employee table would give managers too much per-
mission. Instead, you will have to set up queries that retrieve the data for specific
approved managers and then give the managers access to the data through that
query.
1.	 Run the performance analyzer to improve the performance of the database

and identify indexes needed. Also, check the performance for the report
queries.

2.	 Create a backup option and a written set of procedures that Laura can follow
to ensure the data is protected.

269Chapter 10: Database Administration

3.	 Create the security provisions needed by Laura. Concentrate on the
permissions needed to handle evaluation of employees by a manager—
without allowing the manager full access to data for all employees.

EnviroSpeed
The knowledge in the EnviroSpeed database is a major strategic asset to the com-
pany. This data represents experience gained over several years and enables the
company to be considerably more productive and profitable than its competitors.
Tyler and Brennan believe it is critical to protect this asset. On the other hand, it
is also critical that employees and hired experts have immediate access to all of
the knowledge during a disaster cleanup. Security controls need to be set carefully
to protect the database from outside hackers. Fortunately, Brennan and Tyler can
trust all of the employees and experts and do not believe it is necessary to track
the exact usage by each person to prevent theft.
1.	 Run the performance analyzer to improve the performance of the database

and identify indexes needed. Also, check the performance for the report
queries.

2.	 Create a backup option and a written set of procedures to follow to protect
the database.

3.	 Create the security provisions needed. Concentrate on protecting the data
from external attacks.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you pick one
or your instructor picks one, perform the following tasks.
1.	 Run the performance analyzer to improve the performance of the database

and identify the indexes needed. Also check the performance for the report
queries. Identify the main areas that will be stressed as loads increase.

2.	 Create a backup option and a written set of procedures to protect the
database.

3.	 Identify the main risk factors and implement the security provisions needed
to protect the data, but still ensure users have the access needed to perform
their jobs efficiently.

270

Objectives

•	 Create database links to connect data from multiple sources.
•	 Replicate a database and synchronize the changes.
•	 Create Web pages to edit data over the Internet.
•	 Export and import data as XML files.

Chapter Outline

Distributed Databases
11Chapter

Location, Location, Location, 271
Case: All Powder Board and Ski Shop, 272
Lab Exercise, 272

All Powder Board and Ski Shop, 272
The Internet, 276

Exercises, 279
Final Project, 280

271Chapter 11: Distributed Databases

Location, Location, Location
Even small companies often need to access data in multiple locations. This distrib-
uted access generates several issues in database management. The most important
question you will face is where to store the data. The answer depends on how the
database is used, how fast the connections are, and whether everyone needs 24-
hour access to immediately current data. The first step in designing a distributed
system is to answer these questions and determine the most efficient method for
handling data updates in the various locations. Note that efficiency also includes
cost issues.

Oracle provides several tools to support distributed access to data. The three
primary approaches are (1) Internet access, (2) linked databases, and (3) data rep-
lication. You could also make the argument that the cluster system is a distributed
system on a local scale. The primary purpose of the cluster system is to improve
performance and reliability. You can use storage area networks to separate the data
files from the processors. The grid system enables multiple computers to work on
the same data at the same time. At some level, Oracle treats all of this hardware
as a single (really fast) system. On the physical side, you gain flexibility by being
able to move, change, and add hardware without altering the database design.

In terms of distributed access, the use of Web-based forms and reports provides
considerable flexibility in terms of client access. The database itself has become
more centralized, which makes it easier to manage. Yet, managers can access the
information from anyplace with an Internet connection. As wireless devices, in-
cluding cell phones, gain more Internet features, managers will have almost con-
tinuous access to the data regardless of location. And this power comes almost
automatically when you build Web-based forms and reports. Since the other labs
cover these tools, this chapter will focus on database links and replication. Just
remember that whenever you encounter the need for a distributed system, you
should first ask whether the problem can be solved using the Internet.

Figure 11.1

Server

Network
switch

Offices/Managers

Checkout

Rental desk

272Chapter 11: Distributed Databases

Case: All Powder Board and Ski Shop
Initially, you might think that All Powder with only one store would not care
much about distributed databases. Certainly, if the owners consider adding a sec-
ond store, the issues become more complex. This situation will be examined in a
second lab exercise. In the meantime, even with one store some basic distributed
issues arise. The distributed aspect arises because there will be several locations
within the store that need access to the database—the checkout stations, the rental
desk, and a couple of offices. Figure 11.1 shows that each of these locations will
have a computer that needs to run the forms and share the data.

Distributed questions within a single building are much easier to solve than
those spreading across wide geographic areas. The reason is because of the speed
of local area networks. Within the store, it is relatively easy to install a high-speed
LAN that can transfer data as quickly as a typical computer can transfer data to an
internal hard drive. Consequently, it is possible to store the database in one loca-
tion and share it with all of the other computers—with no noticeable delays. You
have already built the system so that all of the data files, forms, and reports run on
the server. To provide access from multiple locations, all you need to do is ensure
that each station has a machine with a Java-enabled Web browser and a network
connection back to the server. You might even consider portable wireless devices
for some of the employees so they can help customers throughout the store. The
key point is that the database will run without any changes.

Lab Exercise

All Powder Board and Ski Shop
The existing single server with network access will work well as long as most
of the operations occur in one location. How well would this system work if the
company acquires an inventory warehouse or opens another store? The answer
depends on how fast of a connection the company is willing to lease between the
other locations and the database server. With a relatively high-speed connection,
the Web-based approach will work fine. There might be slight delays if everyone
opens major reports at exactly the same time, but most of the time, the connection
is simply transferring small amounts of transaction data. With only a few users,
even a fractional T1 line or frame relay might be sufficient to handle the typical
loads. In a real-life situation, you could monitor the amount of traffic and network
usage within the existing store to get a better idea of how much bandwidth would
be needed to connect to a second store.

