Chapter

OLAP Cubes

Chapter Outline

Introduction, 96

Challenges with the Relational Model, 98
Indexes, 99
Data Warehouse, 99

Extraction, Transformation, and Loading,
100

MOLAP, ROLAP, and HOLAP, 101
OLAP Design, 102

Facts and Dimensions, 104

Star Design, 105

Snowflake Design, 107

Hierarchies, 107
Creating a Cube with Microsoft Analysis
Services, 108

Data Sources, 109

Data Source Views, 111

Cubes, 116
Dimensions, 120

Hierarchies, 123

Time Dimensions, 124

Custom Geographic Hierarchy, 128

Attribute Relationships, 130

What You Will Learn in This Chapter

Fine Tuning the Cube, 133
Calculations and Queries, 134
Perspectives, 138

Internationalization and Translations,
140

Performance: Partitions and
Aggregations, 142

Excel PivotTables, 144

Actions, 146

Key Performance Indicators, 149
Definition, 149
Creating KPIs, 150
Browsing a KPI, 153

Summary, 154

Key Words, 155

Review Questions, 155

Exercises, 156

Additional Reading, 158

* Why is OLAP important or even necessary?

* Why are transactions and analysis difficult to combine?

* What is the process for designing and creating a data cube?

* How are OLAP cubes created using Microsoft SQL Server Analysis Services?

* How are dimensions created and modified to improve browsing?

» How can the cube provide more information?

» How can the cube be accessed outside of Analysis Services?

» How can the cube connect to external data such as Web sites and maps?

* How can simple data be provided to managers on a daily basis?

94

Chapter 3: OLAP Cubes

95

Winmetrics Corp.

In some ways, OLAP cubes are similar to reports—with the added features of inter-
action. Users can click to drill down and get more detail, or roll up totals to compare
by region, product, or any defined category. With a few clicks, a user can quick-
ly filter by any desired conditions. Setting up an OLAP cube often takes time and
experience, so companies such as WinMetrics make money by helping companies
configure their databases and OLAP cubes. WinMetrics describes the results at one
company, which is the leading outsource collection agency for government debts
in America. Initially, the company used fixed printed reports, including a 500-page
“CARE” report that took more than 24 hours to generate and was difficult to use. It
took WinMetrics about eight weeks to create a system to clean and transfer the data
to SQL Server and build the OLAP cube. After training some in-house engineers to
build additional cubes, the company eventually built cubes for most of the account-
ing functions as well. Instead of relying on fixed reports for standard items including
general ledger, payroll, budget, and forecasting, OLAP cubes were created to enable
dynamic access to the data. The underlying data was exported from the third-party
accounting system and transferred into OLAP cubes in SQL Server. All of the ac-
counting statements are now accessible through a few clicks of the OLAP cube, in-
cluding the ability to drill down and see details such as the source of variances in the
budget model. [WinMetrics]

Managers and analysts want dynamic access to data. The ability to explore and ex-
amine different aspects is useful to understanding the results, spotting problems, and
making decisions.

WinMetrics Corp., How a Financial Services Company Developed a Performance
Report for Clients, Saved $200K and Sold $167,000,000 of Equity in Just 9 Months.
http://www.winmetrics.com/olap casestudies.html

Chapter 3: OLAP Cubes 96

Introduction

Why is OLAP important or even necessary? Relational database sys-
tems were designed to collect and store transaction data efficiently. They have
been effective at handling standard business data for dozens of years. Designing
the database properly by splitting the data into tables is important. With separate
tables, new data can be added without impacting the existing data—enabling the
databases to become huge and still maintain performance when adding new data.
SQL is a powerful tool that retrieves data from multiple tables, creates calcula-
tions and subtotals. So what is the reason for OLAP?

The problem with relational databases lies with retrieving the data. SQL and
the visual designers are nice tools to use and they work well on small problems.
But putting millions or billions (Jacobs 2009) of rows into multiple tables is going
to cause problems. One of the biggest problems is created by joining tables. Join-
ing tables by matching data keys is a slow process. Most relational database sys-
tems try to improve performance by building indexes—but the indexes take space
and slow down updates, particularly with millions of rows of data.

Online analytical processing (OLAP) is designed specifically to improve per-
formance for retrieving and analyzing data. The goal is to provide enough speed
so that even with huge databases, analysts and managers can examine data inter-
actively with minimal delays. To accomplish this task, OLAP systems typically
store data in a new design format—which often entails pre-building all of the
joins. Design issues are an important section of this chapter.

Even if the data is stored so that it can be retrieved efficiently, how are manag-
ers and analysts going to interact with the data? The presumption is that managers
need to see various subtotals and to compare these values by different categories.
For example, most managers need to see sales or production values at different
points in time, and often want to compare values by different product or model
types. As shown in Figure 3.1, a cube browser is a common OLAP tool that en-
ables managers to select categories (such as Model Type, Time, and Location),
and examine some critical fact for any desired subtotal. Generally, the cube is
interactive and the manager can drag-and-drop items of interest and examine mul-
tiple levels of subtotals. Filters, such as Location in the example, can be used to
display data for specific situations. All of these actions are accomplished by se-
lecting or deselecting items on the screen—without writing any queries.

OLAP cubes are useful for exploring the data, but sometimes managers need
even simpler tools. Key performance indicators (KPI) can be defined and used
to create simple visual gauges that display the current values and trends of critical
factors. For example, a sales manager or CEO might create a gauge that shows
daily sales and comparisons to the prior year or month. Financial managers might
track movements in stock prices or interest rates. Just as the gauges in an auto-
mobile provide information and feedback to drivers, digital dashboards are de-
signed to provide critical information at a glance to managers.

Many tools exist to help build OLAP projects and analyze data. Some simi-
larities exist across the tools, but all of them have their own quirks. This chapter
focuses on the Microsoft business intelligence or SQL Server Analysis System
(SSAS) tools.

97

Chapter 3: OLAP Cubes

‘JoA9] Arewuwuns o) 99s 0} dnj[o1 10 [12IOP 39S 0} UMOP-[[LIp 03 uondo ayy ap1aoId 9)ep st Yons SOIYIILISH "SUOISUSWIP oFueyd
03 doxp-pue-eip ues s1osn ‘A[[eordA ‘uoIsuswWIp Aue I0J INSEIW J0B] © JO S[e10IqNs SUTUIEXS JO $ISISU0D SuIsmolq Jv IO I19sMoIq aqnd JvI10

o 1" am3rg

% A i FESOOLTE MTONTY OOCIGENT DOE'GEETE [0 puein| 1 |
OEL 1 § OI9'BES a5 095 EFToL'a b ThE 'S [a1 4 [e FLOF JEpUSEY & O |
0STELT OvE'SED 0P LR DEEEEE'Y oS LS OR0'0RT"T 0957958 10T SFPUMEDIE 6T
D0L"GE"S o TEL OFEa0ET DTS O R T o Dot osTEE T T
059TSE On0'EoT onEEn 5 "58T°T ST OOR'0SE DEE'ITT TUORE M s (T |
0805221 Ty 05T8TE 0E6"FEE ST STE avseeT] ZT0Z BUnl 5z |
OTOZFF'T OTE'IE OLLS5E DIOEST oL L1 3 1o 10z Aryi ST |
0T TEST OES'FS LT e T RLY OETEST DREES THOE Iy e ¥
DEEOTF Y OOE LR T [g 095 OERT orLsar't 00" L9E OL0ELT THOE “F Magaenin - | T4 |
OEVTLEE oIt ovRaTL 099FST'L OE'ER0'T orsraT OF6TET TUR LS s 2T |
09LETS R anr'zea 000" 8Lt DEYEO6'S EELTE'S OSTERET P FTO0Z sepuBEd s TT
0O6"RETAT PE'E00'T DBE'ELD'Y DGR B0L S OB SEL'S OF£'PER TIOZ pumPd s 0T |
EATTOE T aESaTa LT D TETS oL arE Tl OTOE sepuBED = BT
6T SLE°IT Ot a6T RETSET LT E o TSE'E 006" 6T’ BOOF IEPUHED . ST |
06T 0601 RS LeY 0988057 D06 TEE'E S G 'T e 00T JEPUMEDIS LT |
DOL ST OFE'ETE Oob S9e T 069" LER ' OEOLEE OEL"860°T LD IepRENEY e ST |
RS 090701 o 66 050617 065" SETE o007 OELS02°T BOOT SFPUHED = 5T
OE0EESE e ovsErT DATERLE CEETIE'T OFS'FED 5002 sEpUBETE FT |
EASEE'R oUR'EEn DO0ERTT 0ELFSET CEATEE'E O5E'968 FOOZ EPUMED - ET |
o6Z'ERY0T apa'ars 099°E64T 094"585°T oeL'arg's oI T £00F JEPUMEIS I1
00T FER"L [T 0L ST 050 IES'T [s ObLETS T E00E IPPEHES e TT |
OEL LY ORR'EL obeace] =g AERTEE 005 0ET 002 sepuEdE Ol |
OHEFIT Y HT 009 {101 ¥ L] (o 0 4 aaa' £59°1 010 DOOF JEPUEHET = & |
0RO0SE 0T g DELOTRL DE'RES"T FET6L T OLRELS 6661 IPPUNEDIE § |
BE"LE9'S OLE'E0T OHTESST DEEES DEETRLT oY 995" DIEDTT BHGT JEpUBED L |
DEUESE'S [BT TSE'T OTE TR OFR'ERL ORLE 66T IPPUMEDI L 9 |
e 0s0y OREELT oP0°TeE DAELET are'6er’l 090 TS 9661 SEPUFETIF S
1 ra- 1 d EELEE O B0E DB FLO°E 0GE el Obh 195 [T e SGET IPPAENEY . B |
FH0°S55T RS T o Pt oy R R OE0'ESS BO0ET PHET SEPUHEDE T |
FioL pueis yoeiL iy peay sed EnjuEunoN upeunon pugkH . seqEImoy

- S U amid Hes 1
B el v [o | 4 [3 | a 2 | 8 . ¥ 7]

o =2 = wpepe 2qn3 1y (b

Chapter 3: OLAP Cubes 98

Challenges with the Relational Model

Why are transactions and analysis difficult to combine? Relation-
al databases are designed for online transaction processing (OLTP). The prima-
ry task in OLTP is to collect transaction data (such as sales) and store it efficiently.
The systems also print basic reports, but these usually consist of simple receipts
and totals. Each data object is stored in a separate table—isolating it from the rest
of the data. Adding new data is fast and efficient. Data duplication is avoided (ex-
cept for backups), and data is typically retrieved in small pieces.

However, data retrieval has always been an issue with relational systems (and
with hierarchical and network systems before that). Splitting data into multiple
tables means that the tables have to be joined to retrieve data. Most relational sys-
tems rely on indexes to improve performance for data retrieval. An index is a file
that contains the key values sorted with a link to the rest of the data row. By sort-
ing the data, items can be located with a binary search (or better). A binary search
splits the data in half at each pass. Think about an alphabetical list of names. To
find a name (say Smith), start in the middle. If the name there is less than Smith,
discard the entire first half of the list. Split the remaining names in half and look
at the middle again. Continue the process until the desired name is matched, then
use the index pointer to retrieve the rest of the data row. Indexes are a fast way to
improve retrieval performance. Searching through a million entries sequentially
would take from 1 to 1 million data retrievals (averaging 500,000) without an in-

Figure 3.2
Relational tables and indexes. All key columns have indexes to improve performance.
To improve queries, other columns often have indexes. More indexes mean faster
queries. But inserting one row can require updating dozens of indexes, slowing down
transaction performance.
Indexes Item ItemID | Description | ListPrice | Category
ItemlD _————>| 1 French Loaf | $3.99 Bread
Category 60 Angel Cake | $7.99 Cake

44 Apple Pie 11.99 Pie

46 Pecan Pie 11.99 Pecan Pie

Saleltem [SaleID_| ItemID [Quantity | SalePrice

SalelD 1 1 1 3.99
ItemID 2 44 1 11.99

2 60 1 7.99

3 46 2 11.99

Sale SaleID | SaleDate | EmployeelD
SalelD 1 7/19/.... 111
SaleDate 2 719k | 123
EmployeelD 3 7/20/.... 356
mployee| EmployeelD | LastName | FirstName | DateHired...

EmployeelD————— |77 Jones Jane 3/15/....

123 Smith Steve 6/21/....

356 Jackson Jill 4/13/....

Chapter 3: OLAP Cubes 99

dex. With a binary index, any entry could be found within 20 lookups because 22°
is greater than 1 million.

Indexes

As indicated in Figure 3.2, indexes are commonly used for key columns in rela-
tional databases. If managers want to create subtotals by other columns, such as
Item Category, Employee name, or Customer City, these columns are typically
indexed as well. The result is that each table could have many indexes. Adding a
single row of data then requires updating every one of those indexes. The indexes
are relatively efficient, but at various points, adding data requires restructuring
large portions of the index. The result is that indexes are useful for improving the
performance of retrieving data, but indexes slow down data storage and updates
needed for transactions. This conflict is what leads to the need for a new storage
method.

For large databases, the solution typically involves creating a new database—
designed just for OLAP. This data warehouse often retrieves data from multiple
sources, cleans it up, and places it into a completely new storage structure. Data
within the warehouse does not change constantly. Instead, it is extracted from the
relational sources on a periodic basis and the warehouse is updated in bulk. At
that time, indexes can be rebuilt one time, making it ready for any type of data
retrieval and analysis.

Data Warehouse

The main issues in OLAP design and construction are examined in the next sec-
tion—particularly applied to Microsoft’s tools. However, some basic principles
apply to all of the tools and some questions have to be answered before any spe-
cific tool is selected. A data warehouse is a database specifically designed for data
retrieval and analysis. Typically, it has a special design. It usually contains a copy
of the data taken from a relational OLTP database. Figure 3.3 illustrates the basic
concept of collecting the relational data into a central data warehouse.

Professional arguments still exist over how to handle the tradeoffs between
storage and retrieval of data. Some experts and DBMS companies believe that the
relational model with efficient indexes can handle most problems. Others believe
data needs to be moved to a completely separate data warehouse to be efficient.
One drawback to the warehouse approach is that the data being analyzed is not
live—it is updated at certain intervals. Updates once a day are common, where
the warehouse is reloaded and rebuilt overnight. Some companies update the data
more often—perhaps a couple of times a day. Others delay as long as a week. The
timing depends on the data and the needs of the managers. The question of wheth-
er data has to be live is an important one to answer when starting the process of
designing an OLAP system. Microsoft’s Analysis Services has the ability to store
data using different methods so it can handle live and warehouse data at the same
time—but performance is slower with relational data.

An intermediate solution to a full data warehouse is the use of materialized
views. A view in a relational database is a saved query. When run, the query re-
trieves the data defined by the SQL statements from the desired tables and dis-
plays the results. A view is dynamic—it rebuilds the joins and queries the raw data
each time it is executed. A complex view with many joins can take a long time
to run—in an OLAP context, views are often too slow—taking many seconds or
minutes (or worse) to retrieve data. And each time a user wants the same data, the

Chapter 3: OLAP Cubes 100

Dataand Reports

OLTP: Relational DBMS OLAP: Data warehouse

Transactions

Production Data

Figure 3.3

Data warehouse. Transactions data is processed in relational databases. The data
warehouse extracts the data from multiple sources, cleans it up, stores it in special
formats and processes it for analysis.

entire query has to be re-executed. Oracle, followed by most other DBMS ven-
dors, introduced the materialized view. A materialized view starts as a query but
saves the resulting rows as a separate table. Indexes can be built for the material-
ized view (but not for a regular view) because it contains the actual data. The data
in the view has to be updated periodically to collect changes from the underlying
tables. In a sense, a materialized view is a miniature data warehouse within the
relational database. It is particularly useful for retrieving data that does not change
often, but is heavily used. For example, customer and employee names are rela-
tively stable. Product categories and descriptions might change for a few items,
but the majority remains constant for long periods of time. All of these examples
are items that might be used in data analysis—particularly for look up values and
subtotals. If they are built into a materialized view, the resulting query can be sig-
nificantly faster.

Extraction, Transformation, and Loading

One of the biggest challenges in creating a data warehouse is the need to build all
of the connections and transfer functions that collect the needed data. These data
transfers are executed on a regular basis so they need to be completely automatic.
It is not a question of cut-and-paste data from one source to another. The system
needs to be automated. Figure 3.4 shows that data can come from many differ-
ent sources—even different types of databases. Business mergers are particularly
challenging in terms of combining data because terminology, data format, and ID
values might be radically different. Even older data often becomes a problem.
Managers want to use the old data for comparisons, but it often has to be redefined
to match the new data. It is easy to underestimate the amount of data an organiza-
tion contains and the thousands of ways it can be messed up—until you sit down
to define how to collect it all and transfer it into the data warehouse.

Chapter 3: OLAP Cubes 101

MysQL
Current OLTP
SQL Server
Q database SalesID Old OLTP
/ database
Custm sQL Server SalesID

Data Warehouse
Match data?

ReceiptID
ClientID

Merger company
OLTP database

Oracle

Figure 3.4

Extraction, Transformation, and Loading. Data comes from different sources in
different formats. It often needs special procedures to extract. The formats might
have to be changed, or ID values recoded. The entire process must be automated.

Extraction, transformation, and loading (ETL) is the term used to describe
the process of collecting data from various sources and transferring it into the data
warehouse. Because the updates have to be made every day or more the process
must run automatically and unattended. Consequently, all of the data sources and
transformations must be written down and procedures created to handle the vari-
ous tasks. All of the steps and code have to be tested and debugged to ensure they
work perfectly. The process of designing the ETL can take several months of ef-
fort. Even if all data is held in a single enterprise resource planning system with
consistent definitions, it takes time to locate the exact data and ensure the proper
formats and security permissions are established.

SQL queries are useful tools for transforming bulk data. For instance, SQL can
be used to alter ID values with a single command. A useful trick if data from two
sources has overlapping ID values and one of them needs to be shifted before
merging the data. SQL is also good at identifying unmatched data—such as old
product ID values in a sales item table that no longer have records for matching
products.

The ETL process almost always requires database programmers to write the
transformation code, establish the database connections, and validate the security
controls. These programming and administrative tasks are beyond the scope of
this book. If you are planning a data warchouse project, talk to the programmers
early, particularly before any products are purchased.

MOLAP, ROLAP, and HOLAP

SQL Server Analysis Services can use one of three methods to store data in the
data warchouse. Multidimensional OLAP (MOLAP) is the preferred storage
method for most applications. MOLAP storage extracts the data from its source,
pre-builds most joins, and writes the data into a new format with several indexes.

Chapter 3: OLAP Cubes 102

Retrieving data from MOLAP is faster than the other methods. The new physical
format closely matches the logical structure of cubes described in the next section.
Relational OLAP (ROLAP) leaves the data in the source database. The metada-
ta or descriptions of the data are stored in the Analysis Services database. Because
the data remains on the original source, the queries always produce up-to-date
information from the live source. However, queries can be considerably slower
than the MOLAP approach. On the other hand, MOLAP systems require process-
ing time at the start to transfer the data and create the basic structures. Generally,
the effect of this processing time can be minimized by performing it at night or
when the data and systems are lightly used. The third method is hybrid (HOLAP)
storage. With this approach, the original data remains in the relational database,
but aggregations or subtotals are computed and stored in the warehouse. HOLAP
might seem like a useful compromise, but its query performance has been report-
ed to be similar to ROLAP, so it is probably not very useful.

One nice feature of Analysis Services 2008 is that data can be defined in parti-
tions and each partition can have its own storage method. If the application needs
live data, leave that portion in ROLAP structures. Put the rest of the data into
MOLAP partitions. The logical data is treated the same and the data is easy to
combine even from multiple sources on different partitions.

