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What You Will Learn in This Chapter

•	 How do you forecast what might happen tomorrow or in the next few months?
•	 Who needs to forecast data over time?
•	 What are the components of a time series and how can they be measured?
•	 What types of data can be used in time series analysis?
•	 What results does traditional ARIMA provide?
•	 How does the Microsoft Time Series estimation work?
•	 How can the effects of other series be incorporated into the prediction?
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Aunt Bessie’s
Aunt Bessie’s is a British food manufacturing company part of the William Jack-
son Food Group. It began in 1974 making millions of frozen Yorkshire puddings for 
Butlin’s Holiday Camps [http://www.auntbessies.co.uk/about]. By 2011, the compa-
ny produced 20 million Yorkshire puddings per week at one plant in Hull. In 2011, 
the company installed a new QD ERP tool tightly integrated with a Preactor APS 
(advanced planning and scheduling) system to help the company not just monitor 
production but also optimize schedules and handle capacity planning. Bhris Buckle, 
supply planning manager, notes that “the increased visibility from Preactor has also 
helped us to respond quicker, especially when we have a problem on a line. Before-
hand, it could take a day for us even to notice, and then additional time to work out 
how best to react. Now we can see much more quickly when a problem is occurring 
and investigate different scenarios for dealing with it.” [Tinham 2011] The forecast-
ing capabilities helped reduce the amount of inventory cluttering up manufacturing 
facilities. They are also useful for integrating maintenance with operations. Mainte-
nance can be scheduled for lower production points leading to fewer issues with dis-
rupting critical production runs. The Preactor system models the production process 
and matches the desired production runs with the quantity of input materials needed. 
The planning system can search the schedules and plant capacity valuations to find 
optimal schedules [Preactor Web site]. The historical data feeds the long-run forecast 
and planning system to identify needed stock levels and resource scheduling. 

Time series statistics are used to identify patterns and make forecasts. They can iden-
tify and handle random errors, seasonality, and cyclical changes, but might not catch 
major structural shifts.

Brian Tinham, “Sense and Sensitivity, Works Management, September 14, 
2011. http://www.worksmanagement.co.uk/information-technology/features/
sense-and-sensitivity/36778/
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Introduction
How do you forecast what might happen tomorrow or in the 
next few months? It is not really possible to see into the future. However, in 
many cases, it is relatively easy to predict that if the same thing happened for the 
last three days, it will probably happen again tomorrow. This concept is called 
auto regression. To forecast the future, you can look back at the past few time 
periods and use those as a starting point. The information from the past will car-
ry into the near future. Of course, as you try to predict farther into the future, 
an increasingly random number of events can arise that will make your forecast 
wrong. A time series is a set of outcome data that depends only on a time variable. 
As shown in Figure 8.1, a time series is relatively easy to understand. A single 
time series consist of one variable of interest (Sales) and shows how it varies over 
time. Time can be measured in almost any interval: hours, days, months, quarters, 
years, and so on. Months are a useful measure in business, but sometimes only 
quarterly data is available. Data might change due to external and random events, 
but at least to some extent, it follows some pattern based on recent values. If you 
can determine the relationship between the data and time, it is relatively easy to 
make forecasts. 

Of course, a time series can be more complex. In many business settings, sales 
will often have a seasonal effect—where sales will increase or decrease in certain 
months of the year. For instance, as an extreme case, typical toy stores in the U.S. 
experience about 70 percent of their sales in the last quarter of the year—as holi-
day gift purchases. The essence of time series forecasting is to find these patterns 
to the data and use them to predict what will happen at the same point in the pat-
tern in the future. 
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Figure 8.1
Simple time series. The simplest time series data consists of a single attribute plotted 
over a time interval. Here, total Sales are shown for each day. In many cases, a 
simple forecast can be made based on the information from the most recent time 
periods.
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Almost every time series will have a random component that cannot be pre-
dicted. If the randomness is large, the prediction will almost always be inaccurate. 
Hence, every analysis should examine the degree of reliability based on the size of 
the random component compared to the predictable patterns. Some problems are 
relatively stable with small random elements. Others have high inherent random 
components which make it difficult to predict with any certainty. It is important to 
measure the level of randomness to provide a measure of variability—so a range 
forecast can be made instead of just a single point estimate. 

Several tools can be used to analyze and forecast time series data. Simple tools 
include exponential smoothing—which averages out the random element; trend 
analysis—similar to regression which looks only at the basic direction over time; 
and auto regression—which measures the impact of prior period on trends. More 
complex tools combine these techniques. The most common method was devel-
oped by Box-Jenkins (see Box and Jenkins 1970) and is often called ARIMA 
analysis, which is an acronym for auto-regressive, integrated moving average. Be-
cause forecasting is so important to so many areas, several other techniques have 
been invented to analyze patterns over time. Some, such as ARIMA are relatively 
easy to automate and use for data mining. Others can be complex, such as spectral 
analysis, and can require considerable knowledge and supervision by the analyst. 
This chapter focuses on the easier methods that require less supervision. 

Business Situation
Who needs to forecast data over time? Finally, a question that is easy 
to answer: everyone makes forecasts. Some disciplines and some people are better 
than others, but some processes are more stable with fewer random elements. Pre-
dicting the weather is hard, particularly with microclimates, but mostly because 
of enormous random effects. Predicting economic trends is relatively straightfor-
ward—up to a couple of months. But economic activity is also subject to cata-
strophic (sudden) changes. 

Why do businesses need to make forecasts? Consider the situation of a re-
tail store. How long does it take to get products from the manufacturer onto the 
shelves? A few days, weeks, months? Although American production and distri-
bution systems have become more efficient, months is usually the correct answer. 
So, a store has to order products several weeks or months before they are sold. 
That means the managers need a good estimate of what the sales level will be 
several months out. Even if you are not running a retail store, the same problem 
applies. Manufacturers need to know how many items to produce, what raw ma-
terials to order, how many employees to hire, and what size plant will be needed. 
All of these decisions are based on forecasts of sales. 

Sales forecasts are critical, but the sales number is not the only item that needs 
to be predicted. Businesses also want to know what will happen to interest rates, 
foreign exchange rates, stock prices, and other financial variables. Investments 
and borrowing play key roles in managing any firm. Small changes in rates can 
have huge impacts on profits. Some financial variables can be forecast, others are 
difficult, but everyone tries to predict what will happen. Similar issues arise in 
terms of costs, such as supplies of raw materials, wage rates and worker availabil-
ity, rents, maintenance expenses, advertising costs, and so on. 

Time series analysis is also useful for separating out the basic elements present 
over time: seasonality, trend, and random effects. Many times decision makers 
want to observe larger trends without being distracted by seasonal changes. The 
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classic example is unemployment data. Because so many students graduate (at all 
levels) in the spring of each year, raw unemployment rates tend to be high. Yet, 
when looking at overall trends, these numbers cannot be compared directly with 
those for fall or winter. Consequently, time series tools are used to estimate and 
remove the seasonal effects to provide a more accurate estimate of the trend. The 
same situations can exist in production, sales, inventory levels, birth rates, and 
physical factors such as temperature.

Many business and manufacturing problems involve time series analysis. Al-
most any measurement can be treated as a time series, such as sales value, quan-
tity of items sold, employee illness, accident rates, and quality measures. Weight 
measures taken every week are a classic time series. To minimize depression, you 
probably do not want to analyze your own weight; but growth rates and variations 
are critical in agriculture.

Model
What are the components of a time series and how can they be 
measured? A single time series consists of one variable to be predicted, with 
observations collected over time. The time interval has to be fixed (such as days, 
months, or quarters). For the most part, it cannot contain missing observations. 
Data of this form typically exhibits some internal pattern—sales can increase over 
time, some months of the year might consistently be better or worse than others. 
If these patterns can be identified and measured, they can be used to predict future 
values of the series. The challenge lies in identifying and measuring the various 
effects. The focus of this section is to describe the common components of time 
series and define some of the mathematical background to show how they can be 
estimated. Evaluating individual components is useful not only for prediction, but 
also because it provides information about the underlying process. For example, 
managers can form better plans if they have good measures of seasonal effects. 

Time Series Components
A time series, particularly a business or economic series, is often defined in terms 
of four parts: (1) Trend, (2) Cycle, (3) Seasonal variation, and (4) random or irreg-
ular fluctuations. Some writers skip the cyclical components or lump them with 
trend changes. Trend represents an underlying pattern over time that is usually 
somewhat constant or at least independent of other time effects such as seasonal-
ity. For example, sales might increase at some base growth rate each quarter. Sea-
sonality represents known changes that arise at about the same time every year. 
Typically they are defined in terms of years, but a process might have quarterly or 
monthly “seasons.” However, measuring seasonal patterns requires detailed data. 
For example, quarterly or monthly data is needed to see annual seasonal changes. 
If the season is defined as a shorter time period, it could only be measured with 
even finer data; and it can be difficult to obtain data at those levels.

Cyclical fluctuations are changes that are influenced by other economic data. 
Data for a specific business process could be influenced by broader economic 
measures. For instance, when the economy does well, personal income increas-
es so customers might purchase more items from a specific company. When the 
overall economy dips into a recession, consumers buy less from this company. 
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Because the government and other organizations track business cycles, it is pos-
sible to identify and measure the timing of these effects. In many ways, cycli-
cal effects are really cross-correlations across time series: The overall economic 
GDP is a time series and its values are correlated with sales of specific businesses. 
Cross-correlations are more difficult to estimate than the other time series effects.

Random or irregular changes are movements that have no discernible pattern. 
Essentially, it consists of fluctuations that exist after the other effects have been 
removed. In the end, any time series will contain some random effects. Almost no 
process is completely predictable. The point is to examine the remaining effects 
and see if they truly are random and to see if they are small relative to the other 
effects. 

Figure 8.2 illustrates the three main components. Trends are long-term move-
ments, usually representing intrinsic growth rates. Most trends are estimated to 
be linear because long-term nonlinear trends can be risky to forecast. Sometimes 
a system exhibits a true nonlinear growth (or collapse) rate, and can be estimated 
with a small-order polynomial or log function. Seasonal data is tied to a regu-
lar distance in the calendar. The most common interval is an annual pattern (12 
months or 4 quarters). It is recognizable by external knowledge (e.g., sales always 
increase at the end of the year), and by the fixed number of time periods between 
peaks and troughs. Cyclical data is the most difficult to identify and measure. 

Figure 8.2
Time series components. Trends are long-term movements over time, often evaluated 
as linear trends. Seasonal patterns usually arise at the same point each year such 
as end-of-year sales increases. Cyclical patterns represent correlations between the 
target series and general economic data, particularly ties to recessions and growth 
stages.
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Many books do not count it as a major component because of these difficulties. 
Technically, it is represented by the correlation between the time series of inter-
est (Sales) and an economic time series that measures the business cycle (GDP 
or GDP percent change). Notice how the two series move together in the figure. 
These correlations involving multiple time series are a relatively complex prob-
lem and many data mining tools do not handle them. If cyclical measures are criti-
cal to a problem, you should seek out sophisticated tools; and probably an expert 
analyst. Simple versions can be handled with the Microsoft BI tool so they will be 
considered briefly in this chapter.

The random fluctuations can be seen in the charts as small deviations from the 
presented patterns. In the examples presented, the random element was deliber-
ately kept small to highlight the trend, seasonal, and cyclical components. Now, 
imagine the charts with a high random element. At some point, the random ele-
ment would overwhelm the underlying pattern and it would be difficult to deter-
mine if a pattern existed at all or if the series was just random noise.

It is common to write an additive component model of a time series—where the 
components add up to the total value. At any time period t, the observed value yt is 

	 yt = Trendt + Cyclicalt + Seasonalt + Randomt

Sometimes the model is written as multiplicative, where the plus signs are re-
placed by multiplication. But, this case can be converted easily to the linear model 
by taking the logs of the data.