On the other hand, you could eventually reach a situation where you need faster
response times at each location. In this case, you might split the database and run
two or more servers. The servers would support local operations, but some reports
would need to retrieve data from both databases. As long as you have a network
connection, you can create a database link that enables forms, reports, and SQL to
access data from any connected database. The process is relatively easy, but you
will need to think about security issues.
Activity: Create Database Links
The first step is to find or create a second database. It is even better if you hap-
pen to have two machines running as Oracle servers. As an example, you can
create multiple databases that run on the same server. The easiest way to create

273Chapter 11: Distributed Databases

a new database is to start the Database
Configuration Assistant from the main
Windows menu Oracle Home/Configu-
ration and Migration Tools. Create a
unique SID for the new database (such
as Test). The tool creates a new admin-
istration link in the main menu that you
can use to connect to the database. Use
it to create a user account or use one
of the system accounts. Start SQL De-
veloper and add a new connection. The basic connection is the same as before:
computer=localhost, port=1521, but use the new SID=test. Now you can log on
and create a table. To illustrate a database link, you only need a small table with a
couple of rows of data. Figure 11.2 shows a small Customer table with a couple of
rows of sample data. This new database and table will be the target link.

Open a new Worksheet in your original AllPowder connection within SQL De-
veloper. You must have DBA permissions in this account. In this main database,
you want to create a database link to the target you just created. Figure 11.3 shows
the SQL statement needed to create the database link. It needs to be issued only
one time. Now you can access tables in the other database by adding the name of
the link to any SQL commands as shown in the SELECT statement. You should
create a descriptive name for the link so you remember which server you are us-
ing. In this example, the server would be for the New York store. In general, avoid
being too specific about a location, because you might want to move the hardware
later. The link name should reflect the business operation. The other tricky part of
the link is that it specifies a remote username and password. If you do not specify
the CONNECT TO clause, the system will attempt to connect with the current
username/password from the local system. This approach would require that you
establish identical user accounts on both machines. From a security perspective,
it might be slightly safer to create identical accounts, but it takes time and effort
to continually synchronize the accounts and passwords. The USING clause refer-
ences the hostname of the computer that you entered when you created the net-
work connection to the database. The link needs to be created only one time. From
this point, you can reference the table much like any other table in your schema.

Figure 11.2

CREATE TABLE Customer
(CustomerID INTEGER,
 LastName	 VARCHAR2(15),
 FirstName	 VARCHAR2(15),
 Constraint pk_Customer Primary Key (CustomerID)
);
INSERT INTO Customer (CustomerID, LastName, FirstName)
Values (1,’Smith’, ‘Adam’);
INSERT INTO Customer (CustomerID, LastName, FirstName)
Values (2,’Keynes’, ‘John’);
INSERT INTO Customer (CustomerID, LastName, FirstName)
Values (3,’Samuelson’, ‘Paul’);
INSERT INTO Customer (CustomerID, LastName, FirstName)
Values (4,’Robinson’, ‘Joan’);
Commit;

Action
If necessary, create a second database,

preferably on a different machine.
Create a small Customer table and load it

with four or five rows of data.
Return to your main database and create

a database link to the target.
Run an SQL statement that retrieves data

across the link.

274Chapter 11: Distributed Databases

Of course, if the actual network connect is slow and you try to retrieve thousands
of rows of data, you will have to wait quite a while. So, be careful and think about
how much data your query might attempt to return over a database link.

If you create a couple of queries in SQL Developer using database links, you
will quickly grow tired of having to specify the name of the link, the database
schema, and the name of the table. Even if you do not use a distributed database,
you can quickly grow tired of specifying the name of a schema to identify tables
that are commonly used. Oracle provides a shortcut to make it easier to reference
tables anywhere in the database. You simply create a public synonym. Figure 11.4
shows the basic syntax for creating a synonym that points to the standard emp
(employee) table for the common Oracle scott database schema. Notice how the
synonym simplifies the following SELECT statement, since the synonym emp re-
places the full name of the table. In fact, synonyms and database links create loca-
tion transparency. Users and applications use the synonym, and you can change
the physical location of the data table simply by changing the value of the syn-
onym. Users never need to know or care where the data table is located.

Activity: Replicate and Synchronize a Database
By themselves, database links do not
provide replication of data. In fact, you
generally separate the data and each
database holds only the data needed in
each location. Oracle’s query processor
automatically takes the distributed data
into account and attempts to minimize
the transfer of data across linked data-
bases. Linked databases are often connected via slower network lines, so transfer-
ring large amounts of data is usually bad. Oracle uses its cost analysis system to
find the best way to retrieve the data.

However, sometimes you need to replicate portions of the database, so that the
same data exists at multiple sites. For example, you might want to keep a single
product catalog that is shared by all stores. As you make changes to the catalog,
you want the changes pushed to the replicas stored on the remote databases. With
Oracle 11g, the most common (possibly the only) solution is to use materialized
views. Recall that a materialized view is a snapshot of the data. It is often used to
improve query performance by joining tables ahead of time. However, a material-

Figure 11.4

CREATE DATABASE LINK NewYork
 CONNECT TO RemoteUser IDENTIFIED BY t1
 USING ‘dbhostname’;

SELECT * FROM Customer@NewYork;

Figure 11.3

CREATE PUBLIC SYNONYM emp
FOR scott.emp@sales.us.mycompany.com;
SELECT LastName, FirstName from emp;

Action
In the Enterprise Manager select the

Schema tab.
Click the Materialized Views link.
Click the Create button.
Create the EmployeeMV.

275Chapter 11: Distributed Databases

ized view can also be used on a single table or even a portion of a table (using a
query with a WHERE clause and one table).