For the major elements of data needed in a project, someone has to decide if
live, absolutely-current, data is needed. If so, this data is placed into ROLAP par-
titions. Other data should be placed into MOLAP partitions. Later, performance
specialists can tweak the system to improve overall performance. Realistically,
unless a project has at least 20 million rows, it is small enough that the choice
of storage method is not going to have much effect on performance. All of the
projects used in this book are small enough to easily use any of the storage meth-
ods—but MOLAP is the obvious choice because none of the data needs to be live.

OLAP Design

What is the process for designing and creating a data cube? Per-
haps the first question is why OLAP browsing typically refers to a cube. The two
questions are related. Figure 3.5 shows a sample three-dimensional cube. The data
displayed on the cube are measures on some fact. The attributes on the sides are
dimensions. The dimensions consist of factors that are important to decision mak-
ers. The cells in the cube show subtotals for the values of the two intersecting di-
mensions. A hypercube can have any number of dimensions, but it is hard to draw
anything above three dimensions. In fact, most people can read only two dimen-
sions at a time in a basic table. So, most OLAP tools provide a cube browser that is
essentially a dynamic table. Analysts can choose the dimensions by dragging from
a list. If the values in the dimension are small enough, they can be stacked in the
table. Filters can be used to effectively slice the cube—changing the table values
to show a single slice of the cube. For example, setting a filter to Month=Jan could
be used to show a table with Customer location against Category for just that
month. Dynamic changes and quick responses are key features of cube browsers.
No one wants to wait minutes for a cube to update when a dimension is changed.
Figure 3.6 shows the Analysis Server cube browser with data from Rolling
Thunder Bicycles. It currently displays totals for the dimensions of Model Type
and Location of the customer. The date of the purchase is set as a filter dimension,
but it currently displays data for all years. The dimensions can be changed simply
by dragging them from the list in the left panel onto one of the three spots (row,

Chapter 3: OLAP Cubes 103

Road
Race
A CA
Mi
Customer
Location
NY
TX
Y
Jan Feb Mar Apr May
i N
) >
Time
Sale Month
Figure 3.5

Hyper cube. The data are measures on facts. The attributes are dimensions on the
cube. A cube browser shows the subtotals from different perspectives, and can
examine slices of the cube from any perspective.

column, or filter). Dimensions are removed by dragging the off the table. It is pos-
sible to put multiple dimensions on the rows, but the table size quickly gets out of
control and hard to read with too many values.

A dimension can be organized into a hierarchy or levels. In the example, loca-
tion is a hierarchy from country to state, city, and ZIP code. Similarly, the date
is a hierarchy from year, quarter, month, and date. These hierarchies have to be
created within the dimensions, but once defined the cube browser handles the hi-
erarchy automatically.

Notice that the left panel also contains a list of possible measures that can be
used within the table. The cube currently displays subtotals for Sale Price. Other
measures include List Price and the count of the number of bicycles. The mea-
sures can be dragged on or off the center of the cube. It is possible to display mul-
tiple measures at the same time side-by-side. However, the table can quickly get
out of control when too much data is placed on it.

The default computation for values is to sum them. This computation can be
changed to one of several options—but it cannot be changed from within the
browser without some additional configuration. This restriction makes sense
when you understand how the OLAP tool works. To provide near instantaneous
response, the totals are computed only when the cube is processed. Browsing sim-
ply retrieves the values that match the displayed dimensions. So the next step is to
learn how to setup and create the basic cube.

Chapter 3: OLAP Cubes 104

Tea Dyes Dguabane Cybe Teoh Tep Anshoe Yindew Help
S - = 4| B | Development - || Detase =] el

& Tracsls o, Browser

A Sohuticn RTCube (1 preject)
a i, RiCube
[y Data Sowrges

2] 2
FLREx - o
et | Semermon e rchy Operator Pt tapr e - E-"-'Shﬂ= Wit
—] | Py = 1 A
B Mrisieta I = # [y Cubes
Mesnre Group: Rlcube
SM z . a [z Dimensions
'l Memres la Model Type.dim
B orce Emplopec) ModelType Sale Price - L7 Reted Sormcom
wl Birpele Ceunt e i $607.61 [[* Lster Syl dim
sl COMDOREnE Lt) Mourtan L1+ 1 [Pairndim
i Prame Price " R [Employeedem
i Feame fine = e [Customer.dim
ul LstPrce - = 17 Bicydadm
ol
uil Saes Tax ° Track L:_:"‘r'.‘-ms:.m :
ul ShoFrice e (S = 9 Seruciues
=
[Sevde =it (™

% [Custamer 1812 [
s 12512 Tour

Lo dated Mombers 15357 ybrd

15 Mountan

[Ero Mourtan il 4331980

15 ey A

15499 o AXEUS. Language

15283 Towr I Processnghiode —
= E ProcesagPnenty 0

Vinibde Tree

DEmess | L 0W i
1, 0 Warmings
Description Fie Line Calumn Project Deserption

Name RT
-
Mawmer
Speckar the nume of the obyect.

_ih Ervest Lt [f CRISE]

Figure 3.6

OLAP cube browser. Dimensions can be dragged from the left onto rows, columns,
or the filter at the top. The data totals in the table update automatically as the
dimensions are changed. Individual attribute values can be deselected with the drop-
down arrow by the dimension name.

Facts and Dimensions

The cube image provides the foundation for the structure of how OLAP works.
The key to understanding OLAP is to focus on the measures and dimensions. In
fact, the multidimensional storage systems use this structure to organize the data
for fast retrieval. The first step in designing an OLAP system is to identify the
facts that need to be measured. In business applications, the facts typically in-
volve sales, which are generally computed as price times quantity. In the bicycle
case, all of the bicycles are unique, so the quantity is always one and Sale Price
is the relevant measure. In other cases, it will be necessary to create a calculated
column that handles the multiplication. Those details are explained in the next
section. Some problems have multiple facts, but business cases typically focus on
the value of sales and perhaps the number of items sold or number of sales. At the
moment, it is not important where the fact measures are stored. Even if the data
columns are stored across multiple tables, the OLAP system will combine every-
thing into one set of measures.

Once the facts have been identified, the attributes that might affect those facts
need to be identified. These attributes become the dimensions of the cube. At
this stage, it is important to identify all of the potential dimensions that manag-

Chapter 3: OLAP Cubes 105

Product Customer
Category Location: City
Color Gender
Size Age
Manufacturer Experience

Store Sale

Country Date
Region Time of day
City Discount
Department
Salesperson

Figure 3.7

Common business dimensions. Look at tables and categories for ideas about which
dimensions to include. Ultimately, all of the dimensions are combined and treated
equally.

ers and analysts might want to consider. Avoid looking at the data in relational
terms. Simply look at the existing data and decide which attributes would be use-
ful dimensions.

Figure 3.7 shows that common business dimensions include product attributes,
customer demographics, salesperson, region or store, and sale attributes. Product
attributes often include items such as category, color, size, and manufacturer. Cus-
tomer demographics might include location (City), gender, age, and experience.
The availability of data will depend on the type of business and the level of con-
tact with the customers. Large organizations will want to track sales geographical-
ly by country, region, and city. Many will want to track sales by department and
by salesperson. The Sale itself typically includes a date dimension which some-
times is tracked down to time of day. Some organizations provide different types
of discounts and need to track those. The point is to go through all of the data
tables and identify anything that might be used to define a grouping or subtotal.

Star Design

In the end, it is not important where facts and dimensions come from. The basic
design in an OLAP system is the star design. Figure 3.8 shows an example of a
star for the common set of business dimensions. The star name arises because the
fact measures reside in the center and every dimension is connected directly to the
fact table through single links—like rays emanating from a star. The star design
is efficient for retrieving data because every dimension is directly tied to the fact
measures. Pulling data from a relational database, the system often accomplishes
this structure by duplicating key data. The data in a star structure does not have
to be stored in relational normal form. Many systems improve performance even
more by pre-computing all of the subtotals. The star configuration represents the
MOALP or multidimensional storage. Data is stored according to the dimensions.

Chapter 3: OLAP Cubes

106

Product

Category
Color

Size
Manufacturer

Store

Country
Region

City
Department
Salesperson

Figure 3.8

Star design. The fact table in the middle holds the measures. All other dimensions
are one link away from the measures. The star design is often created by duplicating
data. Keeping dimensions down to a single link improves retrieval performance.

Fact Table: Measures

Customer

Location: City
Gender

Age
Experience

Sales=Price*Quantity
Quantity

Sale

Date
Time of Day
Discount

Figure 3.9

Snowflake design. Dimension tables can have links to other tables, creating tables
that are multiple links away from the fact measures. Complex snowflake designs
require the OLAP engine to perform joins to obtain data and slow down the
performance. Try to avoid them except for lookup tables.

Product

Category
Color

Size
Manufacturer

Store

Country
Region

City
Department
Salesperson

Customer

Gender
Age
Experience

Location

Fact Table: Measures

Sales=Price*Quantity
Quantity

Sale

Country
State
City

Date
Time of Day
Discount

Chapter 3: OLAP Cubes 107

Country Year Year
Stateor Province | Rollup tosummarize| Quarter Quarter
City Drill down for details Month Week
Postal Code Day Day
Figure 3.10
Hierarchies. Common natural hierarchies are based on geography and time.
Sometimes, as with dates, multiple hierarchies can be defined from the same data.

Snowflake Design

Some OLAP systems support only the star design. Others provide more flexibility
by allowing links to the tables holding the dimensions. Microsoft Analysis Ser-
vices allows the creation of these links. Ultimately, these secondary links make
the design appear more like a snowflake than a star. Figure 3.9 shows a simple
example that links the City table to the Customer table. Throw enough secondary
links into the picture and it begins to look like an idealized snowflake. The prob-
lem with these secondary links is that the OLAP engine has to build joins to re-
trieve the associated data. Although the query engine can build indexes, the links
generally decrease performance—particularly with huge tables. The links often
arise because of the way the data is stored in the relational OLTP database. In
most cases, the OLAP tool supports methods to extract the data from the outlying
tables and build it into a MOLAP structure. Even though the data might appear to
be stored across multiple links, internally, it is denormalized and stored in a star
structure. Still, it is best to avoid secondary links when possible. The example here
uses it only as a lookup table, and that connection is handled later as a hierarchy.

Hierarchies

Hierarchies are dimensions that ultimately are perceived as a single dimension
with multiple levels. People often use hierarchies to simplify problems. Looking
at data by levels makes it easier to see the big picture and still provide the details
needed to understand a system. Figure 3.10 shows an example of two common
natural hierarchies: location and time. Notice that multiple hierarchies can be de-
fined for the same set of data. Some retail companies use weeks to define sales
instead of months, but analysts and managers might want both hierarchies for dif-
ferent purposes.

Chapter 3: OLAP Cubes 108

When hierarchies are applied to a cube, the browser displays buttons (often +
signs) that enable the analyst to drill down to see the more detailed level. Simi-
larly, detailed levels can be rolled up to see the totals for the higher level.

Microsoft Analysis Services has tools to help build common natural hierar-
chies, particularly for time and geography. It is also possible to build custom hier-
archies, such as groupings of products, or employee teams. These hierarchies can
only be created from existing data. If you know that certain hierarchies will be
needed, be sure to include all of the related columns needed to define the hierar-
chy. For instance, an Employee table might include a ManagerID column to report
a hierarchical reporting relationship, so ManagerID will have to be included in the
dimension list. For workgroup teams, a separate table defining members of the
teams will likely be needed.

Creating a Cube with Microsoft Analysis Services

How are OLAP cubes created using Microsoft SQL Server Anal-
ysis Services? The basic concepts of OLAP cubes are relatively common. The
process of creating one is quite different depending on the specific product. The
steps with Microsoft’s Analysis Services are straightforward, largely because of
the use of wizards. The basic process is to build connections to the data sources,

Figure 3.11

Structure of the Analysis Services design. 1. Define connections to the data sources.
2. Crate data source views to retrieve and configure the data. 3. Define cubes as a
collection of measures and dimensions. 4. Refine dimensions and add hierarchies.

Data Source -
Data Connection Data Source View

Relational DBMS Tablel Table2
E % Data Source
. Fact
Data Connection Measures
Data Source /fable3 Table4
@ Data Connection

Other data
sources
Cubes Dimensions
Measures
Attributes
Dimensions Hierarchies

Chapter 3: OLAP Cubes 109

define views and calculations, create an initial cube, and refine the dimensions and
create hierarchies. Figure 3.11 shows the basic structure of the objects within the
Development Studio for building OLAP cubes.

Although other tools exist, the most powerful tool to define and control the
OLAP structure is provided with the Business Intelligence Development Studio.
The BI studio is based on Microsoft Visual Studio, which is a design environment
for many types of programming. The BI projects are built using a specialized set
of templates. The studio should be installed on your workstation using the Client
disk from the SQL Server installation package. Even if a workstation already has
Visual Studio for other uses, the BI templates need to be installed from the SQL
Server setup.

The data defined for OLAP cubes is also used later for data mining. The statis-
tical analysis tools are embedded in the Development Studio and the data can be
retrieved through OLAP views or directly from OLAP cubes.

Data Sources

Almost any type of database or standard file can be used as a data source with
SSAS. Microsoft has been building database connectivity systems for years, and
most of them can be used to read data into the OLAP structure. One catch is that if
multiple connections are going to be used, the first connection should be to a SQL
Server database. Apparently, Analysis Services routes the connections to the other
systems through the SQL Server database.

Start the BI tool and create a new project. Choose the Business Intelligence
project type and select the Analysis Services Project template. All projects are cre-
ated as a set of files in a folder on the local computer. Most of the files are XML
text that describes the specific objects created in the project. A solution (.sln) file
holds links to all of the files. When the cube is processed, the information is com-
piled into a specialized format and sent to the specified Analysis Server. For now,
you simply need to choose a name and location for the project. If possible, stick
with the default location. Create a name that describes the project that can be rec-
ognized later.

Initially projects are empty and Visual Studio displays a list of tasks in the So-
lution Explorer. The first task is to define a connection to a data source. A data
source is typically a relational database. It might be SQL Server running on a
central server or even on your local computer. The sample files for this book have
scripts to build them on SQL Server, but the data also could be loaded into an
Oracle or MySQL database. In a real-world project, the database should be run-
ning on a separate server.

Relational Database

Most OLAP projects retrieve data from a relational database. SQL Server is cer-
tainly easy to connect to with SSAS, but almost any common DBMS has drivers
for establishing connections to Microsoft tools. To connect to an Oracle DBMS,
you should obtain the OLE DB client from either Microsoft or Oracle. OLE DB is
a Microsoft standard for establishing connections with database systems and the
common DBMSs have providers—but you might have to install them separately.
The providers will also have to be installed on the server running the Analysis
Services engine.

To create a data source, right-click the Data Sources entry in the Solution Ex-
plorer and choose the New Data Source option. Click through the startup forms

Chapter 3: OLAP Cubes 110

| Connection Manager &J
Provider: | Native OLE DE\SQL Server Native Client 10.0 ~|
| J SErver name;:
Connection
Log on to the server
_;_j' @ Use Windows Authentication
All) Use SQL Server Authentication
5i ord
Connect to a database
@) Select or enter a database name:
RT -
Attach a database file:
Test Connection OK l \ Cancel I ‘ Help

Figure 3.12

SQL data source configuration. Choose the correct server. If possible, use Windows
authentication. Select the correct database and always test the connection.

and click the New button. Choose the provider from a drop down list—it defaults
to the latest OLE DB driver for SQL Server. The configuration form shown in
Figure 3.12 is standard for SQL Server connections. The form changes slightly
depending on the provider selected. For SQL Server, choose the name of the serv-
er. If possible, use Windows authentication. Eventually, for production systems,
it is better to create a separate SQL Server login. For now, select the appropriate
database and always be sure to test the connection. Follow the steps to accept the
choices and finish the wizard. When finished, an entry will appear under the Data
Sources in the Solution Explorer.

At a minimum, the logon connection specified (either Windows or SQL Server)
must have read permission on the tables or queries needed for the project. These
permissions are set within SQL Server (or whatever DBMS is holding the data).
Later, to create hierarchies within dimensions, the logon user will also need per-
missions to create new tables. Hierarchies are stored within separate tables. Time
dimensions are the only exception—SSAS provides a mechanism to store time
dimensions on the OLAP server for cases where the logon user cannot be given
the permission to create a table.

Multiple sources

Multiple data sources can be added to a project. Simply follow the same steps to
add new connections. Connections can be made to different databases, even those
stored on different servers and different DBMSs. Always remember to test the
connections as they are built—it will be difficult to identify the cause of problems
later if the connection fails.

Chapter 3: OLAP Cubes 111

Think about what it means to use multiple data sources. The OLAP engine pro-
vides a level of abstraction. As long as Analysis Services can connect to a data-
base and retrieve data, the data can be included in the project. In essence, this trick
enables you to integrate data and even define relationships across data tables from
different databases. Once the database connection is defined, any accessible data
can be used in the project. From this point forward, you no longer care where the
data is stored. The OLAP engine handles the details of retrieving the appropriate
data. The process of connecting tables is handled in the Data Source Views, but all
tables are equal at that point and the source does not matter.

Data Source Views

A data source view in OLAP has some similarities to queries or views in a data-
base engine. The purpose of a view is to provide a perspective on a subset of the
data. It is also used to join tables and define new computed columns. One big dif-
ference is that the data source view is required for OLAP. The data source view
serves as a buffer and it is not possible to retrieve data directly from a table. To
build a cube or to retrieve data for data mining, all of the data needed must be de-
fined in a data source view.

A project can contain multiple views. Some projects are built by cramming all
data tables into one view. With even a few dozen tables, this approach quickly
gets messy. Sometimes there is no choice and all of the tables are needed together.
However, in many cases, a better approach is to create separate data source views
for each particular problem. Separate data views also make it easier to assign se-
curity. For example, a different view can be created for each specific group of
users or analysts. Access can be controlled by assigning permissions to the views.

If it really is necessary to include dozens of tables in one data source view, the
display can be cleaned up by creating separate diagrams. A diagram shows the
relationships among tables and it is easy to create as many diagrams as necessary
within one data view. The diagram does not affect the use of the data—which is
good and bad. The good part is that the displays can be simplified and it is easier
to work with a few tables at a time. All of the data is still visible later when build-
ing cubes and data mining models. The bad part is that the division only applies to
the diagrams so every table and dimension shows up in huge lists when building
cubes and selecting data. A diagram only applies to the display of the data source
view on the diagramming window.

To reduce the overall number of tables and dimensions that groups work with,
it is necessary to create separate data source views. Whenever possible, separate
views should be used. Just be careful to give them descriptive names that every-
one will recognize.

Creatz'ng a Data Source View

Creating a new data source view is straightforward. Right-click the Data Source
Views entry in the Solution Explorer and choose the option to add a new one. The
wizard will ask you to select the data source, although it has an option to create a
new one if you skipped that first step. The second step is to select the tables and
views (queries) from the relational database. Figure 3.13 shows the basic process.
For complex problems, it will be helpful to study the relationship diagram from
the underlying database. If the tables in the underlying database are linked indi-
rectly through other tables, all of the linking tables must be included in the view
to be able to reconstruct the relationships. If you are uncertain about which tables

Chapter 3: OLAP Cubes 112

‘E Data Source View Wizard e

Select Tables and Views

Select objects from the relational database to be included in the data source view.

Available objects: Included objects:

Mame Type it Name Type
B Component (dbo) Table H Bicycle (dbo) Table
B ComponentMame (dbo) Table [3 Customer (dbo) Table
A CustomerTransaction (dbo) Table i) City (dbo) Table
Eh (dba) Table _ H LetterStyle (dbo) Table
] GroupComponents (dbo) Table = < JE2| ModelType (dba) Table
[3 Groupe (dbo) Table [paint (dbo) Table
I Manufacturer (dbo) Table [T RetailStore (dbo) Table
[Z] ManufacturerTransaction ... Table | Employee (dbo) Table
3 ModelSize (dba) Table

[T Preference (dbo) Table

[F Purchaseltem (dbo) Table

@ PurchaseQrder (dbo) Table =2

[T RevicinnHistans (dhal Tahle i

Filter:

[T Show system objects

[<k |[meer | ————

Figure 3.13

Selecting tables for a data source view. This view focuses on the bicycle and the sale.
Most of the tables are lookup tables used for the dimensions.

are required, you could start with the table that holds the facts then click the but-
ton to “Add Related Table.” The drawback to this approach is that it is likely to
include many tables that you do not necessarily need in one view. But sometimes
it is easier to add everything and remove the ones you do not need.