Some methods of estimating time series data attempt to estimate the compo-
nents directly. If you have measures for cyclical and seasonal data, linear regres-
sion is easy to use to estimate the main components. One trick is to simply use 
time t as a variable, and create dummy variables for seasons with values of one or 
zero, so you might have a linear form:

	 y = b0 + b1t + b2Summer + b3Autumn + b4Winter

Other tricks include estimating seasonal values by computing averages for each 
month (all values for January, then February, and so on). However, a couple of 
models now dominate most discussions of time series analysis, and they are easier 
to automate. To understand the models, you need to understand two fundamental 
patterns in time series: auto regression and moving averages.

Auto Regression
Auto regression is based on the concept that the next value in a time series is like-
ly to be correlated with the current value. Think of it as momentum—most data 
make relatively smooth changes from one period to the next. Even if something 
radical changes, it takes a few periods for everything to be impacted. Yes, some 
systems are more chaotic and it is possible that small changes in underlying fac-
tors will lead to radical changes in the output variable. However, auto regression 
is a useful feature to estimate, and many systems will exhibit some of its features.   

In mathematical terms, auto regression can be written so that the value at time t 
can be influenced by any of several prior points in time, from 1 to p periods back:

	 Yt = a0 + a1Yt-1 + a2Yt-2 + … + apYt-p + εt

A separate coefficient (a) is measured for each lag. The error term (εt) repre-
sents a simple random error with zero mean and constant variance. The model 
is often abbreviated to the form: AR(p), such as AR(1) for a single-period lag, or 
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Figure 8.3
Sample auto regressive data generated with AR(1) set at three values (0.9, 0.5, 0.1). 
The mean was adjusted for each case to keep values within similar ranges.

Time AR 0.9 AR 0.5 AR 0.1
1 102.0 102.0 102.0
2 85.0 85.0 85.0
3 97.0 97.0 97.0
4 83.0 83.0 83.0
5 110.0 110.0 110.0
6 111.0 106.0 104.0
7 115.9 112.0 102.4
8 115.3 106.0 100.2
9 117.8 109.0 105.0
10 119.0 114.5 103.5
11 121.1 117.3 97.4
12 124.0 112.6 99.7
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Figure 8.4
Sample auto regressive data generated with AR(1) set at three values (0.9, 0.5, 0.1). 
Notice that the series with AR(1)=0.9 is smoother than the other two with smaller 
AR(1) coefficients. The high-proportion of value carried over from the prior time 
leads to slower changes in the data.
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AR(3) to represent lag effects for the first three periods. Mathematically, the AR 
equation is a difference equation and some coefficient values will make it un-
stable. For example, the coefficient in an AR(1) model must be between -1 and 1, 
otherwise the model will predict an “explosion” where each subsequent value will 
increase rapidly, either positive or negative. 

To understand the concept of auto regression, it helps to examine a few artifi-
cial examples. Figure 8.3 presents sample time series that were generated using 
three different values for AR(1). The mean coefficient was adjusted each time to 
hold the results to similar ranges. Random elements were added to each point. 
Note that the first five terms are the same in each series—to provide the same 
foundation for each series. Data were generated for 24 periods, but only the first 
few are shown in the table. 

The effect of the parameters is difficult to see in the raw data. Figure 8.4 shows 
the charts of the three series. The most important result is that when AR(1)=0.9, 
which is a high value, the chart is smoother. The data shows less variation than in 
the other cases. The reason illustrates the role of the AR coefficient. A high value 
means that a large portion of any forecast consists of the prior value. Carrying 
such a high percentage of value each time means that small changes are smoothed 
out. Instead, the curve adopts longer, slower changes. 

Figure 8.5 takes a slightly different approach. In this example, all of the lag 
coefficients have the same value or they are zero. The difference is the number of 
lags included in the model. AR(1) has one non-zero lag (0.1), and AR(4) has the 
first four lag coefficients set to 0.1. That is, AR(4) picks up effects from the four 
prior time periods. Notice that all four models eventually level off to a station-
ary state—because no additional random data was added and the model is stable. 

Figure 8.5
Sample auto regressive data generated with AR(1) to AR(4) coefficients set to 0.1. 
Without additional random elements all versions level out to a stationary state. The 
higher-order models pick up a more of the initial variation.
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Also, the same mean was used in all four models, so the models with more lags 
will have higher average values because of the added terms. This decision was 
made to keep the lines separate so the patterns would be more visible. 

In terms of differences, all series have time points 1 – 5 in common. Time 6 is 
the first predicted value. The AR(1) model drops simply because the mean stays 
the same and the overall values are lower. There is no variation in the line due to 
earlier lags. AR(2) picks up the drop at t-2 (time 4) and it picks up the gain at t-1 
then levels off. AR(3) picks up those two effects plus the peak at lag t-3. AR(4) 
also picks up the peak, but it is mitigated by the additional drops at lag t-4. The 
point of the charts is that if a time series has a seasonal effect at some periodicity 
that lag value needs to be included in the estimation. For instance, if the data is 
collected at quarterly intervals and the model estimates only an AR(1) lag, then 
any annual changes present at AR(4) will not show up in the prediction. So a key 
aspect of using auto regression is identifying the specific lags that should be in-
cluded in the model. It might be tempting to include all possible lags up to a year, 
but it takes enough data observations to estimate all of the values. Plus, many 
times the in-between lags are not interesting, so models are often estimated with 
the first two or three lags, plus a seasonal lag; skipping the ones in the middle.

Moving Average
In some ways a moving average is relatively easy to understand, in others, it is 
complex. By its basic definition, a moving average is used to smooth data. Fig-
ure 8.6 shows the calculations for a three-period and five-period moving average. 
Both computations are centered to keep the series aligned; otherwise the moving 
average series will be offset and difficult to compare to the original. As you can 
tell from the name, a three-period moving average computes the average of three 
consecutive values. Shifting up a time period, the system computes the average of 
the next three items shown in each box. A five-period average uses five consecu-
tive entries. The width of the average (3 or 5) is somewhat arbitrary. If you stretch 
the interval to cover an entire year; such as 4 points for quarterly data or 12 for 
monthly data; the average will eliminate all seasonal variations.

Figure 8.6
Simple moving averages. A three- and five-period average centered to keep the series 
aligned.  

Time Sales MA 3-c MA 5-c
1 75
2 89 85.3
3 92 90.3 89.6
4 90 94.7 94.2
5 102 96.7 97.6
6 98 102.0 97.8
7 106 99.0 97.2
8 93 95.3 96
9 87 92.0 96.6
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The results are easiest to see in a chart. Figure 8.7 shows the original data and 
the two moving averages. Clearly the two averages reduce the variability in the 
overall series. The five-period average is also smoother than the three-period val-
ues. The technique can be used to reduce noise due to random events. It can also 
be used to average out seasonal effects to highlight underlying trends or other 
patterns.

The term moving average derives from this common method of calculating av-
erages to reduce or eliminate seasonal effects. However, you will rarely actually 
perform this computation. Instead, the underlying mathematical model is more 
important. The moving average process defines the outcome variable (Y) at a 
point in time as a mean plus a weighted average of the differences from that mean 
in prior periods:

		  Yt = μ + ψ0εt + ψ 1εt-1 + ψ 2εt-2 + ψ 3εt-3 … 

Figure 8.7
Simple moving averages. The moving average reduces the variations, and wider 
averages (5 versus 3) create smoother results.

	 Y1 = μ + S1
	 Y2 = μ        + S2 
	 Y3 = μ               + S3 
	 Y4 = μ                      + S4 

Compute the average: (Y1 + Y2 + Y3 + Y4)/4 = μ + Avg(Si) 

60

65

70

75

80

85

90

95

100

105

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Simple Moving Average

Sales

MA3-c

MA5-c

Figure 8.8
Simple moving averages. Consider a simple moving average model that has four 
independent seasonal effects (quarters). Computing the four-period moving average 
yields the mean plus an average of the seasonal effects. If the seasonal effects net to 
zero, the moving average yields just the overall average.
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Conceptually, the errors or deviations (ε) could be considered as seasonal ef-
fects, and pure random error. Figure 8.8 shows a simplified model that contains 
independent seasonal effects for four seasons or quarters. Computing the four-
period average yields the underlying mean plus an average of the seasonal effects. 
If the seasonal effects are neutral in total, their average will be zero and the mov-
ing average yields just the overall mean. That is, a moving average that covers the 
entire season should eliminate the seasonal effects. 

The general model for the moving average leads to more complex results, but 
the concepts are similar. Figure 8.9 shows a quarterly model with a four-period 
moving average. If the seasonal effects are neutral—gains in one season are offset 
by declines in other seasons—and the weights meet some identity constraints that 
are beyond this book, then the weighted sums effectively average out to zero when 
the moving average spans the entire year. So, again, an average across the entire 
year yields an estimate of the overall mean. The situation is more interesting and 
more valuable when the moving average spans less than a full year. For example, 
a problem might compute a three-month average. In this case, the moving average 
model shows that the predicted value will consist of the mean plus weighted er-
rors (e.g., seasonal effects) from prior months. That is, the moving average model 
transfers information forward from the errors or seasonal effects. Remember this 
interpretation of the model. It will be needed in the ARIMA section that combines 
the models for auto regression and moving averages. 

Charts can help show the effect of the moving average coefficients and the dif-
ferent lengths of the average. Figure 8.10 shows three series created with the gen-
eral moving average model using only a one-period lag on the error term. The co-
efficient weight of the lag was tested with three different values (0.1, 0.5, and 0.9). 
The series were started with relatively high variation in the first five periods. No-
tice that all three series eventually die down to the mean with just random errors. 
Also, notice that the larger coefficients (particularly 0.9) carry the initial variation 
for a longer time. This result is clear from the equation because the next-period 
value is computed by adding the multiple of the coefficient and the prior error.

Figure 8.11 examines moving averages with more lags—from one to four time 
periods. All of the coefficients were set to the same 0.5 value. All series had the 
same starting values with relatively high variation. No random effects were add-

Figure 8.9
Quarterly moving average. In the more general model, the moving average over 
all four seasons results in the overall mean plus weighted averages of each of the 
four seasonal effects. If the seasonal effects are neutral, and the weights meet some 
identity conditions, the weighted sums will effectively average out to zero. 

S1 S2 S3 S4 S1 S2 S3
Yt μ +ψ0εt +ψ1εt-1 +ψ2εt-2 +ψ3εt-3
Yt-1 μ +ψ0εt-1 +ψ1εt-2 +ψ2εt-3 +α3εt-4 
Yt-2 μ +ψ0εt-2 +ψ1εt-3 +ψ2εt-4 +ψ3εt-5 
Yt-3 μ +ψ0εt-3 +ψ1εt-4 +ψ2εt-5 +ψ3εt-6 
Avg μ + Wtd. Avg (S1) + Wtd. Avg(S2) + Wtd. Avg(S3) + Wtd. Avg(S4) 
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ed beyond the starting values. The series that includes four lag effects is clearly 
more variable for a longer period of time than the single lag. The point is that 
using more lags in the model can capture seasonal effects for more time periods. 
These effects are carried into future forecast values. Eventually, you will face the 
question of how many lag periods should be included in a real-world model. The 
answer is often difficult. Using more lags can lead to a more realistic model—if 
the seasonal effects truly cover more time periods. Using fewer lags results in a 
smoother model—useful if the lagged variations are random errors instead of sea-
sonal effects. Diagnostic tools can help you determine if variations are random or 
part of a seasonal pattern, but it helps if you understand the fundamental business 
data being examined.