To create a replica, you simply create a query that extracts the data you need
and store it as a materialized view in the replicated database. You then assign the
materialized view to a refresh group to specify how often it should be updated.
Figure 11.5 shows the basic process using the Enterprise Manager. However, it
is straightforward to create the initial view using SQL. You can click the Show
SQL button to see the options. If you do not have DBA permissions, you can sim-
ply type the SQL statements using SQL Plus. However, note that you will need
the CREATE MATERIALIZED VIEW system privilege. The basic command is
simply:
CREATE MATERIALIZED VIEW EmployeeMV USING INDEX REFRESH
FORCE ENABLE QUERY REWRITE AS SELECT…
You can select different options, but these are commonly used to speed up the

refresh process.
After the materialized view has been defined, you can use the Enterprise Man-

ager to check and modify the refresh timing. Figure 11.6 shows the basic options.
For a replica, you will generally want to schedule the updates during a slow busi-
ness time—usually overnight when the data transfers will not interfere with other
activity. The frequency of the updates depends largely on the amount of data to
be transferred. If it is going to take several hours to update the view, you will
probably have to limit when the data can be transferred. On average, most people
would probably prefer to update data at least once a day, but sometimes you can
get by with out of date data. Other times, managers need relatively current data,
so you might have to schedule updates more than once a day. Just make sure you
test the system and monitor network traffic to ensure you do not interfere with
other critical business activities.

Figure 11.5

Specify the
refresh interval

Enter SELECT query
to retrieve data

276Chapter 11: Distributed Databases

Note that with materialized views, you do not want users making changes to
the distributed copies. If anyone does need to make a change to the data, it should
be forwarded back to the original database. This way changes are centralized and
they will all be distributed to the replicas on schedule. If you really do need to let
people in the outer offices make changes to data, you should split the tables and
make each group responsible for its own set of data. You can use materialized
views to pull the local data back to the home office if necessary. Allowing changes
to the same piece of data in different locations is challenging. What happens when
two people alter the same piece of information? The DBMS will not recognize the
collision until the materialized views are updated, and then it will not know which
version to accept. Consequently, a person would have to be notified to make the
decision about which change to keep. If a system needs human intervention, you
might as well get them involved right at the start so they can control the process at
the beginning—where they are less likely to make mistakes.

The Internet

Activity: Building Web Pages with JDeveloper
Today, the best way to handle distributed databases is to avoid them. Instead, get a
good Web server with a high-speed connection. Build applications in JDeveloper
as you did throughout this workbook. Give users simple PCs or tablets or even
cell-phone Web browsers. The data and the applications stay in a single location
making them easy to update, backup, and monitor. Users get mostly unlimited ac-
cess from any location.

The only challenge to the Web-based approach is that you often have to deal
with “old” applications. It is easy to move the database itself to a central server.

Figure 11.6

277Chapter 11: Distributed Databases

But it might take huge amounts of time and money to rewrite all of the existing
applications as Web forms and reports. Still, it needs to be done eventually, and
you can start with the applications that are used the most often by people who
travel outside the main company.
Activity: Transferring Data with XML
One issue you will face with distrib-
uted databases is the need to transfer
data among differing database systems.
Note that SQL Developer can connect
to other types of database systems,
such as SQL Server. But you would
need network access and permissions
on that database. More likely, you need
to import or export data to external da-
tabases. For example, a supplier might
send you product information electronically. Since the supplier does not know
what type of database system you have or how your database is organized, it can
be difficult to provide the data in a format that your system can read. The process
is complicated when suppliers have thousands of customers like your shop. Sup-
pliers have no desire to create thousands of different electronic files. Instead, they
should be able to send one file in a standard format, and your system should be
able to identify the necessary data, select it, and import it into your database. This
dream is not quite reality, but XML (eXtensible Markup Language) was created to
make it easier to exchange data among disparate systems.

Exporting data in XML format is relatively easy with Oracle. Oracle has sev-
eral tools to scan a relational table and produce an XML format. The DBMS_
XMLGen package will read or write an entire table and create the output file in
one piece. It also offers some options to control the layout of the file. It can create
nested subsections, such as an items order on an order form. Figure 11.7 shows
the basic syntax for creating an XML file using four columns in the Employee ta-
ble. One catch is that the SELECT command prints a heading at the top of the file,
so you have to edit the output file and delete everything before the <? xml … ?>
line. The DBMS_XMLGen package can also be used to import data from a file.

SQL Developer has easier ways to export data in different formats. Whenever
you run a query, you can right-click the results grid and choose the Export option.
From there, you can select XML or CSV or Text among other options. You might
have to edit the resulting file to clean it up, but that step is usually optional.

Action
Run the DBMS_xmlgen command to

export some employee data.
Edit the file to remove the header.
Verify that it works using the browser.
Write an SQL query in SQL Developer

and right-click the results to Export the
data to an XML file.

spool C:\Database\EmployeeList.xml
SELECT DBMS_xmlgen.getXml(
‘SELECT EmployeeID “EID”,
 LastName “LastName”,
 FirstName “FirstName”,
 Department “Department”
 FROM Employee’
 ,0) from dual;
spool off

Figure 11.7

278Chapter 11: Distributed Databases

Figure 11.8 shows part of the resulting XML file for the small employee exam-
ple. You might want to edit the file and change the names of some of the tags. But,
the file can be read in its current form by any XML parser. It is probably worth-
while to change the starting and ending tag from <ROWSET> to <EMPLOY-
EES> to better indicate the data that is being transferred.

<?xml version=”1.0”?>
<ROWSET>
 <ROW>
 <EID>0</EID>
 <LastName>Staff</LastName>
 </ROW>
 <ROW>
 <EID>1</EID>
 <LastName>Killy</LastName>
 <FirstName>Jean-Claude</FirstName>
 <Department>Ski-Alpine</Department>
 </ROW>
 <ROW>
 <EID>2</EID>
 <LastName>Miyahira</LastName>
 <FirstName>Hideharu</FirstName>
 <Department>Ski-Alpine</Department>
 </ROW>
 ...
</ROWSET>

Figure 11.8

Figure 11.9

279Chapter 11: Distributed Databases

Figure 11.9 shows that you can open XML files using the Internet Explorer
browser. This approach highlights the individual data records and makes it easy
to see the structure of the data. You can expand or contract individual segments to
focus on individual areas. It is a useful way to quickly check a file to ensure that
it is consistent. It is also useful for browsing data sent from an external source so
you can check the contents.