The last step is to name the data source view. Be explicit, use extra words. It
is important to use a name that everyone will recognize later. A short name with
abbreviations might seem cute now, but a year from now, it might be unrecogniz-
able. This particular view might be called RT Bicycle Sales and Customers. But
do not worry, views can be renamed later.

Creating a Named Calculation

Sometimes existing columns are not in the correct form or do not include the ex-
act data needed for a cube or for data mining. Two of the most common situations
are: (1) Common business items such as Value=Price*Quantity or Profit=Revenue
— Cost, and (2) Creating concatenated columns to form a single primary key. The
data mining routines all require a single column as key and it is often necessary to
build one within the data source view. For now, it is useful to learn how to build a
common business calculation.

In the Bicycle case, each bicycle is unique so there is no need to multiply price
and quantity. However, the Bicycle table contains a ListPrice and SalePrice. The
difference between the two is the discount amount. Some managers might want to
explore the cube with respect to the discount values.

Chapter 3: OLAP Cubes 113

('@ Edit Named Calculation o] D |
Column name: DiscountPct
Description: percent discount
Expression:
CASE
WHEN ListPrice=0 THEN 0
ELSE 1-SalePrice/ListPrice
EMND
0K l | Cancel I | Help
Figure 3.14
Named calculation. Right-click the title bar of the Bicycle table in the data source
view and add a Named Calculation. Enter a name and the expression that defines the
calculation. The expressions use SQL Server calculations and functions. Calculations
are row-by-row.

A row-by-row calculation is created within a table in the data source view and
is called a named calculation. It is equivalent to creating a calculated column
within an SQL query. In fact, it uses the same functions and computations that are
used in SQL queries. To create the calculation for the discount, right-click the top
of the Bicycle table in the view and select New Named Calculation. It is impor-
tant to select the title bar of the table; the option will not appear if you select the
middle of the table.

As shown in Figure 3.14, enter a descriptive name. Enclose it in brackets if it
contains a space or reserved character. A longer description can explain its pur-
pose. The expression is the calculation. Discounts are typically evaluated as a per-
centage (ListPrice — SalePrice) / ListPrice. Expressions can be any SQL Server
calculation or function. To obtain help building expressions, it is often easier to
create the expression in a SQL Server query window, test it there, and copy it
back to this OLAP expression box. Either way, once the expression is created, it is
important to test it within the data source view. Right-click the main body of the
table and choose the Explore Data option. Verify the computed column.

One problem with dividing is that it is important to test for zero values of the
divisor. The SQL CASE statement is useful to create the two conditions needed
(zero and not zero). If ListPrice is zero (most likely missing), set the discount to 0,
otherwise define the percentage as 1-SalePrice/ListPrice, which is a slightly sim-
pler expression of the percentage. As an advance warning—do not attempt to use
this calculated column in a cube just yet. A section below on calculations explains
an important issue.

Chapter 3: OLAP Cubes 114

_# Create Named Query ‘ A 4':"JE|"dh
Name: RT Sales By Menth
Description: Total Bicycle Sales by month for Time Series analysis
Data source: RT (primary) =
Query definition:
2 EEE
‘ » =
Column Alias Table Outp... Sort Type Sort Order Group By Filter *
YEAR(OrderD... | Sale¥ea.. [@ Ascending 3] Group By
» SalePrice SaleTotal | Bicycle (d.. = Sum i
SELECT YEAR(OrderDate) *100 + MONTH(OrderDate) AS SaleYearMonth, SUM(SalePrice) AS SaleTotal
FROM dbo.Bicycle
GROUP BY YEAR(OrderDate) *100 + MONTH(OrderDate)
ORDER BY SaleYearMonth
SaleYearMonth SaleTotal o
» 199401 21583697
199402 205952.48 =
1 of180 | b bl Cell is Read Only.
oK] I Cancel j | Help
Figure 3.15
Create a named query. The edit window is similar to creating a query in SQL Server,
but the named query is stored it the data source view. Use the icons or right-click to
add tables and add Groups to create subtotals. The ORDER BY clause is used only to
test the query. It must be removed to save it.

Creating a Named Query

It is also possible to create entire queries within a data source view. A named
query is similar to queries created within SQL Server but they can use all of the
tables within the data source view. If all of the tables come from a single SQL
Server database, it does not matter if the query is created and saved in the underly-
ing database or in the data source view. However, the strength of creating a named
query is that it can us data from any table from any data source—so it can easily
combine data from diverse locations. This feature will not be used for the example
in this section, but remember that it is available.

Data mining problems often require data to be in specific formats. For instance,
to perform a time series analysis on monthly data, the data totals by month need to
be computed before starting the time series analysis. The time series tool does not
have an option to compute subtotals—they have to be set up ahead of time in the
data source view. The data mining tools also require a single column as the pri-
mary key, so it is often necessary to use a query to concatenate separate columns
into a single key.

Creating a named query is similar to creating a query in SQL, but it is handled
in the data source view. Right-click an open location in the data source view and
choose the option to add a new named query to open the editor window. Figure
3.15 shows the edit window, which is similar to editing queries in SQL Server.

Chapter 3: OLAP Cubes 115

You can work with SQL directly or use the graphical interface to help build the
query. Use the icons or right-click the table window to show the list of tables and
to add the Group By options. Always test the query before saving it. In the ex-
ample, the ORDER BY clause is used to help evaluate the results; but it must be
removed before the query can be saved. The SQL Query is:

SELECT YEAR (OrderDate) * 100 + MONTH (OrderDate) AS
SaleYearMonth, SUM(SalePrice) AS SaleTotal
FROM dbo.Bicycle

GROUP BY YEAR (OrderDate) * 100 + MONTH (OrderDate)

Notice the way the YearMonth column is created in this query. Because a single
column will be needed as the primary key for time series analysis, the Year and
Month functions are used to generate dates of the form: YYYYMM. Multiplying
the Year by 100 shifts it to the left by two places to create space for the month
number. Also note that views cannot contain the ORDER BY clause. It is some-
times useful for testing, but needs to be removed before saving the named query.

Once the named query is created, it is important to set the logical primary key
for the new query. On the data source view, right-click the column name (Sale-
YearMonth) and choose the option to Set LogicalPrimaryKey. Defining the pri-
mary key within the named query sets the default values for any tool that uses that

query.
Creating a Relationship

Most of the time, when tables are imported from data sources the relationships be-
tween the tables are also imported. However, when creating named queries or im-

porting tables from multiple data sources the relationships will not be built auto-
matically. In those cases, it is straightforward to create the relationships manually.

Figure 3.16

Creating relationships. When using drag-and-drop to create a relationship, drag from
the foreign key (many) table and drop onto the primary key in the related table.
Relationships created the other way need to be corrected by pushing the Reverse
button.

% Specify Relationship = | B [

Source (foreign key) table: Destination (primary key) table:

ModelType - |[Bicyele -

Source Columns Destination Columns

ModelType ModelType

Reverse

Description:

f\ The relationship is currently between a primary key calumn and a non-primary key column. If this is incorrect, click
** Reverse.

0K | [Cancel] [Help

Chapter 3: OLAP Cubes 116

3 Cutes Wizard B

Select Measure Group Tables
Select a dats source view or diagrarm and then select the tables that will be used for measure
Grosps,

Data source views

RT Bicycle and Customer =

Measure group tables Suggest

2 Custormer

T Empileyee

a LetterStyie
 ModedType

1 Pamt

1 RetailStere

a City

1 RT Sales By Manth

< Back et = Cancel

Figure 3.17

Select tables that hold measures. First select the appropriate data source view in the
drop-down list. Then choose the Bicycle table which holds the sales information for
the RT case.

Relationships can be created by right-clicking the data source view window
and choosing the option to create a new relationship. However, it is easier to drag
a column from one table and drop it on the matching column in the related table.
As shown in Figure 3.16, the big catch is that you need to drag from the foreign
key (many) side of the relationship and drop onto the primary key of the related
table. The relationship editor is not smart enough to identify the relationship auto-
matically. If you try to create the relationship the other way, the warning message
explains the problem. Click the Reverse button to switch the direction. If that does
not solve the problem, either the keys on the tables are wrong, or the wrong col-
umns have been selected for the relationship.

Cubes

When the data source and data source view have been created, a hypercube can be
defined with the selected data. The main steps in creating a cube are to choose the
columns for the fact measures and select the columns that can be used as the dis-
play dimensions. If the data source view is built correctly, these steps are straight-
forward with the help of the cube wizard. When the cube has been built, it can
be explored with the browser. Next, more complex dimensions can be created by
building hierarchies.

Chapter 3: OLAP Cubes 117

= 2020

Select Existing Dimensions
Select existing dimensions to include in the cube,

Dimension

E Customer
E]E Retail Store
E Paint

[Vl7 Letter Style
E Employee
E]E Model Type
E Bicycle
WL city

e

Figure 3.18

Dimension tables. Tables in the data source view that are linked to the measure tables
are automatically included as dimensions. The City table can be removed later when
the location hierarchy is created.

Wizards

Start the wizard by right-clicking the Cube entry in the Solution Explorer and
choosing the New Cube option. The first screen has options for selecting the data.
The default choice of using existing tables is generally the best way to start. As
shown in Figure 3.17, the next step is to choose the data source view from the
drop down list. The view should have been created to hold both the measures and
dimensions. The main purpose of the form is to select the tables that hold the facts
or measures that will be used in the cube. The RT case uses the Bicycle table to
hold standard sales data, so select that table.

On the next screen, the wizard automatically selects all of the columns in the
chosen table to use as measures. Because only a couple of the columns are actu-
ally measures, click the checkbox at the top to deselect all of the columns. Then
select the three useful measures: List Price, Sale Price, and Bicycle Count. The
last entry (Count) is not an actual column, it is a measure added automatically
by the wizard. It essentially counts the number of rows. It is useful in cases such
as the Bicycle table where no quantity exists. Similar situations exist for table on
people, such as customers or employees. For more traditional problems contain-
ing a Quantity column, including the row count could lead to confusion, so it
should be left out.

The next step is to choose the dimensions that can be used in the cube. The
wizard automatically selects the tables linked to the fact table. In the RT custom-

Chapter 3: OLAP Cubes 118

er data source view, the dimension tables include: Customer, Model Type, Retail
Store, Paint, Letter Style, Employee, City, and Bicycle. Essentially, those tables
are lookup tables that provide a description for the ID value stored in the Bicycle
table. Recall that the City table was linked through the Customer table. Later, it
can be removed when a location hierarchy is created to handle the lookups. Also,
notice in Figure 3.18 that the Bicycle table is included by default because it is the
measure table. This table needs to be included with the dimensions because it con-
tains the sale date information needed to explore sales over time. If the list lacks
some tables that you feel should be included, you should cancel the wizard and re-
turn to the data source view to ensure that all of the needed dimensional tables are
linked to the measures table. At this point, do not worry about hierarchies because
they will be configured after the basic cube is built. The final screen summarizes
the cube and enables you to enter a descriptive name.

That is the entire process needed to create a cube. The cube now needs to be
transferred to the analysis server and processed. Then it can be browsed. It might
not be perfect yet, but it is a good practice to test it to ensure it processes correctly
and that it has the fundamental data needed.

Deployment and Processing

Most of the work to this point has taken place on the client workstation. The data
connections, data source views, and even the cube definition are currently stored
as definitions in XML files. The cube with data does not yet exist. To use the cube,
the definition has to be transferred to the Analysis Services server and processed.
Processing consists of building the dimensions and pre-computing most of the
subtotals for each of the dimensions. Executing this step is straightforward: right-
click the new cube name in the Solution Explorer and choose the Process option.
The cube will be deployed to the server and a job schedule created to process the
data. In most cases, for testing purposes, just click the Run button on the process-
ing form to start the computations. In a production environment, the cube could
be huge and take large amounts of resources and time to process. The processing
form has options to estimate the impact on resources and limit the number of pro-
cessors used. But these options are more useful when a cube is being reprocessed
to load new data.

After the processing runs, the results will be presented on a progress form. It
is critical that the processing complete successfully. Any errors will be displayed
on the form and they need to be corrected. Some error messages are confusing,
but two common errors are (1) The server is not running or not accepting your
connection, and (2) The cube definition has errors—often due to problems with
dimensions and hierarchies. Server connection errors

By default, all projects attempt to deploy to the Analysis Services running on
the local computer (localhost). In many cases, a central server will be used to run
Analysis Services and the deployment location needs to be changed. For instance,
students might be asked to write data to a central server, and projects set for fi-
nal release need to be deployed to a central server. The process for changing the
deployment server is not obvious, so Figure 3.19 shows the configuration form.
Right-click the project name in the Solution Explorer and choose the Properties
option to open the configuration form. Click the Deployment link. Change the
name of the Server from localhost to the network name of the server running the
Microsoft SQL Server Analysis Services. Your Windows account will need appro-
priate developer permissions on the Analysis Server. In most cases, it is simpler

Chapter 3: OLAP Cubes 119

~ X | Solution Explorer - Analysis Services Pr..« 1 X

[Solution *Analysis Services Project RT' (1 ¢ +
- 'y Analysis Services Project RT

- [Data Sources
“Analysis Services Project RT Property Pagas R — o RT.ds E
~ 3 «# Dining.ds
Configuration: | Active(Development) ~| & N/A Configuration Manager... = [Data Source Views
{7 RT Customers.dsv s
4 Configuration Properties |2 Options {7 Dining.dsv
Build Processing Option Default «[7 RT Bicycle and Customer.dsv
Debugging Transactional Deployment False 9 RT Purchases.dsv
Deployment Deployment Mode Deploy Changes Only 9 sampleSales.dsv
B Target - [Cubes
Server localhost [4 RT Bicycle Customers 01.cube
Database Analysis Services Project RT 1) SmpleSales.cube
[) RT Bicycle and Customer 02.cu
=+ [Dimensions
i 1/ Customer.dim
H 12 Dotnil Come - 5
. | P
Solution Bxplarer 73 Class View
e ﬁemss - 1x
The Analysis Services instance to which the project will be deployed. |\palysis Services Project RT

2l =

FullPath C:\Users\JPost\Documen

Figure 3.19

Change the deployment server. Right-click the project name in the Solution Explorer
and choose Properties. Click the Deployment link. Change the name of the server
from localhost to the network name of the central server.

to build and test all projects on your local computer, because security controls are
easier to set.

Browsing the Cube

Finally, you are ready to browse the cube and explore the data. The Visual Studio
OLAP project has a cube browser, but the 2012 version is quite limited compared
to the earlier 2008 version. In particular, the dimensions can be displayed only
as rows, not columns. For browsing, analysts will probably want to use an Excel
PivotTable instead. The PivotTable can connect to the SQL Server cube, so SQL
Server performs most of the processing work. The PivotTable browser allows
placing attributes on columns as well as rows so some types of data are easier to
read. The Cube Browser in Visual Studio 2012 has an Excel button that will open
Excel and automatically add the current cube. (Details for creating a PivotTable
independently are covered in another section.) The PivotTable is initially empty
with markers for where to drop fields: Row dimensions on the left, Column di-
mensions near the top, Totals in the middle, and Filter dimensions at the top of
the cube. It is easy to drag dimensions to different locations at any time, so the
initial placement is not critical. Typically, the main factor in deciding whether to
put a dimension on a column or row is the size of the dimension. More rows than
columns can be displayed on the table, so larger dimensions are easier to read as
columns.

Figure 3.20 shows one variation of the initial cube, formed by placing the Sale
Price in the middle, Model Type as columns, and Employee ID as rows. The fig-
ure shows the tree structure of the measures and dimensions in the right panels.
Any of these items can be expanded and the specific dimensions dragged onto the
cube. The cube computes subtotals for each dimension. In the example, a single
cell shows the total sales value of a specific Model Type made by the Employee

Chapter 3: OLAP Cubes 120

r m
o0 RTCube - Microsoft Visual Studi =R g

File Edit View Project Build Debug Tesm Data Database Cube Tools Test Analyze Window Help
Pl Sl @] 6|9 - - &5 | b Development ~| | Defautt 112 final Bl e e O o

Gl RT.cube [Design] x FRERUITTD) ~ Solution Explorer
pr P
%) cubest... | 8] Dimensi... | Cakalat.. |2 KPIs |f Actions | @) Partitions |3} Agoreg... | Persec... | (@ Transla... [(3 Browser Hﬁg‘ e
£ Solution 'RTCube' (1 project) A
& | 8 : 2 & =
Bl < | 20 (2| enguage: ool < (] 4y RTCube
5 < 5 5 = 4 [Data Sources i
B o Editas Tet S Import.. | 39 @ F [5:[@] % [] o
3 ‘ @ T [..] | Dimenson Hierarchy Operator Filter Expression 4 [Data Source Views
S ErT| Time H Year Equal A RTdsv
g etada J
& ‘<Select dimension> 4 [Cubes
Measure Group: (1 RT.cube I
<All> - - : 4 [z Dimensions
e =" L | G 12 Model Type.dim L
= Date Sale State Model Type Sale Price - 12 Retail Store.dim 1
2y Of Manth | Mountain 10070 [1% Letter Styledim
iay OF Quarter Mountain full 4650 L Paint.dim
ay Of Year Rec 1500 L Employee.dim
S Road P |/ Customer.dim
lanth Of Quarter 17 Bicycledim
onth Of Year Tour 2430
17 Time.dim
uarter AK Hybrid 30960
. : £ Mining Structures.
uarter Of Yaar =N | A Mountain 92180 & Roles
7 Quarter - Month - Date— || | A Mountain full 253290 B Assemblies N ||
e — T T | A Racz 328830 [Miscellaneous i
J ax Road 279590 ER = W% Teom Explorer B# Class View)
ST E TR A Tour 47150 Deployment Progress - RTCube -1
A Track 3100 Server: localhost
AL Hybrid 55575 Database : RTCube
AL Mountain 474360 () Command
AL Mountain full 1189400
Race 1061833
Error List
@ 0Emors | 1\ 9Wamings | (i) 0 Messages
Description File Line Column Project
Status:
J | |
@ Deployment Completed Successfully

[Error List [T 3 Deployment Progress [it Tatis

Figure 3.20

Browse the initial cube. Drag the Sale Price measure to the middle/values. Drag the
Model Type dimension to the top/columns. Drag the Employee ID dimension to the
left/rows.

shown on the row. Notice the Order Date is not included yet, so the values repre-
sent totals for the entire time the company has been in business. Note the differ-
ence with the SSAS cube browser, where the PivotTable can display dimensions
as columns.

Dimensions

How are dimensions created and modified to improve brows-
ing? The initial cube is somewhat disappointing. Check out the dimension choic-
es: Employee ID, City ID, Letter Style (ID), Paint (ID), Retail Store ID, and so on.
Where are the actual descriptive names? What about hierarchies? Sale Date needs
to be configured into at least Year-Quarter-Month-Day, and it would be nice to
track customer location by state and city name. And it would be nice to format the
totals to remove the decimals and add commas to make the values easier to read.
All of these improvements need to be made to the cube’s dimensions.