Trends
As an analyst or business person, trends in time series data are important. An 
overall increase in sales would indicate that the average sales level is increas-
ing each year. Likewise trends in stock prices or interest rates would signal long-
term changes, which would give the wise investor the opportunity to make money. 
Trends can be linear or nonlinear. Linear trends are relatively easy to estimate 
using linear regression. Nonlinear trends are trickier because you might have to 
identify the degree of nonlinearity. Typical polynomial equations and log-linear 
equations can also be estimated with standard computations and regression tech-
niques. Techniques for using regression to estimate trends are covered in the lin-
ear regression section of this chapter. As a hint, a simple approach is to include 
time (t) as a variable, where time can be a simple numerical sequence:
		  Y = b0 + b1 t + b2 seasons + b3 others
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Figure 8.10
One-lag moving average with different coefficients (0.1, 0.5, 0.9). All three series 
eventually die down, but the higher values (0.9) carries the variation for a longer 
time. 
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Other techniques are also possible, but it is generally best to stay relatively 
close to linear or cubic trends when forecasting time series data. Highly nonlinear 
patterns, particularly exponential growth, rarely exist for long periods of time. A 
small company might observe exponential growth for a year or two—because the 
initial base is so small. But, predicting an exponential growth beyond a couple 
of months is rarely going to work out. It is almost always better to be conser-
vative and forecast a linear trend, even if it seems less accurate over historical 
data. Figure 8.12 shows the basic problem. The initial data follow an exponential 
growth rate, but there just is not enough data to be comfortable with an exponen-
tial forecast. Using an exponential trend, sales would leap from 56,000 in period 
8 to over 310,000 only two periods later. Sure, it could happen, but without ad-
vanced knowledge of the industry and testing, such a forecast would be risky. At 
the same time, a simple linear trend using all of the initial data is likely to be too 
low—notice that the linear trend forecasts an initial drop in sales. A polynomial 
(cubic) equation might be a good fit, but it is going to forecast a relatively large 
increase in sales as well. An alternative is to use the last few periods to generate 
a linear forecast from that point. This decision and the selection of the starting 
point would have to be made by a human, not an automated algorithm; because it 
requires knowledge of the industry and examination of similar patterns from other 
organizations if they exist.

The interesting problem at this point is that in pure time series analysis, trends 
cause problems in the estimation of the seasonal and random data. The ARIMA 
technique described in the next section only works if the data contains no trend. 
Fortunately, that statement does not mean ARIMA is rarely useful. Instead, it 
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Figure 8.11
Moving average with different number of lags. All coefficients set to 0.5 and no other 
random error was added. The longer-term averages are more variable because they 
pick up and extend more of the initial variation. 
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means that you have to remove the trend before applying the ARIMA analysis. 
Most tools have an easy method to accomplish this task. If you see a trend in the 
data—usually by plotting it—the tools can analyze the difference instead of the 
raw numbers. So, if you see a linear trend, you can specify a single difference 
step to compute: zt = yt – yt-1, and then base the analysis on the z series instead 
of the original. If the pattern is nonlinear, you might need to take a second differ-
ence. In extreme cases, you can convert the data using logarithms: zt = log(yt), 
and possibly difference those values if you still see a trend. The details of the dif-
ferencing process are explained in the ARIMA section. The point is that you need 
to recognize and often test for trends in the data before trying to estimate seasonal 
component.

ARIMA
Auto regressive integrated moving average (ARIMA). The name makes it seem 
like a difficult topic, but the name also clearly defines what the tool does: com-
bine auto regression and moving average time series estimation into one package. 
Besides, everyone just uses the initials ARIMA. The methodology is sometimes 
called Box-Jenkins after the two authors who developed the process for analyzing 
time series data. The clearest way to understand the combined approach is to write 
the mathematical model:
	 yt = θ1yt-1 + θ2yt-2 + … + θpyt-p  + εt + ψ1εt-1 + ψ2εt-2 + … + ψqεt-q

The equation states that a series value y at time t is generated from two parts. 
An auto-regressive component that pulls information from prior y values, and a 
moving average component that pulls information from prior error terms—which 

Figure 8.12
Dangers of nonlinear forecasts. An exponential trend would predict a five-fold 
increase in only two periods. Linear using all data is probably too conservative. 
Linear using the last few observations is probably a safer forecast.
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could represent seasonal variations. This version of the model is usually abbrevi-
ated ARMA(p,q) where p represents the highest lag for the auto-regressive terms 
and q the highest lag for the moving average terms. Note that the “I” is missing 
because it is not included in this model and will be explained shortly. The inter-
pretation of the equation is straightforward. Each value in a time series is affected 
by the values that came before it and the variations from the average are also in-
fluenced by the variations in prior periods. The goal of ARMA is to estimate the 
values of the coefficients to determine the weight that each prior value plays in de-
termining future outcomes. That is, the coefficients define the time series pattern.

One important catch with estimating the ARMA equation is that it can be esti-
mated only if there is no trend in the data. In mathematical terms, the time series 
must be stationary—where the series revolves around a fixed mean. The concepts 
of stationary and identifiability are covered in advanced textbooks on time series. 
Most tools automatically notify you if the conditions are violated, so you do not 
need to be able to verify them manually. Still, you do need to know that if a trend 
exists in the data, it needs to be removed. The most common solution is to define 
a new series zt = yt – yt-1. If the trend is linear, this simple differencing usually 
eliminates the trend and the coefficients can be estimated. If the trend is nonlin-
ear, you might need a second differencing—where the z values are subtracted. In 
extreme cases, you might need to convert the original y values by defining a new 
log(y) variable—which often needs a single differencing to be usable. Because 
differencing is the most common approach, it defines the integrative aspect of the 
model: ARIMA(p,d,q) is defined with p the number of auto-regressive lags, d as 
the number of differences, and q as the number of moving average lags.
Differencing to Remove Trend
Most traditional ARIMA tools require supervision and the analyst must specify 
the p, d, and q values. So, how do you know which values to choose? The d value 
is usually the easiest because it is almost always 0, 1, or 2. For a quick approach, 
simply plot the time series and see if a trend exists. If there is no apparent trend 
up or down, it will not be necessary to difference the data, so d equals 0. If there 
appears to be a linear trend, choose d equal to 1. If the trend appears nonlinear, 
perhaps as in a cycle, set d equal to 2. Avoid jumping automatically to the highest 
value. If you did not choose enough differencing and a strong trend remains in 
the data, it is unlikely that the ARMA equation can be estimated and the tool will 
generate an error. So increase the value of d and try again.

The lag limits p and q are trickier. Some tools use statistical methods to help 
estimate the appropriate values automatically. Others follow the Box-Jenkins 
methodology and ask you to examine two charts to help determine the appropriate 
values. An additional complication exists. In the equation, p and q are the highest 
values of the lags, and all intermediate lags are estimated as well. Often, the time 
series will not have enough data to estimate every possible lag value. However, 
you still might need some higher-order lags. For example, some time series can be 
estimated with p and q set to 2 or 3. However, many time series also exhibit sea-
sonal patterns—particularly annual events such as holiday sales. Using monthly 
data, these patterns would arise at lag values set to 12. Because the values at lag 
periods 4-11 are likely to be minor, you typically do not want to estimate those 
lags. Consequently, most ARIMA tools allow the analyst to select potential lags 
by entering specific numbers, such as 1, 2, 3, 12; skipping the intermediate values 
that are unlikely to be relevant. Of course, the analyst needs to know or guess 
which values might be important. 
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Figure 8.13 shows the time series of total sales by month for Rolling Thunder 
Bicycles. The original data plotted over time clearly shows a trend that needs to 
be removed. A series that computes the first difference appears to remove the en-
tire trend, leaving variations along a horizontal line. There might be a slight trend 
remaining at the right-end of the chart. As comparison, a second difference is also 
plotted, and it appears to be the same as the single difference. Hence, a single dif-
ference should be sufficient
Autocorrelation and Partial Autocorrelation
The Box-Jenkins approach emphasizes the importance of the autocorrelation 
function (ACF) and the partial autocorrelation function (PACF). These two 
functions are used to evaluate whether the model will be solvable and to help iden-
tify the appropriate values for p and q. Autocorrelation is the correlation between 
any two time series observations separated by a lag of k. The function is computed 
and plotted for several (perhaps 20) values of k. The correlation is computed as 
the covariance between all points separated by k time periods, and divided by the 
variance of y to obtain a value between -1 and +1. The values are estimated from 
the formula where  is the mean of the y values:
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Figure 8.13
Differencing series to remove trend. The original series appears to have a linear 
trend. One difference has removed the trend, leaving a flat line with variations. A 
second difference operation does not appear to improve the pattern.
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The partial autocorrelation is loosely the correlation between two points sepa-
rated by k time units without the effects of any intermediate observations. It is 
computed for k>1 to be:
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Where rkj = rk-1,j – rkk rk-1, k-j and rk is the sample autocorrelation at lag k. For-
tunately, tools exist to compute and plot both functions with respect to the lag 
values. The charts are called correlograms.

Figure 8.14 shows a sample ACF and PACF from a hypothetical time series. 
First, observe that the ACF dies down relatively quickly, while the PACF sim-
ply cuts off after 2 or 3 lags. Some systems will display confidence interval bars 
to help determine if the correlations at each lag are significantly different from 
zero. To understand the charts, first note that both functions either die down or 
cut off. If one of the two (or both) failed to die down, it would indicate that the 
series was not stationary and still had a trend that needed to be eliminated through 
differencing. 

The most important aspect of the ACF and PACF is that they provide an indica-
tion of the lag values to be tested for the AR and MA components of the model. 
The key is to look for the point where either the ACF or PACF cuts off. In this ex-
ample, the PACF cuts off at lag 3, with lag 2 significant, while the ACF dies down. 
This pattern (AR die down, PACF cut-off) is representative of an AR(2) series, so 
the ARIMA model could be run with p=2, d=0, and q=0. If the pattern were re-
versed where the PACF died down and the ACF cut off, it would be an indication 
of an MA(2) model, or ARIMA(0,0,2).

In many cases, the PACF or ACF will have additional spikes at later lag points. 
In particular, it is common to see a spike at lag 12 in monthly data to indicate an 
annual seasonal pattern. If these spikes are widely scattered, they can usually be 
specified individually in the ARIMA definition, such as p= 1, 2, 3, 12. If both the 
ACF and PACF exhibit cutoffs, it is likely that the model will need lags for both 
the AR and MA components, such as ARIMA(3, 0, 3). 

The initial estimate of the AR and MA lags does not have to be perfect. You 
just need decent estimates to provide a starting point for the estimation. Even with 
tools, such as Microsoft Time Series, the estimation process works best if you can 
provide a reasonable starting point. The estimation results will provide additional 
information to evaluate the significance of each lag coefficient.

Cross Correlations
The ARIMA process is probably the most common method used to forecast time 
series. In addition to its long-term forecast capabilities, it provides measures of 
the lag and seasonal effects which provide useful information to explain the un-
derlying patterns. However, ARIMA is designed to work only with a single series 
of data at a time. It estimates purely internal patterns within that series. In some 
business problems, particularly in finance, it is clear that changes in one series 
will affect the outcome of the series being investigated. The business cycle or gen-
eral economy provides a classic example. If the overall economy is doing poorly, 
people have less income, more people are out of work, and they are less likely to 
buy expensive products. To analyze business sales, it might be useful to match the 
sales pattern to the economic pattern. These cross correlation models are useful 
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when a model exists that explains how some attributes affect the predictable se-
ries. Economic examples are common, and the technique is often used in financial 
forecasts. It can also be useful when physical or biological relationships exist. 
Essentially, cross-correlation combines traditional economic modeling with time 
series patterns. In fact, regression tools are probably the easiest method for evalu-
ating combined cross-correlation and time series models. Regression can estimate 
the coefficients on the independent attributes as well as the values of the autore-
gressive and moving average terms.

Figure 8.15 shows a hypothetical example of Sales inversely correlated with 
the unemployment rate. By economic theory, sales at most firms will be correlated 
with the economy—as a measure of consumer income. It might be easier to under-
stand the relationship if real GDP or income were used instead of the unemploy-
ment rate. However, the U.S. Bureau of Economic Activity (BEA) only releases 
quarterly and annual data for GDP accounts. Unemployment, inflation, and inter-
est rates are available monthly which provides more data for better analyses.