Oracle also has several methods to import data from XML files and place it into
the database. In particular, you can create a column in a table using the XML data
type and store the raw XML data directly in the table.

One of the biggest questions you will face in this situation is whether to store
the data in raw XML form or to retrieve the data items from the XML file and
store them in relational tables. If you are importing data to be used within your
existing database, then you will generally want to extract the data and store it in
the relational tables. Searching for data within an XML column requires the use
of XQuery. It works, but it can be slow. If you need the data often, it is better to
extract it from the XML and store it in relational tables.

On the other hand, if you are going to re-export the XML file, or simply need
to extract a few items from it, or if it is needed for some other application, you
will want to leave it in a special XML table. Oracle also supports XML as a data
type for a column. You can load an XML table from a data file. Oracle then pro-
vides the Extract and ExtractValue commands to retrieve individual items from
the XML structure.

Exercises

Crystal Tigers
Most of the information for the Crystal Tigers club can be maintained on one
computer run by the club secretary. However, the secretary sometimes needs as-
sistance entering all of the data during special events. Although he brings the da-
tabase on his laptop, it would probably be easier if two or three people brought
laptops and handled specific tasks. At the end of the day, the data could be syn-
chronized and available for analysis. It would at least speed up the data entry and
give more people access to the critical information needed during the day.
1.	 Replicate the database and test it on three separate computers, then

synchronize the changes a few times to see if this approach will work for the
club.

2.	 The club has talked about making some data available to members over
the Internet. Although many of the members do not have Microsoft Office
installed, the club would prefer to provide read-only access. Set up a page
that generates activity lists for an upcoming event so members can check the
schedule.

3.	 One of the charitable organizations the club works with is impressed with the
database and would like some of the data. Create a query and export an XML
file that lists the members and the hours worked for a particular event.

Capitol Artists
Because the system for Capitol Artists collects data from many employees at the
same time, the main database needs to run on a central server. All of the computers

280Chapter 11: Distributed Databases

are connected by a high-speed LAN and, based on the company growth rates. The
company is unlikely to open a second office; however, many of the employees
have suggested that they would be more productive if they worked from home.
The managers have suggested testing this idea by using the database work track-
ing system. Employees would connect to the database using the Web interface. As
they completed client tasks, they would fill out the work table as usual. This data
could then be synchronized with the company database at the end of the day. After
a month, the managers could see if employee productivity declined or improved.
1.	 Check the performance of the database using an Internet connection from

off-site. If possible, try it with a cable-modem connection and with a dial-up
connection. Is the performance fast enough?

2.	 Outline the security issues involved in enabling employees to access the
database from home over the Internet.

3.	 One of the owners travels often and wants to check on daily progress reports
over the Internet using her laptop. Create a Web page that displays the work
done for the current day and lists the hours and expense of the employees for
each project.

Offshore Speed
The Offshore Speed company has some aspects in common with All Powder. In
particular, the store needs several computers to access the application that handles
sales, orders, and management reports. However, with the Web-based forms, the
process is straightforward. On the other hand, the company deals with a huge num-
ber of parts, and it seems like vendors constantly change descriptions and prices.
The company is trying to work with the vendors to connect to their databases and
at least be able to retrieve replicated materialized views.
1.	 Set up a small new database that would be created by a vendor to hold

information on parts. Replicate the table as read only so the Offshore Speed
company can subscribe to it to automatically receive changes on a regular
basis.

2.	 Some of the company’s partner firms would like to receive files that they can
read into their databases or into Excel. Set up a procedure that will create text
files with basic order data for a selected partner.

3.	 Create a Web page that customers can use to check on the status of their
orders. You should create a separate password for the customers that will be
stored within the Customer table. Verify that the password and order number
are correct before displaying the data.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.
1.	 Describe any distributed features or database links that will be useful to the

project and list any problems you might encounter.
2.	 Create a replica and test all of the forms and reports on both copies. Test the

synchronization.

281Chapter 11: Distributed Databases

3.	 Export at least one table into an XML file that could be sent to an outside
firm such as a customer or supplier.

4.	 Create a basic Web form and response page that enables customers (or
employees) to enter some identifier and receive additional information. For
example, a customer might select a product category and receive a list of
products in that category.

5.	 Create a second database and build a link to that database, so at least one
form operates using data in the second database.

Objectives

•	 Configure tablespaces.
•	 Configure the various data storage methods.
•	 Establish data clusters and partitions.

Chapter Outline

Physical Database Design
12Chapter

Storing Data, 283
Case: All Powder Board and Ski Shop, 284
Lab Exercise, 285

All Powder Board and Ski Shop, 285
Data Clusters, 288

Exercises, 291
Final Project, 292

283Chapter 12: Physical Database Design

Storing Data
To improve performance, Oracle provides several methods to control the physi-
cal storage of data. Most tables can be created with default options that function
reasonably well for typical data. The default methods use B+tree storage, which
is the best overall storage method. However, you sometimes need to configure the
actual storage—particularly through choosing the location and expansion char-
acteristics of tablespaces. Oracle also provides alternate storage methods such as
indexed tables and hashed access. You can also assign clustering to indexes, or
create partitions to separate data to improve performance. These options are gen-
erally used for very large databases, so it is difficult to gauge their effect using
the small sample sets of data. Nonetheless, you should understand how to create
and use the various tools so you know the options are available as your database
grows. Indexed tables extend the concept of B+trees by storing the data in the in-
dex itself—reducing the time needed to retrieve the actual data.