The last one, formatting is probably the easiest to fix, so consider that one first.
Switch to the Cube Structure tab (the first one on the left). In the Measures panel,
expand the Bicycle entry to see the three items that were selected for this cube.
Select the Sale Price entry and open the Properties panel. Under the Basic section,

Chapter 3: OLAP Cubes 121

i _Mi i [ESREN =)
4] Analysis Services Project RT - Microsoft Visual Studio] - i e
Eile Edit View Project Build Debug Database Dimension Teols Test Window Help
-t 5 9| % Ba| 9 - ™ - G- 5| b Development - Default - | [# btwopart SRR S
|>¢| ~Customer.dim [Design]"| RT Bicycle and Cu...02.cube [Design]” | Start Page | - x Solution Explorer - Solution 'Analysis Services... = 1 X
E =
e JE Dimension Structure][!’-; Attribute Relationships |% Translations |TQ Browser =N & -
g = . a B [Cubes [E
=3 & E2-xE2mBEQ-%- . 14 RT Bicycle Customers 01.cube
H;: Attributes Hierarchies Data Source View - I SampleSales.cube
4 U Custenr 1) RT Bicycle and Customer 02.cube
3 Eanm 5 [Dimensions
£l & o "\ e
3 85 Gender - |7 Retail Store.dim
|| Lasthame L Paint.dim
- |7 Letter Style.dim
B Customer - |2 Employee.dim =
? CustomerID I Madel Typedim
Phone L~ Bicycledim
s - 12 Calendar.dim |
LastName
- I~ Cityd
Gender L7 Citydim
A Iﬁ: E.\am(ple Category.dim E

ZipCode < I 3

CityD - -
e 5 Solution Explorer [Class View

Deployment Progress - Analysis Services Proj... = & X
Server: localhost
Database : Analysis Services Project RT

() Command

7 CGitylD
ZipCode
City
State
AreaCode Status:

Population2000 |
Population 1990
Population 1980
Country @ Deployment Completed Successfully
Latitude

‘ﬁpmpemes |>,g=;‘ Deployment Prog... ‘EDymam\c Help

=1 Output][Error List|

Ready

Figure 3.21

Edit the Customer dimension. Double-click the Customer dimension in the main list
to open it. Drag the Gender and LastName columns from the Customer table into the
Attribute panel on the left.

change the FormatString to: #,##0;-#,##0 which adds commas and removes the
decimal places. Repeat the process for List Price. Bicycle Count is probably fine
without formatting because the numbers are not too large. To test your changes,
Process the cube and switch back to the Browser tab. Click the Reconnect icon to
refresh the data.

It is more important to fix the dimensions so that managers can see the names
of the dimensional values instead of just the ID numbers. No one wants to memo-
rize lists of ID numbers. All of these require editing the underlying dimensions.
First, understand that all of the dimensions are defined independently from the
cube. Dimensions exist outside of the cube and then are used within any cube.
This process might seem strange at first, but it makes the dimensions reusable, so
they can be defined one time and applied to many cubes.

Figure 3.21 shows the basic process for editing the Customer dimension. Open
the list of dimensions in the Solution Explorer and double-click the Customer di-
mension to edit it. Drag the Gender and Last Name columns from the Customer
table into the Attribute panel on the left. After the cube is reprocessed, these col-

Chapter 3: OLAP Cubes 122

Eld 9 (= icrosoft Exccl W— =]
m Home Insert Page Layout Formulas Data Review View Add-Ins PowerPivot Acrobat Team Options Design a e
¥ cut ™ A = . =y = [= [Fhe PR I Adtosum v gv |
ae Catbri TRV P SiwepTen Custom Jlj o & [= v A
o Formatpainter | B £ U~ E- [S-A- = Bvegemcmer- | § - % 2 WA e - sy~ | " PTG el
Clipboard Font Alignment Numb er Styles Cells Editing
131 - £ | 208438543 v
A I PivotTable Field List - %
A B c D E F = H [1 [Choase fields to add to report:
1 [sale Price Column Labels [~ P e =
2 Row Labels ~ | Hybrid Mountain Mountain full Race Road Tour Track Grand Total [ClLetter Style
3 | = Calendar 1994 199,006 559,020 928,984 436,774 346,201 35,029 2,555,013 5] Hodel Type
4 | ®calendar 1995 124,200 567,940 294,300 1,074,490 709,230 187,920 2,058,210 [9]Model Type
5 | #calendar 1996 631,760 1,469,870 1,374,850 361,020 213,360 4,050,860
6 | “Calendar 1997 2,780 783,820 1,826,320 1,851,160 894,040 5,358,120 3 [Paint
7 | = Calendar 1998 110,360 1,366,180 2,712,310 683,090 1,562,180 203,270 6,637,390 MColrftame
8 | ®calendar 1999 3,138,210 2,792,330 1,998,490 1,816,790 634,260 10,380,080 [Ccolor styie
9 | # calendar 2000 94,010 1,657,070 1,611,920 671,200 600,180 4,634,380 [lpaint ™
10 | = Calendar 2001 180,500 1,221,870 1,399,290 936,430 876,740 72,890 4,687,720 & [Retai stre
11 | = Calendar 2002 1,523,740 2,507,560 1,581,050 1,645,770 225,980 7,484,100 [Flstore
12 = Calendar 2003 2,241,600 3,675,790 1,585,560 2,593,660 526,680 10,623,290 [Store Niame
13 | ®calendar 2004 896,390 3,372,690 1,858,720 2,183,070 624,300 8,935,670 [Jzp Code
14 = Calendar 2005 934,540 2,812,930 3,113,150 2,285,410 486,990 9,633,020 2|
15 | = Calendar 2006 1,205,720 2,700,080 3,235,570 2,319,750 599,460 10,060,580 = Time
16 | = Calendar 2007 1,098,330 3,370,890 4,431,690 2,965,450 313,340 12,179,700 4 8 [F]Vear - Quarter - Month -...
17 | ®calendar 2008 846,990 2,930,500 3,931,900 2,508,860 471,980 10,690,230 1 (g More fields
18 | = Calendar 2009 829,900 3,452,630 4,244,930 2,951,360 296,470 11,775,290 -
19 | = Calendar 2010 1,018,340 4,277,740 5,171,940 3,417,090 616,580 14,501,690 Dx ot Dby o ek
20 = Calendar 2011 894,730 5,435,980 5,708,890 4,079,300 1,009,970 17,128,960 7 ReportFiter % CoumnLabek
21 =calendar 2012 628,450 1,283,150 5,327,330 5,903,620 3,748,000 632,210 17,522,760 Model Type =
22| #Quartert, 2012 111,840 164,510 1,063,010 1,154,660 716,840 161,460 3,372,420
23| 5Quarter?, 2012 178,070 367,800 1,265,120 1,430,560 1,022,140 147,300 4,410,990
E = April 2012 67,780 158,450 478,280 576,620 348,270 64,520 1,693,920
25 #May 2012 42,450 75,840 467,680 458,010 355,720 41,310 1,442,010
2 #June 2012 67,830 133,510 315,160 394,930 318,150 41,470 1,275,060
27| ®Quarter3, 2012 116,990 350,800 1,215,100 1,165,540 702,210 102,010 3,652,650
28| =Quarterd, 2012 221,450 400,040 1,784,100 2,152,860 1,306,810 221,440 6,086,700 i Rowiabs S
29 | Calendar 2013 736,360 1,286,090 5,437,450 6,093,490 3,687,020 695,840 17,936,250
Year- Quart... v | [Sdlefice v
30 | # calendar 2014 691,900 970,200 5,792,490 6,101,470 4,560,560 588,610 18,705,230
31| Grand Total 3399366 25,793,700 61435230 61700574 46617604 9268121 222049 [a0masssas]
32 3
23 e
W 4>]| Sheetl ~Sheet? ~Sheetd ~¥J [0KR [T ¥z
[7] Defer Layout Update
Reagy | 3 | |[Emm o =)) ()
Figure 3.22
A better cube using Excel PivotTable. The formatted values are easier to read and the
dimensions use names instead of ID numbers.

umns will be available to be displayed on the cube. Test it by reprocessing and
reconnecting the cube. Then replace the CustomerID dimension with Gender.

Use a similar process to edit the other dimensions and add descriptive columns
for: Employee, Letter Style, Paint, and Retail Store. Save the changes and close
the dimensions after making the changes to reduce the clutter in the editor. Repro-
cess the cube after making all of the changes. One quick note about names. The
attributes for names are usually listed separately (Last Name and First Name). The
dimension editor will treat these columns separately. If they need to be combined
into a full name (such as Smith, John), it has to be done with a Named Calculation
in the data source view. Then the new Full Name column can be used as a single
attribute in the dimension. Rolling Thunder has only a few employees, so they can
be identified by last name. Most organizations will want to use a longer identifier,
and will probably need to include the ID, phone number, or date hired to distin-
guish employees who have the same first name and last name.

Figure 3.22 shows the results of the changes. The cube is better because the
formatted values are easier to read and the dimensions have recognizable names
instead of numbers. The sample cube shows how dimensions (Paint Color and
Customer Gender) can be combined to examine multiple levels of detail. This ver-
sion is better, but the cube still needs hierarchies for time and location.

Chapter 3: OLAP Cubes 123

3

E Dimension Wizard =NECIN X

Define Time Periods
Select the time periods to use when generating the hierarchies.

First calendar day: Saturday , January 01,1994 E-

Last calendar day: Friday . December 31, 2010 E~

First day of the week: ’Sunday vl

Time periods: [#] Year

[] Half Year

Quarter

[Trimester

o
[] Ten Days

] Week

| Date

Language for time member names: English (United States) Z

e |

Figure 3.23

Creating a time hierarchy. Hierarchies on the analysis server require a starting and
ending date, but it is okay to add extra dates. Choose the levels that will be used in
the hierarchy.

Hierarchies

Many dimension attributes need to be created as hierarchies to show different lev-
els. Three common hierarchies in business are: (1) Dates, (2) Location, and (3)
Managers or divisions. Time and Geography are so popular that Analysis Servic-
es has wizards to help create them. Internal hierarchies by managers (or perhaps
products) can be created but usually require custom definitions.

Hierarchies are built within dimensions and an important aspect of dimen-
sions is that they are created independently from the cubes. They can be applied
to multiple cubes. The same concept is important to hierarchies. A hierarchy is
create separately and can be applied to multiple cubes. For example, the common
Year-Quarter-Month-Day hierarchy applies to many dimensions. This process is
handled by defining the hierarchy and all of its data levels as a separate dimension
and then building a relationship between the lowest level (Day) and the underly-
ing dimension. With this process the date hierarchy can even be applied to mul-
tiple dates within the same table, such as Order Date and Ship Date.

Think of hierarchies as lookup tables with a specific structure. The structure
and the data have to be created and stored someplace, which is independent of the
cube. Then the levels of the structure can be linked to a specific data cube.

Chapter 3: OLAP Cubes 124

i i 3 = [|
%% Analysis Services Project RT - Microsoft Visual Studio ‘(' a - i - a
File Edit View Project Build Debug Database Tools Test Window Help
A-EH-EHE | ® B ~ 4~ 5~ EL| b Development ~ Default v | [# btwopart - |) g s o
?)L/c?léndar.dim'm_es'igm] ~ x| Solution Explorer - Analysis Senvic.. + & X
g ' 18 Dimension Structure ||} Attrbute Relationships |1 Translatons |l Browser =&
E &~ & Cubes | =
=l & l=- x| | [RT Bicycle Customers 01,cx
0 || Atributes Hierarchis Time Periods - 1) SampleSales.cube
S oo [J RT Bicycle and Custormer 0
P [_E s Year - Quarter - Month - Date Standard = - [Dimensions
%_n Day Of Month © Year E.Yaars - 1A Customer.dim
B Day OF Quarter “ Quarter ¥ Halfrears 12 Retail Store.dim
= Day Of Year 4 Month v 5! Quarters - |2 Paint.dim
Month o : L Trimesters 17 Letter Style.dim |
Manth Of Quarter Ll Months 17 Employee.dim 1
By — o e B
Quarter OFf Year 12 Days %4 E‘_‘ycle'd'm
85 vear £ payofiveek - £ City.dim
T {2, DayofTenDays - 1/ Calendar.dim
1€, Dayofvonth Fl- [Minina Structures =
18, Dayofquarter Al A0 i
1, DayOfTrimester |‘-‘§ Solution Explorer ‘Qgc\ass View|
Ll DayOfalfrear Deployment Progress - Analysis 5., « & X
Eafﬁﬁg:ﬂr Server: localhost
I, TerDayOfMonth Database : Analysis Services Project RT
1, TenDayOfQuarter (») Command
1, TenDayCfTrimester
1, TenDayOfHalfrear
[, TenDayofyear
[MonthOfTrimester
(£ MonthOfQuarter
&, MonthofHalfrear
& Monthofyzar Status:
1€ TrimesterOfyear |
{2, Quarterofalfrear
15, QuarterOfiear
[, HalfrearOfrear @ Deplogr:ce:r:csscfzrl:ypleted
|fPrcpertie: ‘f‘; Deploym... |ED:mamic
‘;-fl 0utput|jj Error List‘
Ready
Figure 3.24
Calendar hierarchy. This dimension design form is the standard way to create and
edit dimensions and hierarchies. Notice the hierarchy in the middle pane. All of the
attributes in the left pane will be visible to the cube browser. Additional attributes in
the table in the third pane can be dragged to the attributes pane if they are needed.

Time Dimensions

Time dimensions are so important to most organizations that Analysis Services
has several methods to create time hierarchies. Remember that hierarchies are di-
mensions and all data displayed in the dimensions must be stored someplace. For
time dimensions that means every year, quarter, month, and even day have to be
predefined. However, because definitions of time levels are relatively standard,
the dimension wizard can automatically create and populate tables with the data.
The main decision you have to make is where you want to store the table: (1) Cre-
ate a new table in the data source, or (2) Create a time table on the analysis server.

Because time hierarchies are the only ones that can be created on the server,
that is the approach used in this chapter, simply to illustrate the process. Also, ob-
taining CREATE TABLE permission on the data source can be harder than it ap-
pears. To use the other option of creating a time table on the server, it is probably
necessary to use the Windows login connection.

The one drawback to storing time hierarchies on the server is that the starting
and ending dates have to be specified when the hierarchy is built. At a minimum,

Chapter 3: OLAP Cubes 125

E Dimension Structure L!f': Attribute Relationships % Translations “@ Browser

Balva-w42liE

TN) LN) (R

Figure 3.25

Attribute relationships. To improve performance, all levels in a hierarchy should be
related in a chain from lowers to highest level. The relationship property should be
fixed—signaled with a solid arrowhead.

the values need to include all of the dates in the database, so you need to know
those values ahead of time. Fortunately, additional dates can be stored in the hier-
archy. If dates in the hierarchy do not match the data, they are not displayed in the
cube browser.

To create a time hierarchy, right-click the Dimensions heading in the Solution
Explorer and choose the New Dimension option. The type of dimension is the
first question that needs to be answered. Choose the option to generate the time
table on the server. Figure 3.23 shows the form used to specify the details of the
hierarchy. Because the table will be stored on the server, the dates are independent
of any existing data, so you have to set the values for the starting and ending date.
The Rolling Thunder database runs from 1994-01-01 through 2008-12-31 but like
a real company, new data gets added over time. So set the ending date to the end
of 2010. Later, when the hierarchy is used in the cube browser, dates that do not
exist in the database will be hidden.

The time wizard supports several types of calendars. Some of the basic options
can be configured on the main hierarchy screen—such as the starting day of the
week and the language. Others are specified on the next screen. The two main
choices are a Regular calendar and a Fiscal calendar, although several others exist,
including the ISO 8601 calendar that displays dates in a standardized format. Note
that it is possible to generate multiple calendars for the same hierarchy, so differ-
ent users in the organization can choose a calendar to meet their individual needs.
For now, stick with the Regular calendar.

Figure 3.24 shows the dimension hierarchy created by the wizard. This screen
and the hierarchy are worth examining because the same form is used to create
other hierarchies and it is nice to have a correct example to work with. The left
pane shows the attributes that will be displayed in the cube browser. The terminol-
ogy needs some explanation, although it is clear once the data is displayed. Spe-
cifically, what is the difference between Quarter and Quarter of Year? In Micro-
soft’s terminology, Quarter is a specific quarter in the time period, such as 1994
Q1 or 2007 Q3. Quarter of Year is a generic quarter without the year, such as
Ql—which represents the first quarter for all years. Similar definitions apply to
the Month and Day variations.

Chapter 3: OLAP Cubes 126

‘Jam\dxa 1on3s |xaqmoj_,,x|

_RT Bicycle and Cu... 02.cube [Design]" | ~ x| Solution Explorer - Solution ‘Analy... v & X
i, cube ... [B] Dmen... | cdad... |BF wis | Actions | Partit.. |} Aggre... | Persp... | i@ Transl... |, Browser =2
4 o 2 i =] l__7Cuhes -
Balwer i L~ 4 RT Bicycle Customers 01.cy
S — 114 RT Bicycle and Customer 0
P [Dimensions
Dimensions [=]| usl] Bicyce o 12 customer.dim
i 1/ Retail Store.dim
ﬁ Bicyde IEU Serial Number M Paint.dim [
12 Employee.dim
. 1/ Bicycledim
& Pant Faint ID o 14 City.dim
Lo 12 Calendar.dim
< | [»
18 Calendar Deployment Progress - Analysis 5. = & X
| Server: localhost
. N :
£ Define Relationship el fices Project RT
Select relationship type: Regular v]
The dimension table is joined directly to the fact table.
Granularity attribute: | Date -
Dimension table: Server provided
Measure group table: Bicycle Int Completed
fessfully
- - Relationship: 2
I [u] = SaliEl m... [@]Dynamic...
L’, . Bl 7 Dimension Columns Mezsure Group Columns
Server provided OrderDate
———

oK H Cancel H Help]

Figure 3.26

Create a relationship from the dimension to the cube. The ellipses button starts the
wizard. Choose a Regular relationship in the drop-down list. Select the lowest level
(Date) in the hierarchy list. Choose the OrderDate from the cube attributes to form
the relationship between the cube and the dimension hierarchy.

The middle pane shows the actual hierarchy in top-down order. This hierarchy
can be created or modified by dragging attributes from the left pane and dropping
them at the appropriate level. Generally, it is best to work from the top level down
to the lowest. The third pane shows all of the columns available in the data source
table. Any of these can be added to the attribute list by dragging them over. How-
ever, because the wizard has finished, you will have to manually create levels with
the new columns.

Technically, the hierarchy will be usable as long as it is defined correctly in the
middle pane. However, to improve performance, Microsoft strongly recommends
defining attribute relationships among the items in the hierarchy. Figure 3.25
shows the most efficient relationships are a simple chain from the lowest level
to the highest. The wizard automatically created the attribute relationships, but
for other problems you will have to build your own relationships. Relationships
are displayed as the arrows and are created by selecting the lower-level node and

Chapter 3: OLAP Cubes 127

.“‘ i o 0Ky " mfm B Seeie Cuntpm S B s | :'.:. . }l-' N
Frimarins | ¥ L B @ A | BN EE Ewephtme | 5% 0| W Dolet et O | St Db Pomed | G | Sk ek
L} - & | omaas
0] Tk e i
& B - [] E i (] (] i e gt R e a1 g =

1 Sabe price e T o T e s s e e s e e e A | B e o

& R Ll L el iy Misirtaia tull e Rinit Fosad. Traik il Tkl il

B eCalende 1904 19 s 50,000 ey ass, 714 By o EESSOLE

4 v Calends 1995 12200 ST, 080 T, 0 1,804,090 TIm 1AM a0

3 # Caberdas 1996 LR 1,489 570 1T 183,800 FLL B 07,

& #Cabendas 1997 L EITE LA, 1 11,160 B [T EE

T = Calendes 1 L0, B 1,066,180 Lm0 I 1,562,180 ML BT,

B Cabendas 199 (ST E L] Lm0 1, 1038, 750 B 10, 40,080

¥ Calerdes 200 LT 1EAT0m LA (L] 00,180 L] A

8 # Calende KL 180,500 1,251,570 L9250 (LT e] SBET T

81 *Calerdes Kei2 1,528,780 500,560 14,5810 145,500 i L]

BT o Calenda bxid &, iy BATS, P 1,540 5 L0 s} pLTTLE.]