Figure 8.14
Auto correlation and partial autocorrelation functions. Both die down or cut off so the 
hypothetical series is stationary. The ACF dies down and the PACF cuts off after 2 or 
3 lags. This pattern implies an AR(2) model with no MA terms. If the patterns were 
reversed, it would indicate an MA(2) model.
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One additional warning about government data is critical when working with 
time series. Many government time series are provided as seasonally adjusted. 
Seasonally adjusted data has been averaged to remove seasonal patterns. Fortu-
nately, the online Web-based tools make it relatively easy today to obtain either 
the raw data or the seasonally adjusted series. You simply have to set a check 
box, but you must decide which version of data you want to use for each specific 
situation. If you choose the raw data, then the estimation will attempt to apply 
any seasonal patterns in the reference series to your data. In the example with the 
unemployment rate, it might be best to use seasonally adjusted data. Unemploy-
ment rates are strongly affected by school graduations and those seasons might 
not match typical sales. If the problem is using unemployment as a proxy for the 
overall state of the economy and consumer income, the seasonally adjusted values 
would be a better economic measure. If the problem truly needs to rely on the 
number of unemployed workers available, then the raw data would be better. The 
point is that the answer depends on the specific problem being studied and the 
analyst needs to make the decision to match the problem. 

A second type of problem often crops up in business forecasting where cross 
correlation is useful. Remember that time series forecasts require a relatively long 
history of data—preferably at least 50-100 observations. So how do you forecast 
a series for a new product or a new business region? Will you have to wait four 
years to gather enough monthly data to make a forecast? The solution is to assume 
that the new product or new region will follow a pattern similar to an existing 
product or region and use the cross-correlation as the basis to forecast sales for the 
new region.

Figure 8.15
Cross correlation. Here, sales are inversely correlated with the unemployment rate, 
which is measured on the secondary y-axis. Adding an economic series to help 
forecast the primary series can boost the performance of the model. However, it 
requires that you obtain forecasts of the economic series to make predictions about 
the sales data.
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One of the drawbacks to building a cross-correlation model is that to predict the 
dependent variable (e.g., Sales), it is also necessary to predict the series for each 
of the independent variables. So, instead of making one prediction, you must first 
predict every other series that is influencing the outcome. If the independent series 
consist of common economic data, it is usually possible to find at least short-term 
predictions made by several organizations that track general economic activity. If 
the independent series consist of internal data, the series must be predicted using 
separate models or separate time series analysis of each series. Before embarking 
on building a cross-correlation model, first decide if it will be easier or harder to 
forecast the other series that will be used in the model. Trading one problem for a 
harder one is going to cause problems. 

Models that use extensive numbers of cross series will probably benefit by be-
ing estimated with least squares regression. Other tools, such as Microsoft Time 
Series, include the ability to add external attributes to the forecast method. Micro-
soft BI embeds these attributes into a decision tree solution and provides different 
estimates of the ARIMA model for each leaf on the tree. Details are explained in 
the tools sections.

Evaluating Models
It should be clear by now that time series models are difficult to automate. Most 
tools require supervision by the analyst. Ultimately, the analyst must choose 
among several model variations. In the ARIMA model, the selection of p and q 
ultimately requires judgment. Is there a way to evaluate the resulting models? 

Several overall measures have been defined for evaluating ARIMA models. 
Box-Jenkins proposed the Q-statistic which measures the remaining autocorrela-
tion of the residuals after the model has been fit:
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The value for K is somewhat arbitrary—it is chosen to see if the first K auto-
correlations together account for too much variation. K is often chosen to be 12, 
or perhaps 24 or 36 for large models. The number of observations is n, the number 
of differences taken is d. The r2 terms are the square of the autocorrelations in the 
residuals separate by the specified lag (i). Q follows a Chi-square distribution with 
K-np degrees of freedom, where np is the number of parameters estimated in the 
model. If Q is too large the model is rejected on the grounds that too much auto-
correlation remains within the residuals.

Another common measure is a variation of the RMSE:
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Models with smaller error values (s) are better. Check this value when compar-
ing models and pick the model that has a substantially lower value of s. Most tools 
report this measure, the Chi-square statistic might not be reported automatical-
ly. Other writers have proposed numbers that have similar properties in general. 
For instance, the Akaike information criterion (AIC) becomes smaller as the 
AR variance decreases; so smaller values are better. Schwarz proposes a similar 
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measure (Schwarz criterion) that is sometimes reported. The Schwarz measure 
is sometimes known as the Bayesian Information Criterion (BIC) because of the 
methodology he used to derive the measure. Most tools report at least some of 
these measures so the analyst can compare models to see which one generates the 
smallest errors. Judge [1985] provides the derivation and interpretations of these 
measures, but as long as they are computed by the software tool, the values can 
be compared across different models without worrying about the differences in 
interpretation. 

The main challenge with ARIMA is to get the correct selection of AR and MA 
lags (p and q). Each different collection represents a different model. Whenever 
a model is evaluated, care must be taken to ensure that the model actually makes 
sense. Are there significant coefficients? Do the autoregressive and seasonal terms 
fit the known facts? Look at the residual plots. Do substantial trends or correla-
tions remain in the residuals? Try a forecast to see if the model values match the 
actual patterns.

Data
What types of data can be used in time series analysis? The short 
answer is that a single attribute is evaluated at a defined time interval. For ex-
ample, sales totals are computed for each day, week, month, or quarter. The key is 
that there can be only one attribute and the time interval has to be constant. Some 
tools support cross correlations where one series can affect a second series. In 
these cases, the series must contain exactly the same time observations—the same 
interval, and the same starting and ending points. The data itself should be con-
tinuous data. Typically it is a subtotal such as sales value or quantity. Almost any 
measurement data will work, including temperature, distance, and weights. 

The time interval must remain constant for the entire series, and there must be 
enough observations to estimate several parameters. Common recommendations 
are at least 50-100 data points. The catch is that it takes time to record the observa-
tions. Fifty points is four-years of data collected monthly. It might be tempting to 
use more detailed data—weekly or even daily—just to collect enough data points. 
The drawback to detailed data is that it can be harder to interpret the results. Daily 
data might work if the business exhibits patterns during the week, such as low 
sales on Mondays and high sales on weekends. But, the daily values will not pro-
vide information about seasonal patterns (such as July versus December). The key 
is to decide what types of patterns are likely to be important and use that choice to 
select the time interval.

Attributes and Observations
Only a single attribute will be used for most analyses. The data is stored with the 
time values in rows. Traditional tools work well with just the single column of 
data for the series. Microsoft Time Series requires a second column to provide 
an identifier or key value. Each observation row must be assigned a unique key 
value. For time series data, this value is typically either a simple integer or it is a 
combination value for the date interval. Microsoft tools only use the value to sort 
the data and display cutoff points, so the intervals do not have to be continuous. 

Most time series data is aggregated, and the values can be computed using a 
GROUP BY query or an OLAP cube. The requirement in Microsoft BI of using a 
single key column often requires some work to define a column that concatenates 
date parts. For example, assume the database contains a SaleDate column that lists 
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sales by day. Analyzing the data by month will require the creation of a column 
that combines year and month and then computing the subtotal by that column. 
The catch with Microsoft BI is that the time identifier column should be numeric. 
However, that objective is somewhat easier to achieve than it first sounds. The 
simplest way to create the time key column is to define a new column:

	 Year(SaleDate)*100+Month(SaleDate) As YearMonth

The Year and Month functions return numeric values. Multiplying the year by 
100 shifts it two places to the left to leave room for a two-digit month. The result-
ing column contains values such as 200801, 200802, 200901, and so on. These 
values are sorted correctly by year first and then month. However, note that values 
cannot be subtracted from each other to obtain a time distance. Subtraction will 
work within a given year (200803 - 200801 = 2 months from January to March), 
but not across years (200901-200812 is way more than one month). Because Mi-
crosoft BI uses the column only for sorting, subtraction is not an issue; just re-
member not to use the column for any other purpose.

Microsoft BI can use other attributes to determine how they influence the pre-
dictable variable. To include other attributes in the problem, they will have to be 
treated as additional columns in the query. Most importantly, the time identifiers 
(rows) must exactly match those of the predictable series. If the data comes from 
other internal tables, it can usually be computed as subtotals the same as the pri-
mary series. If the data is retrieved from external (e.g., government) sources, it 
most likely will need to be assigned the same time key value used for the primary 
series. At that point, a JOIN query can match the rows correctly between the im-
ported comparison series and the predictable series. 

Missing Data
A time series should not contain missing observations. For instance, with monthly 
data, it cannot skip some months. If a series has many missing points, it is bet-
ter to aggregate up to a wider time interval. For example, if daily data has many 
holes, aggregate and perform the analysis with weekly or monthly data. If a series 
has a small number of missing values, they can be imputed through a variety of 
methods. The most common are: (1) average the two nearest values, (2) copy the 
nearest older neighboring value into the missing value, (3) compute an average 
of all data for that time slot (e.g., quarter 1 or specific month). All of the methods 
have some drawbacks, which is why series with many missing values should not 
be used. Microsoft BI provides options similar to these to automatically replace 
missing observations. However, a query should be used to count the number of 
missing values first to decide if the number is small enough to reduce the impact 
on the results.

Traditional ARIMA Estimation
What results does traditional ARIMA provide? The model section of 
this chapter provides a detailed description of how ARIMA works. Most tools that 
implement the traditional version follow the Box-Jenkins process. Microsoft Time 
Series has a version of ARIMA but it is mixed with a proprietary algorithm so it 
is a different process described in the next section. The traditional Box-Jenkins 
process essentially provides tools to plot the data, create ACF and PACF charts, 
and estimate the ARIMA model according to lags and differencing specified by 
the analyst. The analyst needs to organize the data into a series, check the model 
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for trends, then try to find the best combination of auto-regressive and moving 
average lags for the model. The lag structure provides the key information about 
seasonality. The model itself and most tools make it easy to forecast future values 
for the series.

Goals
The main goal of traditional ARIMA is to identify the patterns inherent within a 
time series set of data. The patterns are defined in terms of auto-regressive terms 
that transfer information from prior values of the series and moving average coef-
ficients that transfer data from prior values of variations—particularly seasonal 
variations.

The data consists of a simple series that is organized by time. Each row repre-
sents one time period and the time periods must be uniform (days, weeks, months, 
quarters, years, and so on). Most tools allow the addition of a column that holds 
the time definitions, making it possible to sort the series correctly (early to later). 
Typically, the data is created from a database query or OLAP cube because it rep-
resents subtotals by time period.

Tools
To illustrate the process, create a SQL query for the Rolling Thunder Bicycle 
company that computes total sales by month:
SELECT YEAR(OrderDate)*100+MONTH(OrderDate) As YearMonth, 
SUM(SalePrice) As Sales
FROM Bicycle 
GROUP BY YEAR(OrderDate)*100+MONTH(OrderDate)
ORDER BY 1 

Figure 8.16
Rolling Thunder Bicycle sales by month. Notice the upward trend and the potential 
seasonal peaks. Some of the stronger peaks might be difficult to predict.

trend

Possible seasonal peaks
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In SQL Server Management Studio, the results can be saved as a CSV file by 
right-clicking the query results and choosing the Save As option. You might want 
to use WordPad to add the column names to the top of the file. A CSV file can be 
imported into a standard tool that supports ARIMA such as gretl, which is free and 
relatively easy to use. The gretl package does not use the YearMonth column di-
rectly, so you need to specify that the file contains time series data that is monthly 
and begins in 1994:01. All of these options are specified when the file is opened. 