Recall from Chapter 10 that Oracle uses tablespaces as logical folders that can
utilize multiple data files. Figure 12.1 shows that tables are assigned a specific
tablespace to store the data. Oracle also uses rollback segments and redo logs to
handle transactions and other situations where device failure might cause serious
problems. You get a substantial gain in performance and safety if you store the
table data and rollback segments in separate tablespaces on different drives. Two
drives spinning independently means (1) the computer can write the data simul-
taneously, and (2) there is less chance of a loss in the event of a hardware failure.
Oracle provides a tablespace map tool to help DBAs monitor the current storage
allocation.

As shown in Figure 12.2, within a tablespace, Oracle stores data in data
blocks. You can specify the fixed data block size when you create a database
(DB_BLOCK_SIZE=8192), but generally, you use the default value (typically 8K
bytes). A collection of data blocks is called an extent, which is internally managed
by Oracle. A segment consists of a collection of extents, and segments always
contain related data. For instance, a data segment specifically contains row data.
These concepts are useful to know when you evaluate performance. For instance,
all data within a data block is retrieved in one pass from the disk drive; which is
why its size is tied to the operating system parameters. As rows are inserted into
a table, they are added to a specific data block. However, the DBMS plans ahead
for potential changes due to updates. If a data block runs out of space while updat-
ing a row, the data has to be move moved to a new data block, which takes time.
Consequently, as the DBMS inserts rows, it will switch to a new data block when
the existing one reaches the PCTFREE parameter. For instance, if PCTFREE is

Disk Drive

Data Files Data Files

Disk Drive

Data Files Data Files

Tablespace

Table Data

Tablespace

Rollback segments

Redo logs

Figure 12.1

284Chapter 12: Physical Database Design

set to 20 percent and a data block has only 18 percent free space, no more rows
will be added to that data block. Going the other direction, when rows are deleted
from a table, space becomes freed up in the data block. Should the DBMS begin
adding new rows to the block as soon as the PCTFREE threshold is opened? If
the DBMS followed this policy, it would constantly be deleting one row and add-
ing one row to a data block. Instead, the PCTUSED threshold is the indicator for
when it is safe to begin adding rows again. When enough rows have been deleted
to drop below the PCTUSED value, the DBMS will switch to adding new rows
to the data block. The DBMS uses default values for these two parameters, but
you can override them when you create a table. For instance, if you know that a
table typically gets many inserts, but few deletes or updates, you can specify a low
value for PCTFREE to provide more efficient use of the storage space along with
faster retrievals.

Case: All Powder Board and Ski Shop
Although the store has hundreds of different products and sells or rents dozens of
items a day, the standard storage defaults should work well for several years. On
the other hand, it is always a good idea to be prepared and practice with configur-
ing different storage options now. If a problem arises in the future, you will have
notes on how to handle the issue or at least be able to set up the configuration
quickly.

The storage parameters for tablespaces and data blocks are the easiest to con-
figure. If you have administrator rights, you can use the Enterprise Manager tool
to design new tablespaces and tables. It contains screens to select the options from
lists and automatically generates the correct syntax. If you want to read more
about the storage options and their effects, you can find the syntax in the Oracle
SQL Reference Guide. The Oracle Database Administrator’s Guide contains de-
tailed descriptions of how to configure the storage parameters, including when
you should and should not use various settings. Figure 12.3 shows the basic val-
ues recommended in the Oracle documentation.

Figure 12.2

Data Block
fixed size, typically 4K or 8K

Tablespace PCTFREE: reserved for updates

Data

Overhead

Extent:
Collection
of data
blocks

Segment:
Collection
of related
extents

285Chapter 12: Physical Database Design

Lab Exercise

All Powder Board and Ski Shop
The main text explains that data can be stored using several methods, including
sequential, B+trees, and direct or hashed storage. For the most part, the Oracle
DMBS stores data similar to linked lists using the data blocks. By default, Oracle
indexes any primary key columns, and the indexes are stored and searched using
B+trees. This approach is the best general storage method, but sometimes you
might need more control over how the data is stored and retrieved.

Oracle 11g handles the other storage methods through partitions and clusters.
Partitions enable you to store different parts of a table in different locations. This
trick can be useful even for relatively small databases. In the All Powder case, the
inventory data tends to change every year as new products are introduced. You do
not want to delete the old data because the managers want to go back and look at
sales in various categories. On the other hand, you do not need it taking up space
on the main disk drives—because the old models are no longer available for sale
or rental. A partition enables you to move the older data to a different disk drive.
Activity: Create Data Partitions
Partitioning enables you to split a data
table into multiple pieces. Each piece
contains the same types of data (same
column names and same data types),
but can have different physical param-
eters (tablespace, PCTFREE, and so
on). The tablespace option is the most
powerful choice because it enables you
to store one part of the table in one lo-
cation (disk drive) and the rest in other locations. Placing data in different ta-
blespaces also improves query performance because the DBMS can restrict the
search to a single partition. It also improves backup and recovery operations since
you can tell the DBMS to operate on a tablespace or partition at a time. Finally,
the partition can be invisible to the query system and the users. Existing queries
and applications will continue to work correctly with no changes. However, Ora-
cle does place one important restriction on partitioning tables: You cannot parti-

Figure 12.3

Settings Table Attributes
PCTFREE=10
PCTUSED=40

Default.

PCTFREE=20
PCTUSED=40

UPDATE statements that tend to
increase row size.

PCTFREE=5
PCTUSED=60

Row size is constant.

PCTFREE=5
PCTUSED=40

Most activity is INSERT or read only.

Action
Create the p2007 tablespace.
Create the new Sale2 table with a range

interval partition.
Transfer the existing data into the new

table and check the tablespace usage.
Use the USER_PART_TABLES view to

test your work.

286Chapter 12: Physical Database Design

tion a table that contains a LONG or LONG RAW data type column. Instead, you
would need to convert these data types to CLOB or BLOB data types.