1 B LATEGM LEATH RAELET e BT -

M Lot 184208 LALLM LES 0 i e]

13 1,305, T30 2,700,000 LIBAR ERTUE L 0,000, 50 # [Teme

b 1,008, 1 LR AANLL00 RN LR 17,179,700 @ i or - owtr - Honih - —

a7 [291,500 LN 00 2,508 8o &rLem0 10,890,780 ™ ey

7 900 1482800 azeaam 138,080 o8 11,575, 0

15 = Calenda 5010 1,608, a0 LA 5171980 311,050 14,550 148,501, B4 ey i e belewr

28 = Calends ML e TE 540580 o ARSI 1AM 15,108 0 T —

2 Calends XL A 1am8150 5.0 5800620 (R 6R2200 JETSTE H) e =

I E R L KL R pLoR Leslme 1A LLE pLIE B ErLam

1 Casnar 1, W2 T T B L5000 e LA 1038 147w &80, 5

M #kpel 3337 LI 15,430 anms EUTe eI [TEs L851500

-3 # iy 0T azLany 750 57,880 a0 BT s 142,000

S # s T0LT ST 133,310 1 E80 LT 18150 aLam 1,375,000

37 ® Cuarber 1, 3012 Lua B0 1,205,800 L16%,540 520 102018 B2,

2 #Carber 4, 3012 A 400,08 174,500 2% 1,506,800 FHE] 0, 108 B e Lo T

2 e Calends X010 8,380 1,20 00 LA 48 [LIE] V81000 LB 17,50, 0 —_ -

5« Calende K4 L S, 5. P2 480 LRI] 4,540,500 (T 18, ¥R, P =

51 Gorand Foaal LIS BSTNRI0 LM LGS Meareed anain anew [seemsn]

LE

1 &

“ W Sl Eaers eyl “ .
I
'

Ol Lo Liwiate
-] T s

e S

Figure 3.27

Sample cube with Calendar hierarchy. Click a + button to drill down to a detailed
level. The cube is now easy to navigate for different time periods.

dragging it onto the next level. To create the first relationship in the example, you
would drag the Date node and drop it onto the Month node. Notice that the arrow
is solid—that signals that the relationship is fixed—the days in a specific month
will never change. If necessary, this property is assigned by right-clicking the re-
lationship arrow and setting its properties. No changes are necessary here.

Save the new Calendar dimension. Remember that it is currently a standalone
dimension and is not linked to the cube. In fact, because it is a server-based di-
mension, it cannot be used until it is created. Save it, then right-click its name in
the Dimension list of the Solution Explorer and choose the option to Process it.
This method processes only the new dimension and generates the values for all of
the dates. If any errors appear in processing, delete the new dimension and start
OVer.

The generic Calendar dimension can now be assigned to the RT cube. Open
the cube and switch to the Dimension (second) tab. Right-click the main window
and choose Add Cube Dimension. Select the new Calendar dimension from the
list of available dimensions. The calendar dates will now be available to the cube,
but it is critical to link the calendar to a specific date in the data source view. As
shown in Figure 3.26, select the gray box next to the new Calendar dimension and
click the ellipses button. Choose Regular relationship from the drop-down list. A
relationship links the hierarchy values to the data in the cube, so it is necessary
to specify the attribute in the hierarchy that matches an attribute in the cube. For

Chapter 3: OLAP Cubes 128

E Dimension Wizard |ﬁl

Select Dimension Attributes —
Specify dimension attributes and select Enable Browsing to surface them as hierarchies.

Available attributes:

Attribute Name Enable Browsing Attribute Type
City ID & Regular
v ip Code v ostal Code
[¥] ZipCed [¥] Postal Cod
City Regular |
State f 1
- = Geography -
[Area Code k
City
[Population2000 51:“,19”1:
[Populationl! Country/Region
[Population1380 County =
Geo Boundary Bottom
Eountly & Geo Boundary Front
[Latitude Geo Boundary Left
[Longitude Geo Boundary Polygon
[Selection CDF Geo Boundary Rear
B I-:lF"- Geo Boundary Right s
] Income2004 [OK] [Cancel]
h,
e H
Figure 3.28

Assign geographic levels. The wizard understands common geographic levels and
columns in the City table need to be assigned to the proper level by setting the
Attribute Type. The primary key (CityID) must be included and it must be left as a
“Regular” type.

dates, choose the lowest level in the hierarchy: Date. Then choose the Order Date
in the cube to build the link. It is possible to repeat the process and add a calendar
for any other dates in the cube (such as Start Date and Ship Date), but keep the
cube simple for now and ignore those two dates. Save everything and process the
cube. Browse the cube, reconnect if necessary, remove the existing dimensions
and rebuild it with Model Type in the columns and the Calendar in the rows. Fig-
ure 3.27 shows a version of the cube using the PivotTable. It is now possible to
drill down and examine sales at different time periods.

Custom Geographic Hierarchy

Geographic or location hierarchies are also common in many business problems.
However, the geographic divisions are less standardized than the time divisions.
The basics (Country, State, City, Postal Code) are relatively common, but the data
that falls within those categories is more variable. Plus, companies often define
regions or sales territories to the list and these are always defined differently. Even
something as commonly used in the U.S. as “the Midwest” has many variations.
Analysis Services has a wizard to help define a geographic hierarchy, but Roll-
ing Thunder Bicycles already has a City table that includes basic geographic data.

Chapter 3: OLAP Cubes 129

y
7] Analysis Services Project RT - Microsoft Visual Studio = | B)
File Edit View Project Build Debug Database Dimension Tools Test Window Help
-5 @ | ¥ Ga@|9 - ™ - G- b Development » Default - | [# btwopart - s B
boe Location.dim [Desngn] RT Bicycle and Cus. ,mmbe[gglgn] g,tmpagE ~ X | Solution Explorer - Selution *Analy... v & X
3 = | &
2 | [% Dmension Structure | 1e? Attribute Relationships |T@ Transiations |1 Browser = 3
3 i «07 RT Bicycle and Customerd =
=iz alE-xEE8aq- o4 RT Purchases.dsv
Iy .,
o ||| Attributes Hierarchies Data Source View [SampleSales.dsv
2 | [ot B [Cubes
2 Wy A Higrasue., [¥]) RT Bicycle Customers 01.c =
E
=3
s

i e ? ;‘;‘::lnDde 1 Customer.dim
i Zp Code i Zip Code City 1 Retail Store.dim
FO = - Upamam

AreaCode
Fopulaton2000 = jiﬂ‘utmn | Solution Explorer (I3 Class View
Population 1330
Population1980 Lo E
Country City DimensionAttribute

Country

I RT Bicycle and Customer 0
= State

= [Dimensions

Latitude

=
CustomRollupColu (none)
CustemRollupProp (none)
KeyColumns City.City (WChar)
NameColumn (none)

ValueColumn (none) B
5 Properties (@] Dynamic Help
=] Output| g Error List
Ready i
Figure 3.29

Building a hierarchy of attributes. The hierarchy begins as an empty panel. Drag the
top level (Country) onto the middle panel. Drag State and drop it just below Country.
Repeat the process for City and Zip Code.

Fortunately, tables of cities, states, and countries can usually be created from ex-
isting data. If a company has been in operation for years and collected customer
data, the internal databases should already contain lists of addresses that can be
extracted to form a City table complete with ZIP (Postal) codes. City databases
can also be found online, some government agencies provide standardized da-
tabases. The Rolling Thunder Bicycle case was built with a City database that
includes relatively detailed information. But, if you look closely at the data, you
might spot one issue. The ZIP code aspects of the RT data are okay, but not per-
fectly realistic. Cities can have multiple ZIP codes, and in a few cases, a ZIP code
can apply to multiple cities. This many-to-many relationship is difficult to handle
in a database that relies on generating data.

Creating a geographic hierarchy is straightforward. Begin by right-clicking the
Dimension entry in the Solution Explorer and choosing New Dimension. Choose
the option to “Use an existing table.” On the second screen, select the data source
view and choose City as the main table. The wizard automatically picks up the
CityID column as the primary key.

Figure 3.28 shows the screen where columns from the City table are assigned
to specific geographic levels. The common values of City, State, Country, and ZIP
code are assigned to City, State or Province, Country/Region, and Postal Code.
Any hierarchy must also include the primary key (CityID) and its attribute type
remains as Regular. This key value will be used to link the hierarchy dimension to
data stored in other tables, such as Customer, Employee, and Manufacturer. The
final screen shows the attributes and has a box for changing the name. Keep the
name simple, such as Location, because the hierarchy is generic and can be used
for different tables.

Chapter 3: OLAP Cubes 130

[ify City ID H;; IipCodeHii City H;; State H;; Cnuninrj

Figure 3.30

Build attribute relationships to improve performance. In the initial diagram at the top,
work from the bottom up. Drag Zip Code and drop it onto City, then City onto State,
and State onto Country. Double-click each arrow and select the Fixed relationship
until the diagram matches the one at the bottom.

Building a dimension from an existing table does not automatically create the
hierarchy. The attributes still need to be organized. Figure 3.29 shows the basic
edit screen. Drag attributes from the left panel onto the middle pane (hierarchies).
Begin with the top level (Country), and drag State onto a new level below Coun-
try. Repeat the process down to the ZIP Code attribute.

Attribute Relationships

Building hierarchies from scratch requires another critical step. As shown in Fig-
ure 3.30, the attributes need to be linked together with relationships to improve
performance. Switch to the Attribute Relationships tab. Initially, all of the attri-
butes are tied to only the CityID. The hierarchy needs to be specified in terms
of relationships. In terms of the arrows, it is built from the bottom up: CityID a
Zip Code a City a State a Country. The relationships are created by dragging the
lower-level and dropping it onto the next level (Zip Code onto City and so on).

Also, to improve performance, the relationships should be defined as rigid in-
stead of flexible (the default). Double-click a relationship arrow and change the
setting in the drop-down list. The arrowhead will be filled in to indicate the strong
relationship. If you make a mistake when building relationships, a relationship
can be deleted by selecting an arrow and pressing the Delete key.

Now comes the tricky part. Try to process the new dimension. An error message
will be generated and the processing halted. Attribute relationships follow a very
precise rule: There must be a one-to-many relationship between each level. For
example, a State can have many Cities, but a City can exist in exactly one State.
This relationship holds if “City” is defined as CityID, but City in the relationships

Chapter 3: OLAP Cubes 131

Location.dim [Design]” | RT Bicycle and Cus..r 02.cube [Design] | Start Page | ~ % [Solution Explorer - Solution "Analy... + & X
1% Dimension Structure | |#? Attribute Relationships |]4 Translations ‘TQ Browser | &
. [Dimensions -
5 o - = . =@ - -
palE-x E2maq-% - I Customerdim
Attributes Hierarchies Data Source View - 1 Retail Store.dim
T oban — -~ |/ Paint.dim
Gy Hierarchy w12 Letter Style.dim
cyD * Country To create a new ~ |4 Employee.dim
Country - stte v | herarchy, drag an L 1 Model Typedim
State & i - atiribute here, ? c.\ty]D - L Bicycle.dim i
Zip Code s — ZpCade 1 Calendar.dim

Key Columns === 1 Location.dim

& [Mining Structures =

[Roles

Source table: -

ource table: City J [Assemblies
[Miscellaneous

Available Columns Key Columns B — — ;

E CityD Ecity %)5olution Explorer [Closs View

E ZipCede = state

[£] AreaCode E Properties -1 x

=] Population2000 City DimensionAttribute -

[£] Population1990
[Z] Population1980

[Country MembersWithData -
= Latitude NamingTemplate
[Longitude RootMemberlf ~ ParentisBlankSelfOrh
[=] SelectionCDF UnaryOperatorColi (none)
Erps B Source
(=] Income2004 CustomRollupColt (none)
CustomRollupProg (none) L
KeyColumns (Collection) 1
NameColumn City.City (WChar) H
ValueColumn (none) =

ok [comcd | Hep | & Properties [Deploym.. |[g] Dynamic ..

Figure 3.31

Adding key columns to create a one-to-many relationship. Because a City name can
exist in many states, use the KeyColumns property to add State to the key so that
State has a one-to-many relationship with City+State. With multiple columns in the
Key, the Name column also must be set (to City).

Figure 3.32

Hierarchy relationship to data is referenced through Customer. Because of the
snowflake design, a referenced relationship is needed to specify the intermediate
Customer table.

f: Define Relationship [B sc)

Select relationship type: Referenced v]

The dimension table is jeined to an intermediate table, which in tumn, is joined to the fact table.

Reference dimension: | Location
- - Intermediate dimension: | Customer -
: A : Relationship
e - Reference dimension attribute: [C\tyID .]
|
\,
. Intermediate dimension attribute: [City ID -
\
Y Materialize [
. r|
[ual]

@ Path: Location <- Customer

[oK H Cancel H Help

Chapter 3: OLAP Cubes 132

Bicycle Count Column Li -7
Row Labels -T Mountain Mountain full Race Road Tour Grand Total
L 2 2 1 5
= LISA 7515 13065 11103 9717 2397 a3ra7
* 1 1 1 3
+AK 22 54 a7 55 10 183
HAL 136 290 148 180 36 740
AR 94 172 110 134 26 536
HAT 84 150 128 110 30 502
=ICA 508 981 1216 709 180 3594
+Acton 3 1 1 5
H Adelanto 1 | 2
H Agoura Hills 1 1 2
HAlameda 6 10 5 7 23
Halamo 1 1
Albany 1 1 2
Alhambra 1 1 3 4 9
#aliso Viejo 2 3 8 1 14
#allendale COP 1 1
alondra Park 1 1 2
Alpine 1 1 2
Alta Sierra 1 1
+ Altadena 2 2 4
 Alturas 1 1 1 3
Anaheim 2 3 9 2 16
Anderson 1 1
Figure 3.33

Sample cube with location hierarchy. The heading drop-down lists can be used to
remove little-used data such as Italy, Unknown, and Blank for Country.

is the name of the city, and clearly the same city name can exist in many different
states or countries (for instance, Paris is in Texas, Tennessee, and France).

Figure 3.31 shows how to solve this problem by adding a second column to
the key for City (and any other attribute with the same problem). In the dimen-
sion editor, switch to the Dimension Structure tab. Select the City attribute in the
left pane. Open the Properties window in the bottom right pane. Scroll down and
select the KeyColumns entry. Click the ellipses button. If you are unsure of which
values are many-to-many, try to process the dimension and watch for error mes-
sages, then modify the specified column. In this case, State needs Country added,
and Zip Code needs the City.

The City table has now been converted into a dimension hierarchy. The final
step is to attach that dimension to the cube. Close the dimension editor and open
the cube editor. Switch to the Dimension tab, right-click the main window and
choose to add a cube dimension. Select the new Location dimension which adds it
to the display. Click the ellipses button in the gray box to the right of the Location
dimension to open the relationship editor. The process for creating this relation-
ship is slightly different than it was for the time dimension. Remember that the
CityID is in the Customer table, not the Bicycle measure table. This link from
City to Customer to Bicycle is a feature of the snowflake diagram.

Chapter 3: OLAP Cubes 133

As shown in Figure 3.32, change the relationship type from “No relationship” to
“Referenced.” Set Customer as the intermediate dimension. The reference dimen-
sion attribute is CitylD and the intermediate dimension attribute is also CityID.

Finally, save everything, process the cube, build a PivotTable, and browse it.
Use Location as the row dimension and ModelType as the column dimension. Use
Bicycle Count as the value. The heading Country has a drop-down arrow that can
be used to remove small entries for Unknown, Blank, and Italy. Expand a state
and check the cities and ZIP codes. Almost all of the cities have only a single Zip
code in the database—a consequence of the data generator relying on a single ZIP
code when generating city data. Figure 3.33 shows the final cube.

Fine Tuning the Cube

How can the cube provide more information? Think of an OLAP
cube as an easy way for managers to explore the data by examining various sub-
totals or groupings of the data. Of course, the filters are also useful for showing
slices of the cube to examine specific details or categories. But, the cube browser
is restricted to the data measures and dimensions that have been predefined. Con-
sequently, as the designer, you need to think about all of the possible things that

Figure 3.34

Calculated measure. Right-click the Script Organizer window and create a new
calculation. Enter a name (Discount) and assign it to the Measure hierarchy. Drag
attributes from the list on the lower left and drop them in the Expression window.
Add the minus sign. Assign it to the Bicycle group. Use the IIF function to set the
color to Red for discount totals over 2000.

G e

Measure Group:

<All>

(3 RT Bicycle and Customer 02
= all Measures
B [Bioyde
uil Bicyce Count
wil Discount Pet
il ListFrice
uil Sale Price
Bicyce
Calendar
Customer
Employee

EREERER

EEEE®EE

=y
g
&

m

Dispiay folder:
Color Expressions

Fore color:

Back color:

¥ Font Expressions

Database : Analysis Services Project RT

o T S i W =
File Edit View Project Build Debug Database Cube Tools Test Window Help
- E-SH] % | 9 - 0 £ | b Development 1 Default - | [# btwopart BT = I
€| R Bicycle and Customer.dsy [Design)” RT Bicycle and Cu... 02.cube [Design]* | Start Page | ~ x| Solution Explorer - Solution ‘Analy.. + & X
A
' @, cube strucare | 8 omensonsage |Gl caclotons | s | Actons | parvtons [} agoregatons |5 Perspecoves | G Translatons |, mowser a2
g =) . ¢ Dining.ds -
= PalRal gl |[BEE = | ¥ | & =5 Data Source Views
i
o || script Organizer Name: 4 RT Customersdsy
2 .. ¢ Dining.dsv
g ||| B command =it <31 RT Bicycle and Customer.d|
m
il CALCULATE
E =] R ° £ RT Purchases.dsv
Sl2 B Dbiscound [SampleSales.dsv
(= Parent hierarchy: Measures | [Cubes =
i 144 RT Bicycle Customers 01.ci
(1 RT Bicycle and Customer 0|
£ Expression - [2 Dimensions
i TP IESTs] 1/ Customer.dim
casures] . [List Price]- [Heasures].[Sale Price
1/ Retail Store.dim =
w1 Paint.dim
1/ Letter Style.dim
Additianal Properties 1ol imployeain
17 Model Type.dim <
Format string: - q [P— o
Visile: [rue - cSolution Explorer [Class View
Non-empty behavior: [| Deployment Progress - Analysis .. ~ 1 X
Colcetion Tock Assdiated mezsure group: [Bicyde - Server: localhost |

(®) Command

IIF ([Measures] . [Discount] > 2000, 255, 0)

Status:

Deployment Completed
Successfully

@

|EFProperties |igg Deploym... [@]Dynamic ...

==
=] Output| & Error List

Lnl

Col32 Ch32 INS

Ready

Chapter 3: OLAP Cubes 134

A B =] E F G
1 Discount Column Labels -7
2 RowLabels - Mountain Mountain full Race Road Tour Grand Total
i W Calendar 1994 3839 136151 2991.E4 2108.4 12102.14
4 @ Calendar 1995 1345.04 523.2 193302 1577.82 5383.08
5 o Calendar 1096 4167.95 28861 743.04 ar1 8268.09
& # Calendar 1997 1576.8 IR61.99 1IBOCIF 1625.12 10144.03
7 ¥ Calendar 1998 o] 613803 141634 3111.B3 450,79 14085568
2 ¢ Calendar 1999 455126 4015.33 277061 189854 T4 13986
3 Calendar 2000 2787.18 25742 1107.14 1092.88 784,62
10 # Calendar 2001 1860.35 213692 166899 141136 14319 1201
11 # Calendar 2002 2461.05 937,72 591456 265983 47282 12124, 36
12+ Calendar 2003 MRS B8 #5302 189196 3450.06 Q.28 14325.2
13+ Calendar 204 1486.24 A508.17 A6 2759025 418,08 118149
14 ¥ Calendar 2000 1479.42 3719 346091 314329 Treas 12659.11
15 # Calendar 2006 143201 M. M32aFy aTiae 813.92 10592, 35
16+ Calendar 2007 1319.33 I674.88 372076 292011 309.79 1194587
17 # Calendar 2008 9558 10a.1 15516 RNl a447.19 105%%1.80
18 # Calendar 2009 J58.84 A2Fr30% JSEO.18 231595 210,88 #5388
19 #Calendar 2010 86403 B78.01 07601 243078 4543 10104.04
20 # Calendar 2011 121.57 B65242 1405227 28ME4 63033 1123718
21 = Calendar 2012 Tryor L FE N 15168 281757 454 54 10ras. 7
22| @ Quarter 1, 2012 1212 633.33 6BO.17 5638 9986 209276
23| ®Quarter2, 2012 n7.2 7EL1S B1L3F TS0.22 11752 -
24 +Quarter 3, 2002 214.3 G67.67 M5.53 4%5.53 .52 2
i H Quarter 4, 2012 23337 115453 1315077 1004.%4 186.64 388285
26 ¥ Calendar 2013 698,57 =1 I | #0373 2511 L6143 111359
Figure 3.35
Cube results for Discount. Notice that the color conditions and the calculations apply
to the total values as they are displayed. With VS 2012, these colors transfer to Excel
but do not display in the VS cube browser.

managers will want to see. Note that it is important for the designers to actually
talk with the managers while defining cubes.