One of the first steps to take with any times series analysis is to plot the data 
against time. It is critical to look for trends, but just exploring the data visually 
helps identify possible seasonal patterns. Figure 8.16 shows the plot for Rolling 
Thunder. First, notice the upward trend. This trend is good for business, but will 
need to be removed to analyze with ARMA. The trend appears to be linear, so a 
single differencing should solve the problem. Second, notice the potential sea-
sonal peaks. Exploring the detailed data should show relatively higher sales in 
the last couple months of the year (holiday sales), plus more sales in the spring 
months. The five high peaks shown in the data will likely be hard to predict. They 
are probably related to economic or bicycle issues (such as the introduction of full 
suspension mountain bikes). 

Figure 8.17
Initial correlogram. Notice the strong peaks in the PACF suggesting some important 
auto-regressive terms. But the ACF does not die down or cut off so the series is not 
stationary and needs to be differenced before trying to estimate the ARIMA model.
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The correlogram shown in Figure 8.17 reveals similar information to the raw 
data plot. Because the ACF does not die down or cut off, the series is not station-
ary and cannot be estimated with the raw data. At least one difference will be 
needed to remove the linear trend. The differencing can be handled directly within 
the ARIMA tool. However, it would be useful to look at the new correlogram first 
to see if a single difference is going to be sufficient. More importantly, the ACF 
and PACF based on the differenced data are needed to provide initial guesses for 
the AR and MA lag structure.

Gretl makes it easy to define a new series, so use Add/Series difference or cre-
ate: Sales2=diff(Sales). Figure 8.18 shows the ACF and PACF for the new, dif-
ferenced data. The data for the differenced series should also be plotted to ensure 
the trend has been removed. The PACF appears to die down after a few lags, but 
has some additional peaks at lags 10 and 12. The ACF has interesting peaks at lags 
2, 8, 10, 12, and 14. The overall structure seems to be relatively complicated. It 
seems to lean towards an MA structure, with important lags specified by the ACF, 
but there are likely to be a couple of important AR terms as well—indicated by the 
PACF peaks. The peaks at 12 indicate important annual/seasonal elements. 

Results
Some of the lag values are difficult to explain, but the first pass model should 
probably be ARIMA(4, 1, 3) with an additional MA coefficient estimated for a 

Figure 8.18
ACF and PACF for differenced data. Series appears to be stationary. The PACF dies 
down with additional peaks at 10 and 12. The ACF has peaks at lags 2, 8, 10, 12, and 
14. The model leans towards MA, but has a complex structure.
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Figure 8.19
Results from initial model ARIMA(4, 1, 3) and MA 12. Notice the significance of the 
AR 2 and 4 lags and the MA 3 and 12 lags.

	 	 Coeff.	 Std. Err.	      Z	 P-value	
const		 6607.7	 7364.5	 0.8972	 0.3696	
phi_1	 -0.1559	 0.0991	 -1.5730	 0.1157	
phi_2	 -0.6170	 0.0981	 -6.2910	 0.0000	 ***
phi_3	 -0.0234	 0.0777	 -0.3009	 0.7635	
phi_4	 -0.2196	 0.0764	 -2.8750	 0.0040	 ***
theta_1	 -0.0594	 0.0794	 -0.7484	 0.4542	
theta_2	 0.0363	 0.0734	 0.0494	 0.6213	
theta_3	 -0.4407	 0.0659	 -6.6850	 0.0000	 ***
theta_12	 0.5127	 0.0517	 9.9160	 0.0000	 ***

Akaike criterion:		 6930.493
Schwarz criterion:	 6965.747
Hannan-Quinn:	 	 6944.680

Figure 8.20
ACF and PACF for residuals. Major peaks have been reduced, but both the ACF and 
PACF show statistically significant effects at lags 10, 12, and 14.
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12-period lag. Figure 8.19 shows the results of that estimation. Notice the signifi-
cance of the AR 2 and 4 lags along with the MA 3 and 12 lags. Some basic model 
evaluation numbers are also reported. They are useful when comparing this base 
model to other variations. 

Is this model good enough now? The easiest way to answer that important 
question is to look at the correlogram of the residuals. Figure 8.20 shows the ACF 
and PACF for those residuals. First, notice that the major peaks have at least been 
reduced. However, both the ACF and PACF have effects at lags 10 and 14 that 
are significantly different from zero. Both are also negative, so they are likely to 
be secondary effects from the seasonal data. That is, people appear to buy more 
bicycles at a couple of times in the year (holidays and spring), and consequently, 
they pull back even further than expected just before and just after these two big 
events. Because the events are appearing in both diagrams, it is not clear if they 
should be estimate as AR or MA terms. 

As a first pass you can try estimating the additional lag effects as MA terms but 
the estimation might not succeed. Also, the lag at 12 should probably be modeled 
as an AR term, bringing the full seasonal information forward. So the new model 
is ARIMA(1 2 3 4 12,  1, 1 2 3 10 14). Figure 8.21 shows the estimated coeffi-
cients. Notice the new lag effects are significant (except for MA 14) and the diag-
nostic values have improved from the original model. Consequently, this model is 
better than the initial one. Examine the residual correlogram to double check—no 
significant effects remain in the residual ACF or PACF. You could try running the 
model with the 14-lag in the AR side instead of MA to see if it makes a difference. 
(It does not so it could just be dropped, which slightly improves the model evalu-
ation statistics.)

Once the model has captured the main effects, it should be compared to the 
actual data. Figure 8.22 shows a basic time series plot of the actual values versus 

Figure 8.21
Results from new model ARIMA(1 2 3 4 12, 1, 1 2 3 10 14 ). Notice the new terms 
are significant and the diagnostic measures have improved.

	 	 Coeff	 std. error	 t-ratio	 p-value	
---------	 ---------	 ----------	 ----------	 ---------	
const		 5589.04	 757.496	 7.378	 0.0000	 ***
phi_1	 0.0255	 0.0795	 0.3208	 0.7484	
phi_2	 -0.2282	 0.0779	 -2.9290	 0.0034	 ***
phi_3	 -0.0000	 0.0626	 -0.0005	 0.9996	
phi_4	 -0.0917	 0.0504	 -1.8180	 0.0690	
phi_12	 0.6707	 0.0492	 13.640	 0.0000	 ***
theta_1	 -0.3340	 0.1031	 -3.2410	 0.0012	 ***
theta_2	 -0.2690	 0.1139	 -2.3610	 0.0182	 **
theta_3	 -0.2348	 0.0963	 -2.4370	 0.0148	 **
theta_10	 -0.1499	 0.0567	 -2.6410	 0.0083	 ***
theta_14	 -0.0124	 0.0611	 -0.2032	 0.8390	

Akaike criterion:		 6863.546
Schwarz criterion:	 6905.851
Hannan-Quinn:	 	 6880.571
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Figure 8.22
Plot of actual(red) versus values predicted by the model (blue). Overall the model 
appears close, except for an over estimation in 2001 and 2009. These drops are 
probably due to external factors. 

Figure 8.23
Forecast into the future (12 months). The blue line is hard to see but it is the central 
wavy line. The green bars indicate the 95 percent confidence interval for the 
prediction.
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the values predicted by the current model. Overall, the model prediction appears 
to match the actual values fairly closely—surprisingly even for the major peaks. 
However, the predictions for 2001 and 2009 seem to be substantially higher than 
the actual sales for the months in that year. These drops in actual sales is most 
likely due to external factors. Any guesses? Do you know history? Plausibly the 
attacks of 9/11 played a role, but the other major effect that year was the dot-com 
e-commerce crash, which also caused a slight economic recession. Similarly, the 
housing crash of 2008/2009 probably reduced sales for a couple of years. Remem-
ber that the ARIMA method relies solely on internal patterns. Deviations similar 
to this one provide interesting points to look for external events that might have 
influenced the data.

Forecasts
The ARIMA model is well-designed for forecasting patterns into the future. Most 
ARIMA tools have options to generate forecasts and gretl is no exception. From 
the main model results, gretl has a menu option to generate a forecast using that 
model. Sticking with the default options leads to a standard forecast. Figure 8.23 
shows the forecast for 12 months past the original data. The wavy blue line ap-
pears to copy the pattern over the prior three or four years with variations for 
seasonal effects. The green bars indicate the 95 percent confidence interval for 
each prediction. Notice that the range is relatively large—indicating that actual 
sales could be quite different from the expected forecast. Also notice that the con-
fidence interval increases as the forecast moves further out in time. This effect is 
rational because more random events can affect patterns over longer periods of 
time. It might be tempting to discount the wide range of possibilities, but remem-
ber that the model does not evaluate external economic effects, and remember the 
changes missed in 2001 and 2009.

Figure 8.24 shows the actual data forecast by the model for 2015. The num-
bers could be used by managers to make purchasing decisions, change marketing 
plans, or develop long-term plans to expand or contract the business. The seasonal 
information is particularly useful for staffing decisions at various times through 
the year. The ARIMA tools also provide estimates of the standard errors; however, 
these numbers are quite high in this situation because of the high variability in 
data in the past years.  These numbers will be useful to compare with forecasts 
created by other techniques in later sections of this chapter.

Figure 8.24
Forecast values for 2015.

2015:01	 1276797
2015:02	 1097255
2015:03	 1402733
2015:04	 1663312
2015:05	 1746264
2015:06	 1510111
2015:07	 1587235
2015:08	 1515373
2015:09	 1228551
2015:10	 1494301
2015:11	 2617069
2015:12	 2290510
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Seasonality Evaluation
Another of the key strengths of traditional ARIMA is the visibility of the sea-
sonal effects. These are easiest to see from the coefficients on the moving aver-
age terms. Specifically, the value of 0.6707 for the AR(12) term is positive and 
quite high. It indicates a strong seasonal effect—whatever happened 12 months 
ago is likely to repeat each year. To see the effects by month, create a query that 
computes the total sales by month for all of the years. Transfer the data to Excel 
to compute the overall total and divide to get the rough percent of sales by month. 
A more time-consuming approach is to compute the percentage of sales by month 
within each year and then compute the average of the percentages. This latter ap-
proach is more accurate and is a good exercise for the reader. Anyway, Figure 8.25 
shows the primary sales months of November and December. Spring months of 
March, April, and May also appear to have slight gains. 

Look again at the values for the MA lag coefficients. The MA coefficient are all 
negative. And only the AR(1) and AR(12) coefficients are positive. With monthly 
data, this value means strong seasonal effects exist. Now realize that the coeffi-
cients for MA(1), MA(2), and MA(3) are all negative. Yet, these are not auto-re-
gressive coefficients, so the negative value needs to be interpreted carefully. Look 
again at the percentage sales values by month. Notice that months with big jumps 
(November and March) are preceded by months with low sales. The moving aver-
age coefficient applies to the variation within the month, not to the overall value. 
Hence, when the preceding three months are lower than average, the MA coef-
ficients reveal that the sales in the target month (e.g., November) are even higher 
(negative coefficient times negative variation). This pattern means that consumers 
are essentially holding back on purchases during certain months and then buying 
at specific times—particularly for November sales. The negative values also mean 
that sales fall off after the big months.

Figure 8.25
Average percent of sales by month. Computed from query of total sales by month, 
with percent computed in Excel.
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The negative values for MA(10) and MA(14) are a little more difficult to ex-
plain. On face value, they would imply purchase decisions are made 10 and 14 
months in advance. For example, customers who plan to purchase a bicycle in 
November 2010 have already made some decisions about that purchase in Octo-
ber 2009 and January 2010. The January effect of 10 months might be understand-
able, but the October effect takes a stretch of imagination. It could be an artifact 
of the data; or it could be a statistical result of the extremely low sales in October 
and January—note that it is small and not significantly different from zero. In any 
case, the important point is that the ARIMA coefficients clearly picked up these 
variations, but the annual percentage chart makes it easier to explain to managers.

Microsoft Time Series Estimation
How does the Microsoft Time Series estimation work? With SQL 
Server 2008 BI, Microsoft modified its time series estimation method by adding 
a version of ARIMA. The tool attempts to reduce reliance on analysts by using 
statistical tools to guess the lag structure. More importantly, the default estimation 
method (MIXED) also relies on a proprietary model called auto-regressive tree 
with cross prediction (ARTxp). ARTxp is used for immediate (1-5 period fore-
casts). It uses a decision tree approach to try and determine which time periods 
affect the outcome. It also emphasizes cross correlation, so it encourages the ad-
dition of other series that might provide information to predict the original series. 