Partitions are defined based on the data contained in the row. Oracle supports
three types of partitions: range, list, and hashed. A couple of composite types are
also supported, but they are not covered here because they are simply combina-
tions of the three base types. Range partitions are easy to understand and are often
used for date or ID columns. You choose a data column and split the rows based
on ranges of data. Oracle 11g improved the range partitions by implementing an
INTERVAL partition process. You can define an interval in terms of a date based
on either months or years. The power of the INTERVAL definition is that Oracle
automatically creates a new partition when the date enters into a new time period.
Before 11g, you had to define complete partitions for every year (or month) that
might exist in the data. Figure 12.4 shows the syntax for defining the partition and
interval for the Sales table.

Of course, you should create the first tablespace before trying to insert data into
this new table. You can use the Enterprise Manager to create the tablespaces. You
can use the EM interface to specify the options and then use the Show SQL com-
mand to see the full syntax:
CREATE SMALLFILE TABLESPACE “ p2007”
DATAFILE ‘D:\ORACLE\PRODUCT\11.1.1\ORADATA\POSTDB\p2007’
SIZE 10M
AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED LOGGING EXTENT
MANAGEMENT
LOCAL SEGMENT SPACE MANAGEMENT AUTO

Figure 12.4

CREATE TABLE Sale2
(
SaleID INTEGER,
SaleDate DATE,
CustomerID INTEGER DEFAULT 0,
EmployeeID INTEGER DEFAULT 0,
ShipAddress NVARCHAR2(50),
ShipCity NVARCHAR2(50),
ShipState NVARCHAR2(50),
ShipZIP NVARCHAR2(50),
SalesTax NUMBER(38,4) DEFAULT 0,
PaymentMethod NVARCHAR2(50),
 CONSTRAINT pk_Sale2 PRIMARY KEY (SaleID),
 CONSTRAINT fk_CustomerSale2 FOREIGN KEY (CustomerID)
 REFERENCES Customer(CustomerID)
 ON DELETE CASCADE,
 CONSTRAINT fk_PaymentMethodSale2 FOREIGN KEY (PaymentMethod)
 REFERENCES PaymentMethod(PaymentMethod)
 ON DELETE CASCADE
)
PARTITION BY RANGE (SaleDate)
 INTERVAL (NUMTOYMINTERVAL(1,’year’))
 (
 PARTITION p2007 VALUES LESS THAN (to_date(‘2008/01/01’,’yyyy/mm/dd’))
) ;

287Chapter 12: Physical Database Design

Observe that the command also defines a new operating system file to hold the
tablespace. In most cases, each of the tablespaces will be assigned to different
folders and probably to different physical disk drives. The physical file parameter
is the mechanism you use to control the location of the data. The most recent data
would be stored on a high-speed drive—probably a RAID system. The other files
can be stored on slower, less expensive drives because the data will be accessed
less often and rarely altered.

Once you have the initial tablespace defined, you can run the CREATE TABLE
command to build the Sale2 table. To save time, you can ignore the referential in-
tegrity constraints. You can use an INSERT INTO command to transfer the data
from the existing table into the new one. Once the data has been inserted, you can
use the EM to check that data has been inserted into each of the tablespaces. You
can use the ALTER TABLE ADD PARTITION command to add more partitions
later. The DBA_PART_TABLES or USER_PART_TABLES system views will
display information about partitioned tables so you can check your work. Note
that range partitions can include multiple columns, and you can find the syntax in
the Oracle Administrators Guide.

List partitions are similar to range partitions, but you use a list when no con-
tinuous range of values exists. For example, a list partition is commonly used to
separate data by geographical region such as state or province. Figure 12.5 shows
that the syntax is similar to that used for the range partition. You have to individu-
ally specify the list items that apply to each partition. Eventually, you would have
to add the other state codes. Also, remember that you need to create the tablespac-
es before you try to run the CREATE TABLE command.

CREATE TABLE Customer2
(
	 CustomerID	 INTEGER,
	 LastName	 NVARCHAR2(50),
	 FirstName	 NVARCHAR2(50),
	 Phone	 NVARCHAR2(50),
	 Address	NVARCHAR2(50),
	 Email	 NVARCHAR2(50),
	 City	 NVARCHAR2(50),
	 State	 NVARCHAR2(50),
	 ZIP	 NVARCHAR2(50),
	 Gender	 NVARCHAR2(50),
	 DateOfBirth	 DATE,
		 CONSTRAINT pk_Customer2 PRIMARY KEY (CustomerID)
)
PARTITION BY LIST (State)
(
 PARTITION WestSales VALUES (‘CA’, ‘HI’, ‘OR’, ‘AZ’)
	 TABLESPACE CustomerWest,
 PARTITION EastSales VALUES (‘RI’, ’CT’, ’NY’)
	 TABLESPACE CustomerEast,
 PARTITION SouthSales VALUES (‘FL’, ’GA’, ‘LA’)
	 TABLESPACE CustomerSouth,
 PARTITION MidSales VALUES (‘WI’, ‘MI’, ‘MN’,’OH’)
	 TABLESPACE CustomerMid
);

Figure 12.5

288Chapter 12: Physical Database Design

Hash partitioning is the third basic method and it is simpler than the other two
because it contains fewer options. Its purpose is to randomly distribute the items
relatively equally across the specified partitions. This approach might be useful
if your operating system does not support RAID striping. You could assign each
tablespace to a different physical drive and let Oracle assign each row to a differ-
ent drive based on the ID value. You also improve performance because Oracle
uses the hash function to identify the needed partition and reduce its search time.
Figure 12.6 shows the basic syntax. Essentially, you specify the number of desired
partitions and then list their names. A couple of options exist, such as specifying
the initial data size, but most of the work is handled automatically by Oracle.