But, what happens if managers need values that are not in the underlying da-
tabase? Specifically, managers and analysts often need calculated values such as
Profit = Revenue — Cost or Discount = ListPrice — SalePrice. Calculations and
queries

Also, what happens when a cube gets too big with dozens of measures and at-
tributes? Perspectives are used to create multiple views of a cube so that each
perspective shows a smaller set of the dimensions and attributes—specifically for
one group or type of problem.

What about companies that operate in multiple countries and languages? In-
ternationalization is important, and much of the work has to be carried through
the entire database. However, cubes have some functions that provide support for
translations. Note that some functions described in this section are supported only
on the Enterprise and Developer versions of SQL Server. The Standard version
provides limited support for some types of calculations and most optimizations.
If some examples do not work on your configuration, verify the version you are
using.

Calculations and Queries

Many problems require computing new values based on existing data. The cube
designer provides the ability to specify calculations. Because the cube is based on

Chapter 3: OLAP Cubes 135

X Y XY
100 2 200
5 10 50
Sum 105 12 1,260 or 250

Figure 3.36

The order of operations. It makes a big difference if numbers are added first and then
multiplied or multiplied first and then summed.

a data source view which behaves as a query, it is also possible to compute new
columns using SQL statements as named calculations within the data source view.
Always remember that the cube is designed to display aggregate values—usually
totals. Combining calculations with totals can cause serious errors. It is critical
to understand how calculations work—and the lack of documentation makes it a
challenge.

Cube Calculations

Consider an easy example first, where managers want to explore the value of the
discount given on each bicycle. Discount = ListPrice — SalePrice. The reason this
example is easy is because it is not the percentage discount. The calculation in-
volves simple subtraction. As shown in Figure 3.34, select the Calculations tab
and right-click the Script Organizer window to add a New Calculated Member.
Name it Discount and assign it to the Measures hierarchy. Drag the ListPrice and
SalePrice columns from the list in the lower-left window into the Expression win-
dow and add the minus sign. Assign the new measure to the Bicycle group. Just
for fun, open the Color Expressions properties. For the foreground color, enter the
immediate if function (IIF) to set the color to red if the total discount exceeds

2000:
IIF ([Measures].[Discount] > 2000, 255, 0)

The IIF function takes three parameters and is similar to the IF function in Ex-
cel. The first is a conditional test. The second is the value returned if the condition
is true. The third is the value returned if the condition is false. The color values
255 and 0 represent Red and Black. Use the color picker next to the box to obtain
more complex color numbers.

Save everything and process the cube. Transfer the cube to Excel and create a
new display cube with the Discount as the value totals, ModelType as the column
dimension, and Calendar as the row dimensions. Figure 3.35 shows the results.
Notice that the color conditions apply to the totals as they are shown. This result
makes sense, but it does complicate the choice of the conditional value (2000).
As the user drills down by quarter and month, the values will likely fall below the
critical number. Conditional color adds some emphasis to the cube display, but it
will only work at a certain level.

A more important problem arises but is invisible with this example. It turns
out that the defined calculation (Discount) is also applied to the totals or visible
data. The Discount value is computed at each displayed level as: Sum(ListPrice)
— Sum(SalePrice) for that level. Because the calculation involves only subtraction
(or addition), this method of calculation is fine. From basic arithmetic:

Chapter 3: OLAP Cubes 136

Sum(ListPrice - SalePrice) = Sum(ListPrice) -
Sum (SalePrice)

But this method of calculation can be seriously wrong if the calculation uses
multiplication or division. Figure 3.36 shows a simple example with two columns
and two rows of data. Because of the order of operations, it makes a big differ-
ence if the numbers are added first and then multiplied or multiplied first and then
added. In the example, the two calculations are 1,260 versus 250. It is absolutely
critical to remember that calculations defined within the cube are based on first
computing the total and then performing the calculation. In the example, if the
cube calculation is X*Y, the result would be 1,260 which is Sum(X)*Sum(Y).
Essentially, the calculations are performed on the values as they are shown in the
cube—not on the detailed rows. Once in a while, this order of calculation makes
sense—for example, to compare one subtotal to another. Much of the time, this
level of calculation leads to huge errors in interpretation. So, remember a simple
rule: Only use addition and subtraction in calculations defined on the cube. Never
use multiplication or division. The discount calculation shown in this section is
fine because it used only subtraction.

But some problems require the use of multiplication and division! The answer
is to define those at the row level of the data—in the data source view or at the
database level in a query. For example, a cube-level calculation computes the sum
first and then divides, while a query-level calculation computes the division first
and then sums (or averages)

Z SalePrice . SalePrice
ZList Price ListPrice

Figure 3.37
Standard cube using the Discount Percent. But the totals are greater than one.
By default, the cube totals all data at lower levels. Totals do not make sense for
percentages.
Model Type ~
Mountain |Mountain full| Race Road Tour Grand Total
+ |Quarter Month|Discount Po| Discount Po| Discount Po| Discount Po| Discount Po| DiscountPc| |
[Calendar 2000 0,9775099¢ 0.9815999¢ 0.4197 0.4290000C 2.8079
Calendar 2001 0.6066 0.69653995 0.5936 0.5054 0.0564 24588
[Calendar 2002 0.8684999¢ 1.3564 0.8655 0.9756 0.217 4,25329999¢
[Calendar 2003 0.8493099¢ 1.4622999¢ 0.5007 1.0559 0.3738 4,2420999¢
Calendar 2004 0.5544 1.3301 0,523 0.74430095 0.3069 3.5088
[Calendar 2005 0.5292 1.1933 0.8501999¢ 0.8819999¢ 0.2532 3.7083999¢
[Calendar 2006 0.3542 0.711 0.563 0.5522 0.2178 2,433
Calendar 2007 0,348 0.88139995 0.69139995 0.58442935 0.0813 2,5966
] Calendar 2008 | @ Quarter 1, 2008 0.0682 0.1872 0.1968 0.1234 0.0236 0.5992
[Quarter 2, 2008 0.0573 0.1934 0.1385 0.1563 0.0204 0.6164
[Quarter 3, 2003 0.053 0.1779 0.1558 0.105 0.0261 0.5175
[Quarter 4, 2003 0.0627 0.1833 0.161 0.1562 0.0332 0.5064
Total 0.2412 0.74179995 10,7019 0.5414000C 0.1033 2.3296
Grand Total 13.9648 148075 11,2047 111553 4.0707 55.30299%% |

Chapter 3: OLAP Cubes 137

9 | #cCalendar 2000 0.35% 0.36% 0.25% 0.25% 0.78%
10 # calendar 2001 0.26% 0.29% 0.28% 0.26% 0.26% 0.70%
11 = calendar 2002 0.36% 0.46% 0.36% 0.37% 0.28% 1.19%
12 = calendar 2003 0.32% 0.47% 0.23% 0.41% 0.25% 1.18%
13 #Calendar 2004 0.28% 0.45% 0.22% 0.2T% 0.23% 0.96%
14 = Calendar 2005 0.26% 0.38% 0.28% 0.30% 0.11% 1.02%
15 #Calendar 2006 0.18% 0.24% 0.19% 0.21% 0.19% 0.67%
16 #Calendar 2007 0.18% 0.28% 0.23% 0.21% 0.12% 0.72%
17 #Calendar 2008 0.15% 0.25% 0.22% 0.20% 0.11% 0.64%
18 *Calendar 2009 0.12% 0.16% 0.13% 0.15% 0.08% 0.38%
19 *Calendar 2010 0.11% 0.17% 0.14% 0.14% 0.09% 0.43%
20 | # Calendar 2011 0.11% 0.17% 0.14% 0.15% 0.08% {0.44%
21 = Calendar 2012 0.09% 0.14% 0.16% 0.16% 0.09% 0.43%
22 # Qwarter 1, 2012 0.10% 0.11% 0.14% 0.15% 0.07% 0.34%
23 # Quarter 2, 2012 0.08% 0.14% 0.14% 0.16% 0.09% 0.43%
24 ®Quarter 3, 2012 0.09% 0.13% 0.14% 0.12% 0.08% 0.35%
25 # Quarterd, 2012 0.09% 0.19% 0.22% 0.21% 0.10% 0.62%
26 *HCalendar 2013 0.07% 0.13% 0.18% 0.16% 0.10% 0.44%
Figure 3.38

Discount Percent as an average. The discount percentage is computed at row-level in
the data source view and the cube averages the values from the lower levels.

Query-Level Calculations

Most business managers looking at discounts prefer to examine percentages. But
the calculation for discount percent uses division: 1 — SalePrice / ListPrice. Which
is the reason this computation was introduced in the earlier section about data
source views. You should have already defined this Discount Percent as a named
calculation within the Bicycle table. If not, open the data source view and add it
to that table. Calculations performed within a query are handled at the row level,
performed for each row of data before any aggregations take place.

To see the effect, return to the cube browser. Drag the Discount calculation out
of the cube and replace it with the Discount Percent. Figure 3.37 shows the result.
Look at the grand totals and notice the problem. How can percentages be greater
than one? The answer is that by default the cube browser computes the sum of all
lower-level values.

The sum of percentages does not make much sense to a business analyst. It
would be better to use averages. Fortunately, the cube browser knows how to
compute averages. Unfortunately, because it is an aggregation, it means the cube
has to be reprocessed. Switch to the Cube Structure tab and select the Discount
Pct measure. Open the Properties window and change the Aggregate Function
from Sum to AverageOfChildren. Also, set the FormatString to Percent to make
the results easier to read.

Figure 3.38 shows the final cube. It might be nice to add conditional color to
highlight larger discounts. But, conditional color is available only for cube calcu-
lations. It can be added by calculating a new cube measure that is exactly equal to
the Discount Pct column, and apply color to the new value.

Calculations are useful, but it is crucial that you understand the difference be-
tween computing values row-by-row in a query and performing cube calculations

Chapter 3: OLAP Cubes 138

RT Bicycle and Customer.dsv [Design] RT Bicycle and Cu... 02.cube [Design]™ | Start Page |
[:Q Cube Structure |j Dimension Usage |’3 Calculations |.§‘ KPIs |,_;3 Actions |% Partitions |§}2 Aggregations @ Perspectives "
r e =
B | i &
Cube Objects Object Type Perspective Name
’a RT Bicydle and Customer 02 Mame

Employee Sales

[=] Measure Groups
[=] Bicyde
List Price

Sale Price

Bicycle Count

Discount Pct
Dimensions
Bicyde Cu
Employee
Letter Style
Paint
Retail Store
Customer
Model Type

Calendar

fesil| S s bt ol El b i o | e

Location
Calculations

Discount CalculatedMem. ..

Bl EHEIEHEEHDOR & &

Figure 3.39

Creating a perspective. Right-click the main screen to create a new perspective.
Name it (Employee Sales) and check only the values that should be available.

at the level of the totals. And it is important to document your calculations. Man-
agers and analysts using the cube need to know which method was used to per-
form the calculations.

Perspectives

Data and cubes can quickly become huge when multiple measures and many di-
mensions are available. Putting every possible attribute into one cube is going
to make the cube hard to understand. A common solution to handling complex
problems is to break them into smaller pieces. Analysis services provides sev-
eral mechanisms for segmenting a problem. One is to create separate data source
views for each specific problem. Related to that approach, separate OLAP cubes
can be defined. Each cube can be built for a specific problem or group of manag-
ers. It is straightforward to assign security permissions to each cube, and when
data changes, each cube can be rebuilt individually. Hence, cubes can be built
for specific tasks to be managed by different groups. On the flip side, if the cubes
predominantly use the same data, rebuilding each cube wastes processor time by
rebuilding the same data multiple times.

Consider the case where basic data needs to be shared among several different
groups, but some dimensions should be seen only by a few users. For instance,
perhaps HRM and some top managers should be the only ones to see employee
sales data. The answer is to define perspectives on the cube. A perspective is a
view of the cube that contains a subset of the available measures and attributes.
Figure 3.39 shows the basic steps to create a perspective. Open the Perspectives

Chapter 3: OLAP Cubes

139

% Cube Structure LEI Dimension Usage |/ﬁ Calculations |'.§ KPls |L:3 Actions |:% Partitions |§}2 Aggregations |@ Perspectives ‘

alama] B9 2% rerspectve Languzge:
Measure Group: Dimension Hierarchy Operator Filter Expressiol
<All= '] i <Select dimension>
/a Employee Sales
B gl Measures
= [Bicyde
aill 5ale Frice
'[Qf Calendar Year - Quarter - Month - Date v |
Calendar 2008 |
= H Employee
2 Employee ID ElodelTypoky
Mountain |Mountain ful|Race Road Tour Grand Total
2 LastName Last Mame v |Sale Price | Sale Price | Sale Price | SalePrice | Sale Price | Sale Price
15 Madel Type Dehaene 122,570 473,810 607,970 417,600 81,860 1,703,810
Jugnauth 112,730 434,360 658,550 418,590 52,810 1,728,040
Korowi 45,110 185,730 250,330 185,860 23,070 693,100
Ochirbat 145,890 338,430 544,530 311,190 76,230 1,416,270
Schuba 80,030 422,180 532,960 380,790 72,220 1,488,180
Stenhaim 145,470 414,660 478,370 309,450 58,580 1,406,550
Tudjman 124,190 404,250 613,080 360,080 80,650 1,582,250
Venetiaan 58,000 207,080 246,110 124,260 26,580 672,030
Grand Total 846,990 2,930,500 3,931,900 2,508,860 471,980 10,690,230
Figure 3.40

A perspective reduces the measures and dimensions visible to the user. Use the drop-

down box to select the desired perspective.

Figure 3.41

Translating dimensions. Attributes stored in tables is translated and stored in new

columns in the same table.

PaintID ColorName SpanishName
1 Neon Blue Nedn Azul
2 Arctic White Blanco Artico
3 Sea Green Fade Verde Mar
4 Black Speckle Salpicaduras Negras
5 Candy Stripe Caramelo Banda
6 Fire and Smoke Fuego y el Humo
7 Mountain Green Montafias Verdes
8 Purple Accent Morado Acento
9 Hazard Flame Llama Peligro
10 Morning Sun Sol por la Mafhana
11 Grey Granite Granito Gris
12 Copper Haze Neblina Cobre
13 Sky Fire Cielo de Bomberos
14 Wine Country Vino Pais
15 Black Hole Agujero Negro

Chapter 3: OLAP Cubes 140

Paint.di DESign]‘.' RT Bicycle and Cus...r 02.cube [Design] | Start Page e
1§ Dimension Structure |1 Atribute Relationships |[Transiations |1, Browser
ERALT N 38
Default Language Obje. Spanish (Mexico)
o Attibutes 1§ Attribute Data Translation = | B |
i pant - . Select the source column for the translated member names. Next, specify the collation used to sort the
2 Color Name Cap... i[] Pintura A e e
Attribute
Color Name
Language:
Spanish (Mexico)
Translated caption:
Pintura
Collation
Collatien designator: Sort orden
Latin]_General -
Figure 3.42
Assigning dimension translations. Open the dimension and click the translation
tab. Right-click the screen to add a new translation and pick the language. Click the
ellipses button in the gray box next to the Color Name attribute. Select the matching
column name. Translate the title.

tab and right-click the main screen area to add a new perspective. Enter a name
for the perspective that all users will recognize. Set the check boxes to select only
the measures and attributes that should be included in the new perspective. By
default, all available items are checked, so it becomes a process of removing the
items not needed.

Save everything, process the cube, switch to the browser and reconnect. Figure
3.40 shows the new cube. The drop-down list in the center of the toolbar is used to
choose a perspective. When Employee Sales is chosen, note the limited number of
options available for use in the cube.

Internationalization and Translations

Many organizations today extend across national
boundaries and need to provide data in multiple languages. Analysis Services has
several tools to facilitate handling multiple languages. Keep in mind there is no
magic bullet—someone still has to translate all of the terms. The purpose of the
tools is to display the data and metadata in a specified language.

Two types of information need to be translated and displayed correctly: (1) Di-
mension data stored in the tables and (2) Metadata such as the titles of dimen-
sions. The difference might seem subtle, but the two translations are handled with
different techniques.

Dimension data requiring translation would include the different model types,
color names, and so on. The original data exist in rows in the table (Paint), so
the translation is handled by adding new columns to that table—one column for
each language. Figure 3.41 shows sample data that might be used to translate the
color names into Spanish. A marketing manager would likely want to improve the

Chapter 3: OLAP Cubes 141

names to be more appealing in the local language. The process is to add a column
to the Paint table with a column name that indicates the language and then enter
the translations row-by-row. The same process would be followed for the other
dimensional attributes.

Once the translations exist, they can be assigned within the dimension. Open
the dimension from the Solution Explorer and select the Translations tab. Right-
click the main screen and choose the option to create a new translation. Choose
the desired language. Click the ellipses button in the gray box next to the Color
Name attribute to open the edit window. Select the new column name for the cor-
rect language. Enter the translation for the title. Note that all of the dimensions
will need to be translated. It will take quite a bit of time just to enter the data and
assign all of the dimension attributes—not including the time it takes to translate
the actual words. When planning a schedule, remember to multiply the time by
the number of languages needed.

A second step remains. The metadata for the cube needs to be translated—all
of the titles that were entered must also be translated. Fortunately, the cube keeps
track of them and organizes them in one location on the Translation tab. As shown
in Figure 3.43, the editing process is simpler for metadata. Switch to the Transla-
tion tab in the cube editor and right-click to add a new language. Choose the lan-
guage to create a column next to the original data. Enter the translated titles.

Figure 3.44 shows the cube in the new language. Remember to process the
cube first then open the browser. Select the new language from the drop-down list.
Notice the dimension names are mostly in Spanish in the left window. The paint
names are correct, but the model types have not yet been translated. If a transla-
tion does not exist, the cube falls back to the default (initial) values. The point of

Figure 3.43

Translating cube metadata. Select the Translation tab on the cube editor. Right-click
to add a new language. Enter the translated names for all of the titles.

:i Cube Structure |ﬂ Dimension Usage “3 Calculations ‘.? KPIs ||_3 Actions |?j Partitons |§}2 Aggregations ‘@ Perspectives ’; Translations

palawn
Default Language Chie... Spanish (Mexico)
/a RT Bicyde and Customer 02 Cap... RT Biddetas

[=] Measure Groups
Bicideta
Precio Lista

Bicyde

List Price

Cube Translation tab.

=

ull . . .

i salePrice T Right-click: New Translation.
ull Bicyce Count Conde de Bicidetas Pl Ck |a ngu a ge .

il Discount Pct Cap... Por Ciento de Descuento . .