With an emphasis on prediction instead of evaluation, the Microsoft results can 
be challenging to interpret. However, it is easy to incorporate other attributes into 
the analysis. Still, as shown in the Results section, the forecast results can be high-
ly variable depending on the model and any parameter hints.

Goals
The Microsoft approach focuses on the prediction of the time series, hopefully 
with minimal intervention by the analyst. Microsoft uses two models estimated in-
dependently to forecast data. It is possible to restrict the process to a single model, 
and users of the enterprise version of SQL Server can control the mixture rate. 
However, the default is to use both models (MIXED), so it is important to under-
stand both methods. 

The ARTxp method is a decision tree approach that can be thought of as a piece-
wise linear regression model. The tool searches for change points that indicate 
a different effect on the outcome variable. Figure 8.26 shows that these change 
points can be created from various points within the time series or from external, 
cross-correlated series. Within the time series, the argument is that a time series 
might exhibit a different pattern while the series is declining compared to when 
the series is increasing. If so, the ARTxp method creates a node and estimates new 
model coefficients for each segment. When mixed with the ARIMA process, each 
leaf node has a separate ARIMA model. Forecasting entails finding the matching 
decision tree leaf node and applying its model. In the simple example, if the data 
to be forecast is earlier than 2003, and the Income level is greater than 50,000, 
ARIMA model 2 would be used to make one forecast. The node also contains 
ARTxp parameters to make a separate forecast. Depending on the mixture param-
eters, the two values are averaged to obtain the final forecast. By default, short-
term forecasts within about 5 periods of the ending data are predominantly made 
with the ARTxp model. Longer-term forecasts lean more heavily on the ARIMA 
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model based on a parameter that sets the weighted average. Predictions that are 
farther out in time rely more on the ARIMA model because it is less volatile. 

The ARIMA method used by Microsoft is also slightly different from the tradi-
tional model. As proposed by Box-Jenkins, seasonal models can be made easier to 
estimate with a multiplicative seasonal structure. The seasonality (s) first needs to 
be defined. For example, it would be 12 in a monthly model and 4 in a quarterly 
model to estimate annual effects. Then, a separate seasonal ARIMA (SARIMA) 
model is estimated based on lags for the seasonal data, specified separately as 
P, D, Q. The seasonal lags (P and Q) are defined as multiples of the seasonality. 
Typically, they are small values (1 or 2 at most). For example, a value of P=1 
would generate a seasonal auto-regressive (SAR) estimate of one season (or 12 
months). A value of Q=2 would estimate a seasonal moving average SMA(2) lag 
equal to 24 months. Differences are made at the seasonal level, so D=1 leads to 
subtracting all values 12-months apart. It should never be necessary to go above 1 
difference for seasonal components. The model is typically written as:

	 ARIMA (p, d, q) x (P, D, Q)

The model is multiplicative, where the seasonal terms are multiplied by the unit 
terms. Consequently, the seasonal terms should be kept small or the model ends 
up with a huge number of coefficients to be estimated. A common seasonal model 
is based on two levels of exponential smoothing:

	 ARIMA (0, 1, 1) x (0, 1, 1)

Microsoft also complicates the results somewhat by estimating up to 8 times 
the number of lags specified. The high-end value of 8 is often used for the unit 
ARIMA, and rarely for the higher-order seasonal component. That is, if period-
icity is specified as MA (1) or ARIMA (0, 1, 1), the tool will actually estimate 
coefficients for MA(1), MA(2), … MA(8). Consequently, it is seldom necessary 
to specify a base ARIMA with a parameter greater than 1 because the other values 
will be estimated anyway. Most commonly, if you know that the data is monthly, 
you would specify the periodicity parameter as: {1, 12}. 

Figure 8.26
Microsoft ARTxp goal. Find split points where a model change can improve the 
prediction. Mixed with ARIMA, each leaf node has a separate ARIMA estimate.
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Data
Time series data for the Microsoft model is usually computed with a GROUP BY 
query or the subtotals are pulled directly from an OLAP cube. The data must have 
a time key column that uniquely identifies the rows so they can be sorted in the 
proper order. The column should be numeric but the data values are not important. 
A common approach is to combine year and month numbers, or quarter numbers 
for quarterly data). A named query can be created quickly. The query for Rolling 
Thunder Bicycles is:
SELECT YEAR(OrderDate)*100 + MONTH(OrderDate) AS 
SaleYearMonth, SUM(SalePrice) AS MonthlySales
FROM dbo.Bicycle
GROUP BY YEAR(OrderDate) * 100 + MONTH(OrderDate)

 
Any additional attributes that will be used for cross correlation must match the 

time key data. If the data is imported, it should be imported with a similar key 
column so the named query can use a JOIN to match the values correctly. Also, 
remember that there should be no missing data. Microsoft Time Series does offer 
a parameter with several options to control how missing data values will be re-
placed. However, even this option should not be used if there are too many miss-
ing observations. Instead, aggregate the data to a higher level. 

Figure 8.27
Microsoft time series set to ARIMA. Select Microsoft Time Series in the Mining 
Model tab. In the properties window, click the button under the Algorithm Parameters 
option. Enter ARIMA for the Forecast_Method and {1, 12} as the Periodicity_Hint. 
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Tools
For comparison to traditional ARIMA, try running a model with just the ARIMA 
component first. The ARTxp or MIXED version that blends in Microsoft’s pro-
prietary tree method can be run second—it complicates the interpretation of the 
results.

Create a new mining structure using Microsoft Time Series and select the data 
source with the named query containing the sales totals by month. Follow the 
wizard to create the model. Choose the MonthlySales as the predictable column. 
It does not need to be selected as an Input column. The SaleYearMonth column 
should automatically be selected as a key time column. As shown in Figure 8.27, 
the ARIMA specification is made as a parameter change. On the Mining Models 
tab, select the Microsoft_Time_Series entry. Switch to the parameters window in 
the lower-right corner. Highlight the Algorithm Parameters entry and click the el-
lipses button to open the parameter edit window. Find the Forecast_Method row 
and enter ARIMA as the Value. Find the periodicity hint and enter {1, 12} to indi-
cate the series contains monthly data. Process and Browse the model.

Figure 8.28 shows the results can be displayed as a chart. The default forecast 
is 5 periods, but it can be increased by setting the number of prediction steps to 
12. At first glance, the chart forecast appears similar to that created with tradition-
al ARIMA. Switch to the Model view to see the estimated coefficients. 

Because the model was restricted to simple ARIMA, only one tree node is dis-
played in the model view. Select that node and examine the Mining Legend. The 
ARIMA model is displayed in the legend, but it is difficult to read. Figure 8.29 
shows the model reformatted and labeled by hand. The multiplicative seasonal 
component (P, D, Q) is listed after the “X” symbol. It is labeled with (12) to in-
dicate the seasonal length and the algorithm determined that one was estimated 

Figure 8.28
Microsoft ARIMA forecast. The forecast chart is similar to that from the traditional 
ARIMA forecast.
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Figure 8.29
Microsoft ARIMA coefficients. The legend display is hard to read. The coefficients 
here are displayed on separate lines and labeled by hand.

ARIMA (
	 {1,0.23311}, 	 AR(1)
	 1,	 difference
	 {1,-0.14026}) 	 MA(1)
X (
	 {1,-0.39775,5.34085E-02}, SAR(12)
	 0, 	 S difference
	 {1,-6.72065E-02})	 SMA(12)
Intercept:7225.834 

Figure 8.30
Microsoft MIXED forecast. The model predicts a large drop in sales for the next 
year—both immediately and throughout the year. Based solely on internal sales, this 
forecast seems unrealistic.
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at 12 months. The coefficients are different from those computed with the tradi-
tional ARIMA model. Note that gretl can estimate a seasonal ARIMA model, and 
when it is specified similar to this version, the coefficient values are closer to these 
results.

The goal is not to see if Microsoft ARIMA can produce identical results to tra-
ditional ARIMA tools. The point of the example is to ensure that the model can be 
run and the results retrieved and interpreted. The more common method of using 
Microsoft Time Series is to stick with the default model: Mixed and let the tool 
choose the lag structure. In other words, the least amount of supervision by the 
analyst. 

Create a new mining structure, choose the same data source and follow the 
default prompts to create a new Time Series model based on the mixed ARTxp/
ARIMA process. Figure 8.30 shows the result as a chart. Even before checking the 
coefficients and estimates look at the forecast for the next 12 months. The model 
predicts that sales are going to jump precipitously—even continuing through the 
year. Clearly, an outcome that predicts a three-fold increase in sales in a cople of 
months is unlikely to be realistic—based only on the data available from this in-
ternal list. Something is wrong with the model. It is possible to dig into the model 
in more detail, but the simplest solution is to remember that all of the default 
model parameters were used. So the biggest problem is that the system does not 
know that the data values are monthly. 

To see what is happening, look at the Model structure which is displayed as a 
tree diagram. Select the root node (or one of the end nodes) to see the model for 
that slice of data. Although cut off in the figure, the ARIMA coefficients 
can be found by scrolling the Mining Legend. Figure 8.31 shows the 
values for the same future node. First, check the seasonal terms and 
recognize that the algorithm guessed at SAR(6) and SAR(4) which cov-
ers half-year, and slightly more than quarterly effects; but it did not 
estimate any annual effects. Remember that the algorithm does not 
know the series contains monthly data.

Figure 8.31
ARIMA coefficients for root node Note the seasonal auto-regressive terms. The 
structure of the model was selected automatically to use a 4 and 6 month seasonality 
lag.

ARIMA (
	 {1,-1.45534E-02},	 AR(1)
	 1,	 Diff.
	 {1,-0.74364}) X 	 MA(1) 
	 ({1,0.27151,	 SAR (6)
	 4.86931661E-02},	 SAR(12)
	 0,	 Diff.
	 {1,0.767121})(6) X 	 SMA(6)
	 ({1,0.10754, 	 SAR(4)
	 0.09174323},	 SAR(8)
	 1,	 Diff.
	 {1,2.832889E-02})(4) 	 SMA(4)
Intercept:7293.6173
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The answer is to tell the tool that the data has 12 months in the year. Build a 
new time series model. After the wizard has finished, open the Mining Models tab 
and select the Microsoft_Time_Series entry. Open the Properties tab and click the 
ellipses button on the entry for Algorithm Parameters. Scroll to find the Periodic-
ity_Hint and enter a value of {1, 12} to specify monthly data. This parameter is 
the only thing that will be changed from the default specification. Process and 
Browse the model to see the results. 

Results
Figure 8.32 shows the charted forecast results for the slightly modified model. 
Compare the forecast to the one in Figure 8.30 computed with the default pe-
riodicity selected automatically. Telling the algorithm that the main series holds 
monthly data made a huge improvement in the forecast. So you should always 
plan on specifying the overall periodicity of the series. Of course, if you enter val-
ues that do not match the data, the results are likely to be even worse.

Figure 8.32
Microsoft MIXED forecast with monthly periodicity hint of 12. The forecast is 
considerably more realistic and appears to follow the trend and seasonal variations 
now.
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The difference lies in the ARIMA model—which did use the periodicity hint. 
Figure 8.33 shows the new coefficients for the root node displayed from the de-
fault model. Because of the periodicity hint of monthly, the new ARIMA model 
contains seasonal moving average terms for 12 and 24 months. The misleading 
auto-regressive values for lags 4 and 6 months are gone. Why is this model bet-
ter—in the sense that the forecast does not go crazy? First, notice that the SMA 
term is negative in this model, compared to the positive values for the SMA terms 
in the initial model. This negative value provides a damping effect. The same 
holds true for the SAR terms. The main AR(1) term is positive and strong in this 
model, which would lead to higher forecast values, but the other terms tend to 
dampen the effects.