Data Clusters

Activity: Create Data Clusters
Clusters are different from partitions—
the goal is to store related data close
together. Really close together. Re-
member that disk drives are the slowest
component of the computer (not count-
ing interfaces with people), because
they rely on mechanical elements. Data
that is stored in different locations on
the drive take time to retrieve because
the drive head has to wait for the sector
to spin around. The goal of clustering
is to reduce this delay by storing related data together so that it can be retrieved
in one pass. Data block size in Oracle is generally tied to the operating system ca-
pabilities so that an entire data block can be read in a single call to the disk drive.
In the All Powder example, look at the Sale and SaleItem tables. In almost every
case, users will want to retrieve data from both the Sale and SaleItem table at the
same time. You can improve performance by telling Oracle to cluster the data for
each SaleID. For instance, the SaleItem data for SaleID=101 will be stored in the
same data block as the base Sale data for SaleID=101.

It takes three basic steps to cluster data. (1) Create the cluster, (2) Create the
two tables and assign them to the same cluster with the same key, (3) Create an
index on the cluster. Once this structure has been defined, you can add data to the
tables. Note that because you are controlling the way data is physically stored,

CREATE TABLE Employee2
(
	 EmployeeID	 INTEGER,
	 LastName	 NVARCHAR2(50),
	 FirstName	 NVARCHAR2(50),
		 CONSTRAINT pk_Employee2 PRIMARY KEY (EmployeeID)
)
PARTITION BY HASH (EmployeeID)
 PARTITIONS 4
 STORE IN (tsEmp1, tsEmp2, tsEmp3, tsEmp4)
;

Figure 12.6

Action
Create a cluster based on the SaleID.
Define a new SaleC table that uses the

cluster.
Define a new SaleItemC table that uses

the same cluster.
Create the index for the cluster.
Insert some rows into the two new tables

and see if there is a difference.

289Chapter 12: Physical Database Design

you must create the cluster before you
add data to the table. If you want to
cluster tables that have existing data,
you will have to create new tables for
the cluster and transfer the data from
the old tables.

Figure 12.7 shows the CREATE
CLUSTER command used to define
the overall cluster. Notice that it does
not include the names of the tables.
The cluster definition simply specifies
the storage space needed along with the name of the tablespace. You do need to
specify the data type of the key value (SaleID is an INTEGER) that will be used to
cluster the data. You can use multiple columns for the key, but you cannot use the
LONG data type. The SIZE parameter provides a guide to Oracle so that it knows
the approximate amount of space that will be needed to store the key and the as-
sociated data rows. By default, Oracle uses an entire data block to hold data for
one key value. If the data does not fit in one block, Oracle chains them together to
speed the retrieval. This approach will waste considerable space if your rows are
relatively small and few rows exist for each key value. By using the SIZE param-
eter to specify the average amount of data bytes, Oracle can allocate the blocks
more efficiently.

CREATE CLUSTER Sale_SaleItem (SaleID INTEGER)
PCTUSED 80
PCTFREE 5
SIZE 130
TABLESPACE ts1;

Figure 12.7

CREATE TABLE SaleC
(
	 SaleID	 INTEGER,
	 SaleDate	 DATE,
	 CustomerID	 INTEGER,
	 -- other columns
	 CONSTRAINT pk_Sale PRIMARY KEY (SaleID),
	 -- other constraints
)
CLUSTER Sale_SaleItem (SaleID);
CREATE TABLE SaleItemC
(
	 SaleID	 INTEGER,
	 SKU	 NVARCHAR2(50),
	 -- other columns
	 CONSTRAINT pk_SaleItem PRIMARY KEY (SaleID, SKU),
	 -- other constraints
)
CLUSTER Sale_SaleItem (SaleID);

Figure 12.8

Action
Create a cluster based on the SaleID.
Define a new SaleC table that uses the

cluster.
Define a new SaleItemC table that uses

the same cluster.
Create the index for the cluster.
Insert some rows into the two new tables

and see if there is a difference.

290Chapter 12: Physical Database Design

Creating tables is straightforward—you just need to specify the cluster that will
hold the table data. Figure 12.8 shows the syntax. You simply add one line at the
end to indicate the name of the cluster along with the key value from the table that
will be passed to the cluster key. You repeat the process for the second (SaleItem)
table.

The third step is to create an index on the cluster itself. This step is required and
must be processed before you try to add data to either of the tables. Figure 12.9
shows that the syntax is similar to the standard CREATE INDEX command, but
you specify the name of the cluster instead of the column names. You can also set
storage parameters that are not shown. You can choose a different tablespace so
that the index is stored and processed on a separate disk drive to improve update
performance.

When you have completed these three steps, Oracle handles everything else.
Your INSERT, UPDATE, SELECT, and DELETE statements will all work the
way they always have. The difference is that Oracle changes the way the data is
physically stored. Bear in mind that clustering is not guaranteed to be faster. In
fact, if your application routinely updates or searches the tables separately, perfor-
mance will be better without clusters.

You can now insert data into the two new tables. If your database server has a
really slow disk drive, you might be able to observe a difference in query perfor-
mance using the clustered tables. But, in most cases, with a small amount of data,
you will not perceive the difference.
Activity: Create Hashed Data Clusters
Oracle also uses clusters to handle
hashed data access. You create a hash
cluster to define the storage locations
and add the tables to the cluster. Oracle
computes a hash key from the key val-
ues to identify the specific storage area.
The hash value corresponds to a spe-
cific data block that holds the desired
data. Remember that hashed data stor-
age is most useful when searches are
performed with equality tests against the key value (e.g., SKU=XEN-758). The
table should also be relatively static, so that you can estimate the amount of space
to allocate. Hashed clusters can be sued effectively with a single table—where
the primary key is used to locate each individual row. Hashed-key tables are use-
ful for situations where you will always know the primary key and require rapid
access. Bar-coded product numbers are a classic example. Queries with JOINs to
this table also perform faster.

All Powder wants to implement a scanner to read inventory items when they
are purchased. With several scanners in a store operating at the same time, the

CREATE INDEX Sale_SaleItem_index
ON CLUSTER Sale_SaleItem
TABLESPACE ts1
PCTFREE 5;

Figure 12.9

Action
Create the hashed cluster for the single

Inventory table.
Create the new Inventory table and

assign it to the cluster.
Transfer data into the new table.
Test some queries using exact key values.
Test some queries with inequalities.