5 Dimensions Entertranslatedtitles into boxes.
E Bicycle Cap... Biddeta

L7 Employee Empleado

[Letter Style Carta de Estlo

I Paint Pintura

L7 Retai Store Cap... Tienda

2 Customer Cap... Clente

E Model Type Cap... Tipo de Modelo

E Calendar Cap... Calendario

I~ Location Cap... Localidad

[=] Perspectives

@ Employee Sales Cap... Empleado de Ventas

[=] Calculated Members

C] [Measures]. [Discount] Cap... Discuenta

[~RT Bicycle and Cus...r 02.cube [Desngn] Start Page

Chapter 3: OLAP Cubes

142

R e e e
Measure Group: Dimension Hierarchy Operator Filter Expressi
<All> '] : <Select dimension= :

| 03 RT Bicidetas
gall Measures
® |4 Bicideta
| Calendario
= ﬁ Cliente Year - Quarter - Month - Date ~
ks Calendar 2008
& Empleado
=] E Carta de Estilo Mo-del.Type = =
s Mountain |Mountain full Race Road Tour Grand Total
= L.. Localidad Pintura + |Precio Venta Predo Venta| Precio Venta|Predo Venta|Predio Venta|Predio Venta
& |9 Tipo de Modelo Blanco Artico (82,300 286,890 392,250 194,080 31,050 986,570

19 s Agujero Negro |30,830 137,370 191,320 107,800 12,560 479,330
"" Paint ID Meblina Cobre 73,590 226,560 328,790 234,430 45,900 910,320
£ == Pintura Fuego y el Humo |87,040 230,670 319,030 204,950 23,000 864,700
= tf_:f.. Tienda Granito Gris 92,250 294,260 317,860 185,750 43,830 933,960
Llama Peligro 651,760 251,930 275,110 251,020 44,010 883,830
Sol por la Mariana | 66,750 266,930 301,150 169,280 21,850 826,020
Montafias Verdes |37,160 203,450 332,720 150,970 57,680 832,020
Medn Azul 24,310 116,570 157,690 100,900 14,150 413,620
Morado Acento 54,800 199,810 387,590 243,450 39,520 925,570
Verde Mar 49,740 215,750 342,750 170,640 62,000 540,830
Cielo de Bomberos|51,710 215,530 293,230 234,820 12,780 308,070
Vino Pais 34,700 284,630 292,410 260,700 62,250 984,740
Grand Total 346,990 2,930,500 3,931,900 2,508,860 471,930 10,590,230
Figure 3.44

The cube partially in Spanish. Browsing the cube in a different language is
accomplished by electing the desired language from the drop-down list.

the demonstration is that it takes quite a bit of time to identify all of the data and
metadata and to enter the translated values. However, once the translation and
data-entry is done, the users simply select a language and the cube picks up the
appropriate values automatically.

Of course, countries generally have different currencies. The cube browser
has a limited ability to convert monetary values to different currencies. Currency
conversions are handled by creating a giant table of exchange rates. The Micro-
soft Adventure Works demonstration database has a sample table. It lists daily
exchange rates for several currencies. Tables of historical exchange rates can be
found online (for example, www.oanda.com). Setting up the table correctly and
obtaining the data is the most complicated step. It is probably best to import the
table from the Adventure Works database and create an ExchangeRate measure by
copying Microsoft’s example. Once the exchange rates are specified, a BI wizard
helps apply them to the cube. Right-click the cube name in the Solution Explorer
and choose the option to Add Business Intelligence. One of the options is “Define
currency conversion.” This wizard steps through the process of defining the ex-
change rate conversions. However, the details are not covered in this book. See
(Harinath et al. 2009) for the specific steps using the Adventure Works example.

Performance: Partitions and Aggregations

Even with advanced hardware, huge problems can lead to performance problems.
Analysis Services provides several options that can be added when performance
begins to decline. One of the important tools is partitions. A partition is a physical

Chapter 3: OLAP Cubes 143

Data Connection Wizard

Connect to Database Server

Enter the information required to connect to the database server,

1. Server name: ||pcalhost

2. Log on credentials
@ Use Windows Authentication
) Use the following User Name and Password

| Cancel H < Back J[Mext =]

Figure 3.45

Connecting to an OLAP data cube. The first time a PivotTable is created, follow the
wizard steps to connect to an external data source and create a new connection. Enter
the server name and login information on this screen.

separation of data in the cube. By default, all data is stored in a single partition.
Microsoft recommends that a partition should contain no more than 20 million
rows. For problems with substantially more rows, new partitions should be added
that split the data into these smaller sets. Each partition can be stored in different
locations, can be assigned different storage structures (MOLAP, ROLAP, or hy-
brid), and can be assigned different security permissions.

The partitions are useful because they can be indexed and searched separately.
They can also be processed on remote servers—spreading the processing load
across multiple servers reduces the overall load and process time. Also, if a query
retrieval requires only part of the data, the system automatically pulls data only
from the needed partitions.

Aggregations are the totals and averages computed on the measures to form
the subtotals of the cube. Complex cubes can end up with dozens or hundreds of
aggregations. Each aggregation requires processing, storage, and indexing. One
way to improve performance is to cut back on the number of aggregations needed.
The remaining aggregations can be spread across different partitions, again taking
advantage of parallel processing.

Partitions and aggregations can be examined and modified using the respec-
tive tabs in the cube editor. However, detailed performance analysis is beyond
the scope of this book. Analysis Services does provide a wizard to help design
aggregations and optimize the storage structure based on usage patterns. But, the
process of optimization requires knowledge of high performance computing and
experience with analyzers and the cube processing. You should know that these
tools exist and that experts can be found to help tune the cube browser to handle
extremely large problems.

Chapter 3: OLAP Cubes 144

Data Connection Wizard

Select Database and Table
Select the Database and Table/Cube which contains the data you want.

Select the database that contains the data you want:
Analysis Services Project RT E
[¥] Connect to a specdific cube or table:

Mame Description Modified Created Type
0 Employee Sales 8/10/2009 1:28:31FM PERSPECTIVE
(“IRT Bicyde and Customer 02] 8/10/2009 1:28:31 PM CUBE
|1
I Cancel] [< Back][Next =] | Einish J
A
Figure 3.46

Choosing an analysis project and OLAP cube. Projects and cubes are displayed only
if the user has permission to use them.

Excel PivotTables

How can the cube be accessed outside of Analysis Services?
Analysis Services and the Developer Studio are good for designing and process-
ing OLAP cubes. However, the user interface for exploring the cubes is a little
clunky. It is not something that should be given to managers. Fortunately, the
Analysis Services is just that—a service. It processes and provides cube data to
any front-end tool that knows how to use Microsoft’s data connection methods. At
the top of that list is Microsoft Excel and SQL Server Reporting Services, which
means that cubes can be distributed easily through SharePoint servers as well us-
ing Power Pivot. To illustrate the process and the benefits, this section builds an
Excel spreadsheet to connect to the cube, explore the data, and create a chart to
highlight trends.

For many years, Excel has supported the PivotTable and PivotChart objects.
These tools are a cube browser and a graphical display tool for cube data. The
tools accept many types of data for input, including spreadsheets, queries to Ac-
cess and SQL Server, and direct connections to SSAS cubes. Once managers un-
derstand the purpose and flexibility of OLAP cubes, the tools are relatively easy
to use. The only challenge lies in connecting to the data—simply because of the
number of steps and pop-up windows. Even this process can be simplified for
managers. Once the connection is defined, it can be distributed to managers as a
file that opens the connection immediately. Microsoft also has a PowerPivot add-
in for Excel that can be downloaded (www.powerpivot.com). The main strength
of PowerPivot is the ability to handle millions of rows of data and publish results
to SharePoint servers. The tool can pull data from Analysis Services, but there is
not much gain over a simple PivotTable.

Chapter 3: OLAP Cubes

145

T ns - T - | it Tosh. |
“ sty Lv skl fearm Seligs Teage
= & Cdibri BNy e ¥ Wrap Texd Cuntosm r;‘ =) = r :i
F] iz -~ . il
g BIgc EHc A EEN FE Suspescens 30 | i P - 3
FLS & aneTsD
Pt Tabde |
Bf Becs
A B s 5] [g i Chuoear k!
1 Sabe iPrice Coolrren Labeely. = s
1 R Labah * Heylridl T Bbpiinitain fall Raoe Hia Tasar Trah frared Total 3 o
5 #Cilends 174 5, 004 48000 IR &BE. TIS a8 0 15,09 2555019 1
4 ®Calpngi 1993 &, T8 AT Fed, 180 1,07, 450 08,280 187,530 L TR -
5w Caleradu 199 B3], Ml 1855 W) AT &S0 B 1000 213 b0 o D, 7 st
& = CHends 177 2, 180 a5 1,806,120 L8531, 180 4080 3.558,10 Ll
7 FCalende 178 0, e 1,088,180 LTIZn0 AT 1,551, 180 200,37 BT, ~ ru
B wCalender 1959 E13%HQ LT Lase &30 1. BLE. 750 L 60 30, 280, (3 e
3 = Calende 2000 =L 0L 1,65F 000 1,611 90 &1, 200 00,180 4684 180 c
10 ®Calenca 3000 L0, 500 1,731.070 LTI A AR A, T T2 & BNT, T i
11 ® Caleraduer N 1523, L5075 LL5E]. i 1,085, TN} pral o 7.A84, 100}
12 # Calende 2000 251,600 LET M L385,240 FAL LR 3%, 550 10,623, 5% 4 ' L]
13 ®Calendsr 200k 150 1172850 LRSS, T 2. 181,070 34,800 BOILEM 5
i v Caleradye 2003 LN] LELLSM) LEIR 1N &, RS0 A S AT 000 [
15 = Calende 000 1,205 X0 1. 0080 LBrL LR b 3,850 10,050, 380 7 gt
18 *Calersdar 00T 1,008, 100 1. 70850 EEREN. o I, A0 A1 A0 1217, 00
17 = Calaredye 200E Bag 5 LML AT, 50 o 20 Bt AT 50 10,3, T3
1E S Calende 2009 B0 JAsa s 4044 950 2551180 am 11,70, G
1% #Calende 2010 1, 00K, 340 A4, 170, M0 5.ET1, 080 NALT, 000 S16, 580 14,507,600
H | Calendeer 301 B, T SAFh D 5T 4071 La0s. 5% 17128, 53] Erwila
H = Calenie D513 B8, A0 1,283,130 LR AL) 390560 X, 738,000 [=l i 1932, el .
Figure 3.47
Excel PivotTable. Drag dimensions to the four boxes on the lower right. The
PivotTable functions are similar to those for the cube browser in SSAS.

To create a PivotTable from scratch, open Excel and use the Insert/Tables rib-
bon entry to start the PivotTable wizard. Select the option to “Use an external data
source,” and click the Choose Connection button. Once the connection file exists,
it can be found in the list displayed on the next pop-up window. For now, click the
Browse for More button. On the selection window, click the New Source button.

Figure 3.45 shows the first step in the data connection wizard. You need to en-
ter the server name and login information to find the OLAP cube hosted by Analy-
sis Services. If the Analysis Services is running on the client computer, the de-
fault server is simply localhost. Windows login is the easiest connection method.
However, once the cube is created and built for managers, and often for students,
Analysis Services will be running on a standalone server and login information
will be controlled by the system administrator (or instructor).

When the connection has been established and security verified, you will be
asked to choose the project and the desired cube or perspective from the list with-
in that project. Figure 3.46 shows the basic selection screen. Large projects can
have dozens of cubes. Ultimately, projects and cubes are displayed only if the
user has permission to use them. Security and other administrative issues are not
covered in this chapter, but the process of applying user permissions is relatively
standardized. Clicking the Next button leads to the final connection screen. That
page enables you to name the file that will hold the connection information as well
as provide a description of the connection. Once created, this file can be used to
open the cube in the future with a few clicks. Finishing the data connection wizard
returns you to the initial PivotTable setup wizard. Simply click the OK button to
start the PivotTable.

Chapter 3: OLAP Cubes 146
RT Sales by Year and Model
7,000,000
£,000,000 //—
5,000,000 F-/
A // / e Hyr b rid
4,000,000 r -~
/\ J // ~ s Nountain
3,000,000 A / A‘v = Wountain full
—Race
2,000,000 A
= Road
1,000,000 - s QLI
- J— Track
O T 1
o W oW~ 0 MmO AN Mo W W~ 0 Om o o N oo
oo m oo O O O O O O O OO0 O A A A A -
oo O O O O O O o O oo O oo o0
L I B T IO B T o N o B e N o N o T o IO o IO o N N o O o IO o B o N o B
i M R M @MW EMEE®® M EREE®BE®E®®
- T U T T T T T T T T T T T T O T T T T T
cC c | i c | i cC C cC cC C cC CcC C cC CcC C cC CcC C
w w w w w w w w w w w w w w L5} w w L5 w w w
™ ™M ™ M M M M m m M m M W ™ W W™ mom ™ om ™
L A L T S &
Figure 3.48
Excel PivotChart. Simply click the Chart button on the PivotTable menu. The chart
automatically adjusts as the data in the table is filtered or changed.

The base PivotTable form in Excel is similar to the blank OLAP cube browser.
It contains four basic locations: column dimensions, row dimensions, filter dimen-
sions, and the main value form. These four areas are shown on the initial screen
and as four display boxes in the PivotTable popup toolbar. Figure 3.47 shows one
version of the cube. It is straightforward to drag dimensions to different locations
and to drill down to details in the hierarchy. Standard Excel formatting options are
available.

One of the nicer features of using Excel to explore the data is that a PivotChart
can be created simply by clicking the Chart button in the PivotTable Options rib-
bon. Figure 3.48 shows one version of the chart. The chart itself is connected to
the table. Changing the filters for the page, such as selecting one state, updates the
table and the chart. Removing an attribute or changing a dimension automatically
updates the chart display. The chart provides a visual presentation of the data that
updates as the manager explores the various dimensions. It is a convenient way to
let managers explore the data and see relationships. Similar versions can be de-

ployed on in-house Web servers and through SharePoint to enable teams to share
data.

Actions

How can the cube connect to external data such as Web sites
and maps? [Note: This section probably will not work with the newer VS 2012
Cube Browser.] The basic cube operations display various subtotals, enabling us-
ers to drill down to see details and compare data across dimensions. But it is pos-
sible to do more. Actions can be assigned to various elements of the cube. For

Chapter 3: OLAP Cubes 147

T — B
| Bl Edt Yow Project Buld Debug Dgubee Cghe Jeok ¢ fndew Heip |
i G- e o el - - - b Dwen it = Dwlnult = | @ bmepan B REED

| RY Wicyvie and Conr G2.cubie [Doesigod | Sart Page o |kt Explorer - Solion heab_ = 3 %0

A T [- — Y re—— — | — e — A S— - — |2

15 = = o Sbation “Anabpiin Services Progect BT { =

[2c/salgsnix” B Rt e garit

|

>
o f
| Arson Organiser | o

R ST Vet ity s

Caiculaon Tooks

| watacuts | purcions |] Temgiaies
Vesure G
e

g FIT Byl el Cuntomer 02

& Acton Target ?
Targeteee.
pite st
Target cbgect
[=l

A Corvinon [paonal) L]

!3 Ha changes drtesied

G Prepries | % Baploymr [Dy

Figure 3.49

Create a new action. Right-click the top-left pane and select New Action. Enter a
recognizable name, choose Attribute Members as the target type and Location.City as
the target object. Create the URL link to the Web site (Google).

example, clicking a value can call a drill through action that displays all of the
detail rows that make up the selected subtotal. Data columns can be designed to
provide specific information that might be needed to answer questions.

Actions can also be defined to call external programs or open a Web site. Data
values from the cube can be passed to the Web site so it can respond with match-
ing data. This technique is useful for displaying maps and for opening SQL Server
reports that carry specific information that matches the cube values. To illustrate
the process, consider a simple link that opens a Google map for a selected city.

Figure 3.49 shows the basic process for creating a new action. Select the Ac-
tions tab in the cube browser. Right-click the top-left Action Organizer panel and
choose the New Action option to open the editor. It is important to choose a rec-
ognizable action name—this name will be displayed to users. To create a URL
mapping action, select Attribute members as the target type and Location.City as
the target object. Notice that many other cube objects can be chosen for other
purposes, including cell, level, dimension, and hierarchy. Choose URL as the ac-
tion type and create the URL action that opens a Google map. The Google site
has instructions for passing parameters on the URL line. The simplest is to send
the City, State, and Country values as if they were entered as a query. The basic
format is of the form:

http://maps.google.com/maps?g=Sacramento, CA USA

Chapter 3: OLAP Cubes 148

Model Type ~
Hybrid Mountain |Mountain full Race Road Tour
Country v |State |City Zip Code|Sale Price | Sale Price | Sale Price | Sale Price | Sale Price | Sale
EUSA (Blank) 2,530 4,650 4,600 -
AK 1,760 50,200 123,840 71,660 90,450 LIS
AL 25,125 324,450 542,240 333,525 445,200 =
AR 24,790 209,280 398,260 195,600 319,460 ol
AZ 11,180 194,920 343,020 354,650 293,310 [
= CA [# Acton ! et 2,7/ 1,790
Adelanto 23| Copy | 2,470
Agoura Hills - | 4,490
Alameda Auto Filter 132,070 23,300 27,660
Alamo | 2,100
T Show Empty Cells ;4,0}"0
Alhambra Clear Results | 2,300 12,420
liso Viejo 8,850 25,400 2,860
Alondra Park View City Map I 2
Alpine . I 3,940
Alta Sierra 71| SortAscending : 6,160
Altadena Z| SortDescending 12,830 12,530
Alturas | 3,220
Anaheim Expand Items | 13,300 30,700 7,050
Anderson |
Angels Camp Collapse Items 13,070 3,120 2
Angwin | 4,030 3,230 4,450 2
Apple Valley Show Only the Top » 6,470
Aptos Show Only the Bottom b 3
Arbuckle i 7,160
Arcadia Filter by Selection | 3,890 1,830
Arden-Arcade T | 2,430 3,870 8,360
e Show Properties in Report b 13,130
RS Show Properties in Screen Tips » | 3980
rrayo Grande | 3,570
[Arvin Commands and Options ... I 2,910 2
Ashland —) 3, 3710 9,450
Atascadero 2,700 o
Aﬁjerton C o A N
A Auberry S ! C
Figure 3.50

Activate an action in a cube. Add location to the cube and expand down to a list of
cities. Right-click a city and open the new View City Map action in the popup menu.

The http portion of the URL is passed as a text string so it needs to be enclosed
in quotation marks. The City, State, and Country are extracted from the currently
selected city. You can drag the [Location].[City] and other values into the expres-
sion box, but you have to add the .CurrentMember.Name by hand. The complete
expression is

“http://maps.google.com/maps?q=" +
[Location].[City].CurrentMember.Name +

“,” 4+ [Location].[State].CurrentMember.Name +
“ Y + [Location].[Country].CurrentMember.Name

Google maps (or Bing maps) support additional parameters, enabling the map
to be displayed in a variety of ways but they are not important here.

Save everything, process the cube, and browse it. Add the location hierarchy to
the rows and expand down to a city. As shown in Figure 3.50, right-click a city to
see the pop-up menu. Note the new action: View City Map. Select the action and
a browser should open and display that city in Google maps. Relatively sophisti-
cated actions can be built using Web sites and custom programming, but they are
beyond the scope of this book. The main point is to remember that a cube can be
extended to support many different actions. Complex problems will require the
assistance of a programmer.

Chapter 3: OLAP Cubes 149

Key Performance Indicators

How can simple data be provided to managers on a daily basis?
The OLAP cube is a useful tool but it requires active exploration by managers
and analysts. It is a useful way to examine data from a variety of perspectives. It
is useful when searching for specific comparisons—because it does not require
writing SQL and because results are almost immediate. But, cube browsing could
be time consuming if managers had to use it to look up similar items every day.
For example, perhaps executives simply want to know what happened to sales
for the year, quarter, month, or week. Or, regional managers want a quick look at
salary expenses for the past month. These types of values could be found through
the cube, and the cube can show comparisons to the last period or the same period
a year ago. But managers will quickly grow tired of having to fire up the cube
browser, select the basic filters, and search for the results. These numbers are so
common and so basic that they want a simpler way to see the values quickly.