ARTxp Model
The ARIMA results are actually just a small portion of the results from the Micro-
soft time series model. They are a useful starting point because they are similar to 
the traditional ARIMA model. However, the Microsoft approach downplays the 
role of the ARIMA model and focuses on decision-tree approach. As shown in 
Figure 8.34, the tool creates a tree structure by splitting nodes where it is pos-
sible to improve the results. At this point, the model contains only the key column 
(YearMonth) and the data column (Sales). Still, the tool found several points that 
justified splitting the model. However, the tree is stronger when additional data is 
added. This mechanism makes it relatively easy to add correlated series including 
economic data.

The ARIMA model coefficients remain the same for each node, but the forecast 
value is modified within each node based on the other terms. Figure 8.35 shows 
that each node has a separate equation. For example, for the node on the right side 
(Sales-7 < 710039.8) the additional equation is: 

Monthly Sales = 395688.159 + 0.499 * Monthly Sales(-12) 

Figure 8.33
ARIMA coefficients for the root node with the periodicity hint. Note the new 
seasonal terms for 12 months and 24 months.

ARIMA (
	 {1, 0.23311},	 AR(1)
	 1,	 diff.
	 {1,-0.14026}) 	 MA(1)
X (
	 {1,-0.39775, 	 SAR(12)
	 0.0534085},	 SAR(24)
	 0,	 diff.
	 {1,-0.06721})(12) 	SMA(12)
Intercept:7225.8342
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Figure 8.35
Node differences. Select a node to see the equation for that item on the tree. The 
ARIMA remains unchanged but each node has an additional equation.

Figure 8.34
ARTxp decision tree results. The tool searches the associated data for breakpoints 
where the model results can be improved by adding a node to a tree branch. This 
model has only the key column (YearMonth) and the sales data itself. 
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Forecasts
The forecasting process with Microsoft Time Series is different than in the other 
tools. In particular, a time series forecast does not need source data, so there is no 
need to set up a table of values, or to enter data for a singleton query. If only one 
or two values are needed, the forecast chart displays the graph and provides a way 
to obtain one value at a time. Simply select a point on the chart with the mouse 
and the corresponding predicted value is displayed in a table on the right. How-
ever, this process is cumbersome for multiple values. 

To obtain a set of predicted values, and to get their standard deviations, you 
need to enter a special MDX query. This query needs to be entered in the BI pro-
cessor, not in the SQL Server query processor. Switch to the Mining Model Pre-
diction tab. Click the icon to switch to SQL, which opens an edit window in the 
bottom half of the screen. The simple query to get the predictions uses the Pre-
dictTimeSeries function:
SELECT FLATTENED PredictTimeSeries([Monthly Sales], 12) As 
Forecast 
FROM [RT Monthly Sales Time Series ARTxp 12] 

The query is straightforward, with the only drawback of having to type the 
table name and column name by hand. Be sure to specify the FROM section with 
the name of the model you are using in brackets. The PredictTimeSeries function 
needs only two parameters: The column name and the number of periods (e.g., 
12) to be forecast. Forecasting a single value is always risky—it is always good 
to include the standard deviation of the forecast value to obtain the accuracy of 
the forecast. This query is slightly more complex because the standard deviation 
needs to be computed for each forecast value:

SELECT FLATTENED 
(SELECT *, PredictStdev([Monthly Sales]) As [StDev]
FROM PredictTimeSeries([Monthly Sales], 12))
As Forecast
FROM [RT Monthly Sales Time Series ARTxp 12]

Figure 8.36
Forecast values formatted with Excel. Note the Time data is useful only for sorting.

Time	 Sales	 StDev
201413	 1831835	 115390
201414	 1709642	 113679
201415	 1914923	 110646
201416	 1991393	 77833
201417	 2130782	 105124
201418	 1980396	 102778
201419	 2098216	 100685
201420	 2056840	 102464
201421	 1971231	 106954
201422	 2148194	 91530
201423	 2868532	 96244
201424	 2647986	 93432
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Figure 8.36 shows the output from the query. The actual output is a little mess-
ier. These values were formatted in Excel to make them easier to read. Notice that 
the Time variable is useful only for sorting. To restore the business meaning, the 
numbers would have to be manually changed to 201501, 201502, and so on. The 
standard deviation values can be used to compute 95 percent confidence intervals 
to indicate the accuracy of the forecast. 

The MDX language includes additional functions to return the variance (Pre-
dictVariance) and the decision tree node that matches the conditions (PredictNo-
deID). The language also has powerful tools to create forecasts by changing some 
of the input data. An even more interesting tool is to predict a new short set of data 
based on the patterns established from the longer series. For instance, what if RT 
managers have introduced a new model type and have sales data for only a few 
months. This data would not be sufficient to establish a useful pattern on its own. 
Instead, the sales patterns from the entire company can be applied to this new 
data. That is, take the trend and seasonal information from the overall sales and 
apply it to the data from the new model. The syntax is a little tricky, but it is such 
a useful trick it is worth examining:

SELECT FLATTENED
  PredictTimeSeries([Monthly Sales], 24, REPLACE_MODEL_
CASES)
FROM [RT Monthly Sales Time Series ARTxp 12]
PREDICTION JOIN
(SELECT 201407 AS [Sale Year Month], 25621 As [New Model]
  UNION SELECT 201408 AS [Sale Year Month], 25621 As [New 
Model]
  UNION SELECT 201409 AS [Sale Year Month], 11592 As [New 
Model]
  UNION SELECT 201410 AS [Sale Year Month], 32119 As [New 
Model]
  UNION SELECT 201411 AS [Sale Year Month], 27559 As [New 
Model]
  UNION SELECT 201412 AS [Sale Year Month], 18225 As [New 
Model]
) AS t
ON [RT Monthly Sales Time Series ARTxp 12].[Sale Year 
Month] = t.[Sale Year Month]
 AND [RT Monthly Sales Time Series ARTxp 12].[Monthly 
Sales] = t.[New Model] 

In this query, the PredictTimeSeries function specifies a prediction of 24 peri-
ods and it uses the REPLACE_MODEL_CASES parameter to ensure new data is 
used as the starting point of the prediction. This new data is provided manually 
by the PREDICTION JOIN subquery. Notice that the new data includes the Sale-
YearMonth entries that match up to the existing values for the end of 2014.

Figure 8.37 shows the results of the forecast. The data was copied and pasted 
into Excel to generate the chart. Notice that the new model sales data form the 
starting point. The forecast applies the overall seasonal pattern to that initial data 
and generates a forecast specifically for the new model. Of course, it is possible 
that the new model sales will be radically different—particularly if a special ad-
vertising campaign is created. Nonetheless, the ability to apply the overall sea-
sonal pattern to the small set of data is a useful technique.
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Seasonality Evaluation
The ARTxp model provides only a limited amount of information about seasonal-
ity. Recall that the node results included an AR term for a 12-month lag, indicat-
ing that a portion of sales from 12 months back will automatically be included in a 
prediction for the current month. 

The ARIMA model is more powerful at identifying seasonal patterns—much 
the same way it is used in the traditional regression approach. The objective is to 
evaluate the coefficients on the various seasonal terms. Because Microsoft time 
series relies on the seasonal model, the analyst can focus on the seasonal P and 
Q terms. In the final monthly model estimated here, the results returned two sea-
sonal terms: SAR(12) = -0.398, SAR(24) = 0.053, and SMA(12) = -0.067. The 
12-month term represents a one-year lag and indicates that a seasonal pattern does 
exist. Each year, sales in a specific month will be determined somewhat by the 
sales that occurred one year ago in that month. The interesting twist is that the 
sales will be negatively impacted by the sales from one year ago in that month. 
But the positive SMA(24) coefficient buffers that value by adding sales from two 
years ago. 

Cross Correlation and Linear Regression
How can the effects of other series be incorporated into the 
prediction? The question of multiple time series falls into the subject heading 
of dynamic systems. It is a complex topic that can involve detailed mathematical 

Figure 8.37
Existing sales pattern applied to a new model. The new model starting values were 
entered manually but then the existing pattern is applied to yield a forecast that 
follows the seasonal patterns.
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models. Few data mining packages handle the complex tools by default, and if 
you really need these high-end tools, it would be safest to consult with an expert. 
For example, the ARMA process has been extended to vectors. Data sets with 
multiple time series can also run into issues involving simultaneous equations, 
and problems with fitting multiple models to the data.  So, at least read all of the 
literature on a specific tool before attempting to use it. On the other hand, it is pos-
sible to get basic estimates for models that incorporate time series and multiple 
input variables. Just remember that these tools only scratch the surface, and this 
section is merely an introduction.

Goals
The basic goal is to predict future values for a time series. The time series can 
exhibit trend, auto-regressive, and seasonal effects. It can also be affected by other 
attributes. Economic models are fairly common examples. From a business per-
spective, sales can be heavily dependent on overall economic data. For example, 
in economic terms, bicycle sales are most likely a normal good—which means 
that as consumer income increases, consumers will potentially buy more high-end 
bicycles. Certainly, if an economy dips into a recession, sales of high-end bicycles 
are likely to decline. If it is possible to predict overall economic trends, this in-
formation could be used to improve forecasts for specific products, such as cus-
tom bicycles. Of course, any external attributes that are added to the model must 
be predictable by some process. Fortunately, most broad economic measures are 
important to many people, so it is possible to find short-run forecasts by experts. 
These forecasts are not always perfect, but they are available and are probably as 
good as possible given the random nature of the world. 

As usual, a secondary goal of including additional attributes is simply to learn 
more about the data. If some series do affect sales, just that knowledge can help 
improve decision making. Similarly, if some attributes do not significantly affect 
the outcome, many decision problems become simplified.

 Data
The predictable variable should remain the same as for basic time series analysis: 
A single column of observations at regular time intervals. It will usually be neces-
sary to include a key column that defines the sequence of the time data. As with 
simpler models, this column is often a composite number consisting of the year 
and month for monthly data. Quarter or day numbers can be used for different 
intervals. If linear regression is going to be used to analyze the data, the data set 
should also contain simple columns containing the year and the month number. 
These columns will become separate attributes to measure trend and seasonal ef-
fects. Any data for cross correlation should be held in separate columns—being 
careful to match the time increments of the original series.

Economic data is often used to estimate effects on internal data. Standard eco-
nomic series are readily available from government Web sites. Several U.S. gov-
ernment agencies provide tools to find and download economic data. A few in-
ternational organizations provide data on other nations, but the U.S. data is avail-
able free of charge—some organizations charge fees to download data. The U.S. 
government maintains a Web site that serves as an index to the various agencies. 
To find data, start at www.fedstats.gov. One catch to federal data is that it is 
often seasonally adjusted. It can be difficult to find raw data for some govern-
ment series. In many cases, seasonally adjusted data will be acceptable for cross 

http://www.fedstats.gov
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correlation analysis. For example, comparing national income to sales will work 
even when the economic income data are seasonally adjusted. The sales data will 
already contain any seasonal variation which can be measured, so any correlation 
with the economic income data would represent basic income effects. 

For the Rolling Thunder Bicycle sales example, it is possible to download 
disposable personal income and a price index (inflation) measure. Both of these 
measures are available as monthly data, and both are seasonally adjusted. To be 
used with Microsoft BI, the data series need to be downloaded and imported in to 
SQL Server. It is often easier to copy-and-paste the data into Excel first and then 
save the two series as a CSV file which can be imported into a new table in SQL 
Server. While the data sits in an Excel worksheet, you can add the time stamp 
information for year and month. Later, this column makes it possible to join the 
economic data to a query that computes total sales by month. The U.S. Bureau of 
Economic Analysis reports standard national income and product account (NIPA) 
data. For the bicycle sales case, Table 2.6 reports Disposable Personal Income as 
monthly data. Table 2.8.4 reports the personal consumption expenditures (PCE) 
price indexes on a monthly basis. Both series can be found at the www.bea.gov/
national/nipaweb site. Find each data set separately, set the range for 1994/01 
through 2014/12 to get the data that matches the sales for Rolling Thunder Bi-
cycles. The data can be downloaded and saved as a CSV file or copy-and-paste the 
data into Excel and save the data as a CSV file. SQL Server can import a CSV file 
and create a new table to hold the data. Be sure to include a YearMonth column 
that is in the same format as the SaleYearMonth column used to compute the sub-
totals of sales by month (such as 201201).