291Chapter 12: Physical Database Design

application needs fast access to the Inventory table. Since a hash cluster does not
use an index, you only need two steps. First you create the cluster then you create
the table and assign it to the cluster. You have only a few options when creating
the cluster. You might want to review the main text to understand the way that
hashed-key access works, which helps explain the role of the main parameters.
The main point is that the system needs to know the approximate number of rows
to store. This value is automatically rounded up to the nearest prime number. To
allocate space in the data block, the DBMS also wants an estimate of the size of
an average row of data. Figure 12.10 shows the cluster and table commands to
create the new InventoryH table.

Transfer data from the old Inventory table into the new InventoryH table and
test some queries. Unless your computer and disk drives are incredibly slow, it
will be difficult to perceive a difference when using equality constraints on the
SKU. But, you might be able to perceive a difference if you select rows based on
inequality tests or even LIKE statements.

Exercises

Many Charms
The database for Many Charms is likely to remain relatively small and perfor-
mance should not be a serious issue. Nonetheless, you should look for possible
ways to improve performance by controlling the data storage.
1.	 Assuming the company becomes substantially larger, what storage strategies

would be useful?
2.	 Create a hashed cluster for the ItemList table.
3.	 Create a cluster to store matched data for the Customer, Sale, and SaleItem

tables.
4.	 Partition the Production table into two sections based on the ProductionDate.

Standup Foods
Standup Foods has the potential to grow to a relatively large company over the
next couple of years. It is possible that performance will become an issue with
some of the tables. The client list is particularly interesting, because studios are
continually creating new companies and partnerships. As a result, many of the

CREATE CLUSTER Inventory_hash (SKU NVARCHAR2(50))
SIZE 32 SINGLE TABLE HASHKEYS 5000;

CREATE TABLE InventoryH
(
	 SKU	 NVARCHAR2(50),
	 ModelID	NVARCHAR2(50),
	 ItemSize	NUMBER(20,2),
	 QuantityOnHand	 INTEGER,
	 CONSTRAINT pk_Inventory PRIMARY KEY (SKU),
	 -- fk constraint
)
CLUSTER Inventory_hash (SKU);

Figure 12.10

292Chapter 12: Physical Database Design

older companies in the list no longer exist. On the other hand, the contact list is
important, since it contains data on individual people. Similarly, the Employee list
changes on an almost daily basis. Laura is reluctant to delete the older employees
because many of them come back for special projects every couple of years.
1.	 Identify the tables that could be improved using partitions or clusters.

Explain your reasoning.
2.	 Partition the project table into three sections based on the contract date.
3.	 Create a cluster that stores data by EmployeeID that includes the Employee,

EmployeeSpecialty, TaskSpecialty, and ProjectEmployee tables.
4.	 Create a hashed cluster for the ProjectGuest table.

EnviroSpeed
The database for EnviroSpeed could eventually become quite large. Because the
system contains valuable knowledge, the company does not want to delete any-
thing. The company also benefits by keeping all of the data in one large data-
base. Although much of the data becomes dated, employees still want the ability
to search through older cases. However, the older data does not change so it could
be moved to different disk drives.
1.	 Identify the tables that could be improved using partitions or clusters.

Explain your reasoning.
2.	 Partition the Situation and ProposedSolution tables into three segments based

on the date.
3.	 Partition the Crew table into four regions based on Country.
4.	 Create a hashed cluster for the Bill and Receipts tables

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you pick one
or your instructor picks one, perform the following tasks.
1.	 Identify the tables that could be improved using partitions or clusters.

Explain your reasoning.
2.	 Create a partition on at least one table.
3.	 Create a cluster on at least two tables.
4.	 Create a hash cluster on a single table.

	Database Management Systems
	Gerald V. Post
	Copyright

	Contents
	Brief Contents
	Full Contents

	Chapter 1: Introduction
	Case: All Powder Board and Ski Shop
	Inventory
	Bindings and Boots
	Sales
	Rentals

	Lab Exercise
	Project Outline
	Project Plan
	 Feasibility
	The Database Management System
	Create a Table
	Create a Form

	Exercises
	Final Project

	Chapter 2: Database Design
	Database Design
	Oracle Data Types
	Case: All Powder Board and Ski Shop
	Business Objects: First Guess
	Relationships

	Lab Exercise
	Database Design System
	All Powder Design

	Exercises
	Final Project

	Chapter 3: Data Normalization
	Database Design
	Generated Keys: Sequences
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Database Creation

	Exercises
	Final Project

	Chapter 4: Database Queries and SQL
	Database Queries
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Data
	Computations and Subtotals

	Exercises
	Final Project

	Chapter 5: Advanced Queries
	Advanced Database Queries
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Data
	SQL Data Definition and Data Manipulation

	Exercises
	Final Project

	Chapter 6: Forms and Reports
	Forms and Reports
	Model-View-Controller
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop Forms
	All Powder Basic Reports

	Exercises
	Final Project

	Chapter 7: Database Integrity and Transactions
	Program Code in Oracle
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Data
	Database Cursors, Keys, and Locks

	Exercises
	Final Project

	Chapter 8: Applications
	Applications
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Skip Shop Application
	Connecting Pages with Task Flows
	Testing Login Credentials
	A Report for One Customer Using the Login Data
	Connect Table Row to Detail Report

	Exercises
	Final Project

	Chapter 9: Data Warehouses and Data Mining
	Data Warehouse
	Tools and Downloads
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop
	Introductory Data Analysis

	Exercises
	Final Project

	Chapter 10: Database Administration
	Database Administration Tasks
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop
	Security and Privacy

	Exercises
	Final Project

	Chapter 11: Distributed Databases
	Location, Location, Location
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop
	The Internet

	Exercises
	Final Project

	Chapter 12: Physical Database Design
	Storing Data
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop
	Data Clusters

	Exercises
	Final Project