Definition

A key performance indicator (KPI) is a piece of data that informs managers about
a specific measure. The item represents some aspect of the organization that is
viewed as important. The item provides a measure of progress, and its value over
time is an important indicator of future results. In business, sales revenue and vari-
ous expenses are often useful KPIs. In line management, perhaps quality, quantity,
and cost numbers are more important. The point is that each level of management,
and even each manager, has a different collection of KPIs.

Managers want a way to see the current values of KPIs, to see them on a dai-
ly basis, and to be warned of patterns and changes. One solution is the digital
dashboard, which provides gauges showing the values and trends of various KPIs.
Similar in concept to the dashboard of a car (or cockpit of an airplane), the KPI
gauges help managers evaluate the status, direction, and trends of various busi-
ness factors to guide the company.

Analysis Services provides a method to define KPIs and store those definitions
on the server. Various client tools can then query the server, which automatically
retrieves the data, runs the KPI code, and returns values that can be used to set
the values of gauges. KPIs are defined in terms of several expressions to com-
pute: Value, Goal, Status, and Trend. The Value is the current value of the mea-
sure, such as annual sales. A Goal is a target value for the measure. It might be a
value specifically entered by managers—providing a target level of production or
sales for each region. Or, it might be expressed as a percentage change value—the
amount the company wants to increase sales. Status is a value designed to be used
by gauges and other indicators. It returns a value between -1 and 1, with zero a
neutral indicator. Technically, status values are continuous and can return any lev-
el between -1 and 1 (inclusive). However, many systems simplify the results and
return one of only three values: -1 (poor), 0 (neutral), and 1 (good). Some client
gadgets can handle only those three states. For example, a traffic-light icon uses
red, yellow, and green lights to show the status value. The fourth item of Trend is
similar. It is also used to set an indicator icon. Typically, the icon is an arrow (up,
down, horizontal) to show three trend values (increasing, decreasing, and neutral).

Chapter 3: OLAP Cubes 150

s |2 wpis |3 Actions |% Partitions |§}Z Aggregat... | Perspecti... |’;} Translations ‘:1 Browser
| &
Name: o
Annual Sales KPT
Associated measure group:
lB\cyde -
& Value Expression
[Measures] . [Sale Price]
£ Goal Expression 5] s
1.05%
(
[Measures] . [Sale Price],
ParallelPeriod
(
[Calendar]. [Year] . [Year], 1,
[Calendar] . [Year] .CurrentMember
}
}
2 Status 5]
Status indicator: & Gauge -
Status expression:
CASE
WHEN KpiValue ("Annual Sales RKPI"™)
/KpiGoal ("Annual Sales KPI")>=0D.S0
THEN 1
WHEN KpiValue ("Anr Sales HPI")
/EpiGoal | 1l Sales KPI")< 0.75
THEN -1
ELSE 0
END
2 Trend o -
Figure 3.51
KPI edit form. The name is critical. The value expression returns the actual value.
This Goal expression sets the goal as a percent of the prior period. The Status and
Trend expressions return -1, 0, 1 for Bad, Neutral, Good values to gauges.

Creating KPIs

The benefit to creating a KPI in Analysis Services is that the definitions are stored
centrally, so the same data is available to everyone who has access to the KPI.
When the measures need to be changed, they are changed in one location. Also,
the KPIs use the aggregated cube data, so the results are computed quickly and
efficiently.

Creating a KPI has one important challenge: The definitions of the KPI values
are written in the multidimensional expressions (MDX) query language. MDX
is a query language for OLAP cubes first defined by Microsoft, but several ven-
dors support it in their products—including various design tools for client-side
displays. MDX is powerful, bears no relationship to SQL, and has some useful
functions that make it relatively easy to create KPIs. But, solving complex prob-
lems requires an in-depth knowledge of MDX. Instead of trying to cover all of the
details of MDX in this chapter, the examples focus on commonly used types of
queries. These examples have some limitations, but they are easy to set up and can
be modified for many common situations.

To create a new KPI, click the KPIs tab in the cube editor. Right-click the KPI
Organizer panel in the top-left of the editor and select New KPI. As shown in

Chapter 3: OLAP Cubes 151

Figure 3.51, the edit form shows the sections that need to be created: Name, Value
Expression, Goal Expression, Status Expression, and Trend Expression. Figure
3.51 shows most of the edit form. The Trend expression and some optional param-
eters at the bottom of the form are not shown.

The Name is critical because it must indicate the purpose of the KPI to manag-
ers so they choose the right KPI for their desired purpose. This KPI will use the
Bicycle Sale Price total to measure annual sales. KPIs can also be stored in desig-
nated folders—making it possible to group related KPIs together. The Additional
Properties section at the bottom of the form has options for setting a Display fold-
er and a Parent KPI for KPIs that are hierarchically related (such as Annual, Quar-
terly, Monthly, and Weekly sales). The section also contains a box for Description
to better explain the KPI.

The Value Expression is the main definition of the KPI. This is the value that
will be returned to any client that calls the KPI. To obtain sales revenue, open the
Measures section in the Metadata list and drag the Bicycle Sale Price measure into
the expression box to set the MDX formula:

[Measures] . [Sale Price]

Goal Expressions are useful because they can be used to set the status charts.
The presumption is that some Goal exists for the Value. Perhaps each sales region
has been given a target goal or each factory a production quota. If these goals are
set by management, a separate column attribute needs to be defined in the data-
base to hold these numbers for each time period. In that case, the expression is as
simple as the Value expression—simply drag the goal measure into the expression
box. Another approach to setting goals is to compute the target as a percentage
of the sales in the prior period. A special MDX function called ParallelPeriod is
used to retrieve the value from the prior period. The function has three parame-
ters: (1) The hierarchy level, (2) The number of periods, and (3) The current value.
The syntax for the 5% increase is:

1.05%

(

[Measures].[Sale Price],
ParallelPeriod
(

[Calendar] . [Year]. [Year], 1,
[Calendar]. [Year] .CurrentMember

)

The 1.05 value at the top sets the percentage increase. The [Measures].[Sale
Price] sets the measure to use, and the ParallelPeriod function returns the match-
ing value for the prior calendar year. The function can be used to compare values
using a fiscal year calendar instead—as long as the fiscal year calendar is defined
as a hierarchy dimension. Note that the [Calendar] name must match the name of
the hierarchy dimension in the OLAP cube.

More importantly, note that the goal expression is only defined for years. Inter-
estingly, the KPI will display output when applied to quarterly data, but the num-
bers would not make much sense. The goal value is always computed in terms
of the annual data, even if the display is based on a different level. Hence, it is
important to include “Annual” in the name of the KPI.

Chapter 3: OLAP Cubes 152

The Status expression must return values between -1 and 1 because the values
will be used to set values for visual icons. The edit form provides the ability to
choose the type of indicator. A gauge is the default choice. Typically, the status
indicates how close the actual value is to the goal. Often, it is convenient to use
only three categories: poor (-1), neutral (0), and good (1). Some gauges support
continuous measures, but it can be challenging to convert real-world numbers into
an appropriate scale. A basic CASE statement can be used to assign three values
in the Status Expression:

CASE
WHEN KpiValue (“Annual Sales KPI”)
/KpiGoal (“Annual Sales KPI”)>=0.90
THEN 1
WHEN KpiValue (“Annual Sales KPI”)
/KpiGoal (“Annual Sales KPI”)< 0.75
THEN -1
ELSE O
END

Notice that this formula uses the existing definitions for Value and Goal to com-
pute a simple percentage. If the actual sales are 90 percent of the goal or higher,
it is considered good. Sales less than 75 percent of the goal are bad, and every-
thing in the middle is neutral. Again, note that these numbers are subjective, and
they are hard-wired into the expressions. A few tricks exist to put the numbers
into measures that can be edited by managers, but the tricks require considerable
knowledge of MDX.

The Trend Expression also drives an indicator icon—typically an arrow. So it
should return values -1, 0, or 1. The most common approach to show a trend is to
compute the percentage change from the prior period. If the change is sufficiently
positive, the arrow should point up (1). If the change is negative, the arrow should
point down (-1). Anything in the middle should be displayed as a horizontal arrow
(0). The formula for percent change is (new-old)/old, but it can be simplified to
just new/old — 1. This version has the benefit of needing to use the prior value only
once instead of twice. Remember that the prior value is obtained using the Paral-
lelPeriod function and using it twice makes the expression difficult to read. The
Trend expression becomes:

Chapter 3: OLAP Cubes 153

RT Bicyche and Cus...r 02.cube

&, Cube Str... | 9 Dimensio...

[Design]| Start Page - X
8 Cseistons [BF wPls B Actons | @ Partisons | [} sogregat... |Eg Perspact. | Tranddstons |, Browser

=]E.e

Heranchy Operator Filter Expression
Calerdar B Year Equal { Colenclar 2008 }
<Select dmenson >
Display Structure Value ‘Goal Status Trend Weight

B aonual Sales BP1

Figure 3.52

KPI browser. The two icons in the tool bar under the KPIs tab switch between edit
and browser mode. Testing works best when the Calendar dimension is dragged to
the filter bar near the top of the form. Select Year as the Hierarchy level and pick a
specific year from the Filter Expression list.

0,650,230 12782635 ﬁ .‘-

CASE

END

WHEN
(KpiValue (*Annual Sales KPI”)/
(Kpivalue (“Annual Sales KPI”),
ParallelPeriod/(
[Calendar] . [Year]. [Year], 1,
[Calendar] . [Year] .CurrentMember
)) -1
) <= -0.05
THEN -1
WHEN
(Kpivalue (“Annual Sales KPI”)/
(Kpivalue (“Annual Sales KPI”),
ParallelPeriod(
[Calendar]. [Year]. [Year], 1,
[Calendar] . [Year] .CurrentMember
)) -1
y > 0.05
THEN 1
ELSE 0

Again, two “WHEN” statements set the high and low values, leaving every-
thing else in the middle at zero. The syntax for the division (new/old) is a little
hard to read because of the parentheses. Just remember that the old value is the
term in parentheses that uses the ParallelPeriod function. This example sets the
low and high levels to negative and positive 5 percent.

Browsing a KPI

It is important to understand that Analysis Services stores the MDX Expressions
for a KPI. It does not actually compute the values until the KPI is queried. KPIs
are designed to be used by other applications running on client computers. For
example, a Web page or SharePoint server page might include a reference to sev-
eral KPIs. In many cases, a KPI can be embedded on a desktop through a specific

Chapter 3: OLAP Cubes 154

gadget. Periodically, the gadget requeries the server to get current values for all of
the KPIs. This timing control is built on the client computer. Analysis Services is
passive and simply returns the values when asked.

It is also important to test the KPI expressions. It is easy to misplace a paren-
theses or comma. Fortunately, the Analysis Services KPI editor includes a simple
browser to test and display the values. A small icon hiding on the toolbar switches
the editor to browser mode. A similar icon next to it returns to edit mode.

Figure 3.52 shows the browser form for the Annual Sales KPI in Calendar year
2008. The KPI icons will display with the default values of all years, but the goal
cannot be computed, and the icons do not make much sense. Instead, it is best to
select a single year to evaluate the KPI. Drag the Calendar hierarchy dimension
from the metadata list onto the filter section at the top of the form. Select Year
as the level in the Hierarchy column. If the KPI was built for Quarter, Month, or
Week, choose the appropriate level. The operator defaults to Equal, so choose a
single year in the Filter Expression list. Be sure to click on the Display list after
selecting or changing a year value. The display is updated only after it is clicked.
It is good practice to choose a couple of adjacent years; record the values and the
goals and manually check the calculations to ensure the goal is computed cor-
rectly. It is also interesting to test a few years to see what happens to the gauge and
trend icons.

KPIs have additional properties that can be used for more complex cases. The
Weight is used for groups of KPIs—typically a set of KPIs that have the same
parent. For instance, Sales might be divided into sales by region. The regional
KPIs could be assigned percentage weights that represent the relative size of each
region. Parent assignments and weights are set in the “Additional Properties” sec-
tion of the edit form.

Summary

Online analytical processing was created because storing data efficiently and re-
trieving data quickly lead to conflicts. The indexing, pre-computed totals, and du-
plication of data needed to retrieve data in seconds or less causes problems with
saving new data. OLAP cubes are designed conceptually and physically around
the concepts of dimensions and measureable facts. The star design connects di-
mensional attributes directly to the fact table. The snowflake design allows links
from dimensional tables to other tables. Many dimensions have a hierarchy of
values. Time or dates are perceived at levels from years to quarters to days. Geo-
graphic hierarchies are commonly used to group locations.

To managers and analysts, a hyper cube is essentially a large collection of sub-
totals (or averages) based on many possible dimensions. Hierarchies provide sup-
port for drill down and rollup to see details or summaries at any level. Filters are
used to slice the cube and compare values for different attributes.

Creating a cube is straightforward with Analysis Services and its wizards. The
primary steps are: (1) Connect to at least one data source, (2) Create a data source
view that connects the fact table to the dimension tables, (3) Choose measures
and dimensions for a cube, (4) Improve the dimensions and add hierarchies. Data
source views are the key method of providing data to the data mining tools.

Cubes are designed to perform summary calculations—usually sums of num-
bers. However calculations can be defined at two levels: (1) Aggregate calcula-
tions applied to the subtotals, or (2) Row-by-row calculations performed at the
query (view) level. Any calculation requiring multiplication or division should

Chapter 3: OLAP Cubes 155

take place at the query level. But, if the detail values are percentages, the aggrega-
tion should be changed to averages across the children instead of sums.

Analysis Services is a server—it defines the cubes and efficiently retrieves the
data. It might not be the best browser. Excel and Reporting Services provide ad-
ditional options for browsing cubes, including options to place cubes on internal
Web sites. For instance, interactive charts are easier to create in Excel than in
Analysis Services. Actions can be defined to provide more detailed tools and op-
tions to browsers. For example, it is straightforward to add Web hyperlinks to data
so users can link to more detailed data or even Web pages with maps and descrip-
tions. Key performance indicators can be defined on the server and accessed by
client applications to display gauges and other icons that indicate trends in impor-
tant data measures.

Key Words
aggregation key performance indicators (KPI)
attribute relationship measure
Business Intelligence De- metadata
velopment Studio multidimensional expressions (MDX)
calculation multidimensional OLAP (MOLAP)
cube browser named calculation
data warehouse named query
digital dashboard online analytical processing (OLAP)
dimension online transaction processing (OLTP)
drill down order of operations
drill through ParallelPeriod
extraction, transforma- perspective
tion, and loading (ETL) relational OLAP (ROLAP)
fact rolled up
hierarchy snowflake
hybrid (HOLAP) star design
immediate if function (IIF) view
index

Review Questions

1.

2.

Why is MOLAP better than ROLAP for most large applications?

Why does setting up extraction, transformation, and loading often
take a long time?

How is the snowflake design different from the star design?

What are the primary steps in creating an OLAP cube in Analysis Ser-
vices.

When should time hierarchies be built on the server?

What are the major benefits to storing hierarchy data in tables in the
original database?

Chapter 3: OLAP Cubes 156

7. What is the purpose of attribute relationships in a hierarchy? What
constraint or issue is imposed when building them?
8. What problem arises when defining calculations at the cube level?
How are these resolved?
9. What is the point of adding actions to a cube?
10. What are four main components of key performance indicators
Exercises

QBook

1.

6.

7.

Create the main Rolling Thunder Sales cube with the time and geog-
raphy hierarchies.

Create the Percent Discount column in the record source view and add
it to the existing cube using an average instead of sum.

Define two perspectives on the existing cube. One that focuses on sales
by employee and one that focuses on customer purchases without the
employee data.

Modify the model type table to add a second language. Translate the
model types (use a Web translator if necessary). Add the new language
to the cube.

Create an Excel PivotTable that connects to the cube and build a Piv-
otChart.

Add the URL action to open Google maps for the location.

Define and test a key performance indicator for monthly sales.

&1 Rolling Thunder Database

8.

9.

Create a new cube that focuses on purchases from manufacturers.

Create a new cube that focuses on component inventory. Use the cube
to identify any problems the firm has with respect to inventory.

10. Identify at least three KPIs other than total sales that could be useful

to managers of Rolling Thunder Bicycles.

Chapter 3: OLAP Cubes 157

',QA ’
AL 2
“ Diner

11. Build a cube for the Diners database.

12. Create an Excel PivotTable and PivotChart that will help managers.
Identify the primary decisions the chart is designed to improve.

13. What KPIs would be useful for managers of the restaurant?

Corner-

Med

Corner Med

14. Build a cube for the Corner Med database that focuses on the patient
visit, diagnoses, and treatments.

15. Build a cube for the Corner Med database that focuses on the work
output and revenue generated by the employees.

16. Getting payments is always a problem at medical offices. Build a cube,
PivotChart, and KPIs that can be used by managers to monitor pay-
ments by insurance companies.

g Basketball

17. Build a cube that helps coaches of individual teams track the perfor-
mance of their players.

18. Build a cube that helps coaches evaluate players across the league to
help decide who to recruit. Create an Excel PivotTable.

19. Identify at least three KPIs that might be useful for a coach during
the season.

Bakery

20. Create a cube for the Bakery database that helps managers explore
sales. Use an Excel PivotChart to make it easier for managers to un-
derstand the data.

21. Note that Sales Date for the bakery also includes the time of day. Cre-
ate or modify the sales cube to include a dimension for time of day that
splits the day into three time periods: morning, lunch, and afternoon.

22. Identify at least three KPIs that would be useful for managers of the
bakery.

Chapter 3: OLAP Cubes 158

ﬁ‘
8= Cars

23. Create a cube that enables potential car buyers to evaluate the cars.

24. Modify the cube to include an action link that brings the user to a
Web page for the manufacturer’s Web site. It is probably not possible
to link to a specific vehicle, but check at least one of the independent
Web sites to see if there is a way to link to a specific vehicle.

Teamwork

25. Split the team into subgroups of two people and assign a language to
each subgroup. Modify the Rolling Thunder Bicycles database to incor-
porate each of the new languages, translate the dimension data, and
modify the cube to handle each language.

26. Have each team member choose a different basketball team. Using
a cube and PivotCharts for analysis, identify the best players on the
team. Note, these evaluations must be based on data, not personal
opinion. Combine the individual results and make a case for choosing
the best player among the group.

27. Using the bakery data, assign product categories so that each team
member evaluates at least one category and all of the categories are
evaluated. Using the cube analysis and charts, identify any patterns,
trends, or problems with sales of each category. Combine the results
and identify any categories that should be used to highlight an adver-
tising campaign.

Additional Reading

Harinath, Sivakumar, Matt Carroll, Sethu Meenakshisundaram, Robert
Zare, Denny Guang-Yeu Lee, 2009, Professional Microsoft SQL Server Analy-
sis Services 2008 with MDX, Wrox/Wiley: Indianapolis. [Detailed how-to dis-
cussion of many steps in SSAS. Most of the authors were Microsoft employees
working on SSAS, so the book is loosely the documentation Microsoft did not
create.]

Jacobs, Adam, 2009, “The Pathologies of Big Data,” Communications of the
ACM, 52(8), 36-44. [One commentary on problems with relational databases.
He tried to load 6.5 billion rows into a relational database.]

	Chapter 3: OLAP Cube
	Introduction
	Challenges with the Relational Model
	Indexes
	Data Warehouse
	Extraction, Transformation, and Loading
	MOLAP, ROLAP, and HOLAP

	OLAP Design
	Facts and Dimensions
	Star Design
	Snowflake Design
	Hierarchies

	Creating a Cube with Microsoft Analysis Services
	Data Sources
	Data Source Views
	Cubes

	Dimensions
	Hierarchies
	Time Dimensions
	Custom Geographic Hierarchy
	Attribute Relationships

	Fine Tuning the Cube
	Calculations and Queries
	Perspectives
	Internationalization and Translations
	Performance: Partitions and Aggregations

	Excel PivotTables
	Actions
	Key Performance Indicators
	Definition
	Creating KPIs
	Browsing a KPI

	Summary
	Key Words
	Review Questions
	Exercises
	Additional Reading