Tools
Ignoring high-end complex tools, the most common method of incorporating cross 
correlation into time series analysis involves some version of linear regression, or 
a modified version of ARIMA. Microsoft Time Series uses the decision tree ap-
proach to emulate a regression effect. Simply including another data series as an 
Input attribute leads the decision tree model to look for node points where the 
values produce a different effect on the results. The decision tree essentially esti-
mates a piecewise-linear model to find the node values that are significant factors. 

Box and Jenkins, who defined the ARIMA approach, also defined a method to 
incorporate external data into the prediction. Some tools, including gretl, support 
this approach. With this approach, as with Microsoft ARTxp, the analyst simply 
needs to import the new data series and add the attribute as an Input variable to the 
model. The tools do most of the work automatically.

It is also possible to use linear regression directly to build a linear model of 
trend, seasonality, and cross correlation effects. The key lies in creating the cor-
rect set of X-attribute values. These attributes would be easier to create if SQL 
Server supported the Lag function, because a common solution involves using yt-1 
as an input variable. Linear regression requires the most amount of supervision 
and setup, but it also provides detailed control over the model.
Microsoft ARTxp
Adding cross correlation to a Microsoft time series model is relatively easy—once 
the data is imported and available for analysis. The ARTxp process was specifi-
cally designed to handle multiple input attributes. The model simply factors them 
into decisions about creating tree nodes as split points and the results are available 
in the Mining Legend.

http://www.bea.gov/national/nipaweb
http://www.bea.gov/national/nipaweb
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By now, you should have downloaded and imported the Income and price index 
from the BEA database into SQL Server. Assume the columns are in a table called 
DPI with YearMonth as a primary key. The challenge now is to build a named 
query that (1) computes the subtotal of sales by month and (2) joins the result to 
the imported DPI data. The process is somewhat tricky because data sources do 
not handle one-to-one joins, and named queries apparently cannot reference other 
named queries. The complication arises because the SalesByMonth calculation 
must be performed first to create the SaleYearMonth column which is then joined 
to the YearMonth data in the DPI table. One solution to the problems would be to 
build the SalesByMonth as a saved view within SQL Server itself, then join the 
DPI table to the result either within SQL Server or in the data source. However, 
the entire calculation and join can be handled as a named query with the little trick 
of using a temporary table:

SELECT t.SaleYearMonth, t.MonthlySales, dbo.DPI.DPI, dbo.
DPI.PCI
FROM dbo.DPI INNER JOIN
(SELECT YEAR(OrderDate) * 100 + MONTH(OrderDate) AS 
SaleYearMonth, SUM(SalePrice) AS MonthlySales
  FROM dbo.Bicycle 
  GROUP BY YEAR(OrderDate) * 100 + MONTH(OrderDate)) AS t 
ON dbo.DPI.YearMonth = t.SaleYearMonth

The inner SELECT statement handles the computations to get monthly sales 
and this output is assigned to an internal temporary table named t. The outer se-
lect joins those rows to the DPI table based on the year/month columns and dis-
plays the results. Examine a couple rows of the named query to see that it works 
correctly.

After the data is defined, building the mining model is straightforward. Create 
a new mining model using Microsoft Time Series, based on the new named que-
ry. Work through the wizard, selecting Monthly Sales as the predictable column, 
[Sale Year Month] as the time key, and add DPI and PCI as Input columns. After 
the wizard finishes, remember to return to the Mining Models tab and specify the 
Periodicity_Hint as {1, 12} to indicate monthly data. Select the Microsoft_Time_
Series entry, and click the ellipses button in the properties for Algorithm Parame-
ters.  Process the model and Browse the results. The ARIMA model results should 
be the same as before—they are based solely on the predictable series. Although, 
the dataset might be slightly different because real-world data might not exist yet 
for the 2013 and 2014 years.

Figure 8.38 shows the results for the node that handles all months after 2007. 
Check the Mining Legend for details about the node. The fact that the change 
point is 2008 is important alone—that was a key year in the housing market crash. 
The coefficients indicate the declining trend with the negative coefficient on sales 
for the prior month. That shift altered the effect of both income (DPI) and inflation 
(PCI). In essence, the values measure a structural shift in the underlying economic 
impacts.

At this point, an analyst for the company would look at the values for all of the 
other nodes. Note there is another sale month change after 2008, which is further 
split based on values of the DPI. Fortunately, that node (not shown here) reveals 
that the coefficient on DPI turns positive after 2008 and once DPI exceeds a value 
of 11028. The point is that these nodes providing the starting point for deeper 
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understanding of the data. Analysts who lived and worked through 2008 might re-
member the impact of the U.S. housing market crash. The key is that it does show 
up in the model results.  
ARMAX Addition of Series to ARIMA
Many tools that support traditional ARIMA also include the option to analyze the 
impacts of other data on the main time series. Gretl has a simple option to specify 
other series as inputs, and then estimates an ARMAX model based on the ap-
proach defined by Box-Jenkins. The new columns are evaluated as single points. 
The model does not automatically test these columns at different lag points. 

The data from the U.S. BEA Web site needs to be integrated into the existing 
sales data. Because the sales data is stored in a simple CSV file, the easiest ap-
proach is to edit that file in Excel, download the two new columns and paste them 
into the main CSV file. Estimating the model is almost identical to the traditional 
ARIMA model. The trend needs to be differenced out and the lag structure needs 
to be identified from the ACF and PACF charts. These lags should be similar to the 
values found in the initial model with the single series, but they can be tweaked in 
the new model if necessary. Set up the model as before, using AR terms of 1 and 
12, a single difference (D=1), and MA terms of 1, 2, 3, and 10. Then in the gretl 
model definition window, move the DPI and price index variables to the Input 
box. Run the model. 

Figure 8.38
Results of the ARTxp model with economic data. Results for the node: Sale Year 
Month >= 200713. First note that 2008 caused a shift point in sales. Second, the 
coefficients indicate the downward trend from the prior month; and the role of DPI 
and PCI have changed. 

YearMonth > 200713 YearMonth > 200813 and
DPI-1 >= 11028
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Figure 8.39 shows the coefficient estimates for the new model. The lag struc-
ture is similar to the base model. The new series (DPI and PCI) do not appear to 
have significant impacts on the monthly sales data. Both are positive but not sig-
nificant. The inflation measure is also not significantly different from zero. If the 
PCI coefficient really were positive, it would likely indicate that the value of sales 
increases during times of inflation. Because the sales value is measured in nomi-
nal prices, such a result would simply indicate that managers raise prices during 
inflationary times, so total sales increase. For this reason, any model that exam-
ines price changes should probably look at quantity of sales instead of just value.
Linear Regression
Linear regression has been used for many years and several variations have been 
developed to handle time series and dynamic data. The theoretical details are be-
yond the scope of this book, but issues involving lags, auto-regression, and other 
complications can be found in almost any econometrics book. The techniques 
used in this section are relatively common methods to handle basic estimation of 
trends, seasonal effects, and evaluate the impact of other data on the main series. 
In some ways, bringing in multiple series can cause the most problems. Consider 
the basic problem of trying to estimate a demand curve by evaluating data col-
lected over time that compares quantity sold to sale price. Economic theory re-
veals that this relationship should almost always be negative. Yet, in many cases, 
if this data is estimated with a simple regression, the coefficient will be positive. 
The problem is that too many other variables will affect the quantity sold, and at 
least some of these need to be added to the estimation. In econometric terms, it is 
a problem with simultaneous equations. The observed data consists of changes in 
the equilibrium point or intersection of the demand and supply curves over time. 
The model needs enough data to measure changes in both the demand curve as 
well as the supply curve. Then special estimation techniques are needed to sepa-
rate out the impacts on both curves. Again, these topics are beyond the scope of 
this book. Just remember that when you try to measure effects from multiple time 
series, you should seek the assistance of an expert. 

Figure 8.39
ARMAX (gretl) results with the DPI and price index series. The ARIMA structure is 
similar to the base model. The DPI coefficient is negative but not significant, and the 
price index (PCI) is positive but not significant. 

	 coefficient	 std. error	 t-ratio	 p-value	
const	 -8710.8	 8019.9	 -1.086	 0.2774	
phi_1	 0.0286	 0.0812	 0.3529	 0.7242	
phi_12	 0.5701	 0.0591	 9.6520	 0.0000	 ***
theta_1	 -0.2700	 0.0950	 -2.8420	 0.0045	 ***
theta_2	 -0.4881	 0.0802	 -6.0870	 0.0000	 ***
theta_3	 -0.0854	 0.0892	 -0.9572	 0.3885	
theta_10	 -0.1565	 0.0552	 -2.8350	 0.0046	 ***
DPI	 220.61	 187.1	 1.1790	 0.2385	
PCI	 37251.3	 42794	 0.8705	 0.3840	
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With time series data, it is highly likely that values in one period affect val-
ues in the next. This auto-regressive model is common in economics and several 
methods exist to estimate the effect. One of the easiest approaches is to define 
lagged variables of the dependent variable. That is, create new X-variables that 
are lags of the Sales variable and estimate the coefficients directly:

	 Sales = b0 + b1Sales(-1) + b2Sales(-2) + b3Sales(-3) + b4Sales(-12)
The analyst can choose the lag variables, similar to the way AR terms are se-

lected in the ARIMA model. The regression results will return a test of the signifi-
cance of each coefficient.

Trend patterns are even easier to estimate. Simply include a measure of the 
time variable—often the year is used to measure annual changes. These values are 
easily generated in SQL with the Year function when the sales totals are created. 
Using a generic (-i) to represent all lag values, the model becomes:

	 Sales = b0 + biSales(-i) + byYear
Seasonal data is also relatively easy. It is tempting to use a Month column simi-

lar to the concept of the Year column. This approach will work, but the interpre-
tation is different from a true seasonal measure. It would indicate whether any 
month affected the results, with no way to identify which month or season made 
a difference. To determine which specific months made a difference, it is neces-
sary to create dummy variables—essentially one for each month. A dummy vari-
able has a value of zero or one. The value is one if the desired attribute (month) 
is true, otherwise it is zero. So, define 12 new variables. In gretl, an example is: 
M01=(Month==1). This statement defines a new variable (M01) and sets each ob-
servation to 0 except when the Month value is 1 (January). However, when using 
dummy variables in a linear regression, a specific problem arises. If all 12 dummy 
variables are included in the regression, it is not possible to include the constant 
term. Because only 12 months exist, all of the data is covered and defined by 
those 12 dummy variables. The constant term is then a linear combination of the 
12 variables and linear regression does not work if some variables are perfectly 
correlated. The solution is to drop either the constant term or to drop one of the 
12 dummy variables. In most cases, it makes sense to keep the constant term and 
drop the first dummy variable (M01 for January). Nothing is lost. The impact re-
sults for January can be obtained as a linear combination of the other months and 
the constant term. The regression model now looks something like:

 Sales = b0 + biSales(-i) + byYear + b m2M02 + … bm12M12

Finally, it is possible to add terms for the other series. These variables will hold 
the same interpretation as they would in a traditional linear regression model. The 
model can now be written as:

Sales = b0 + biSales(-i) + byYear + b m2M02 + … bm12M12 + bdDPI + bpPCI

Of course, it is also possible that the exogenous variables (DPI and PCI) do 
not have an immediate effect on sales. Particularly for income, it is possible that 
the impact is delayed. People might choose to make a purchase a few months 
in advance (particularly for the year-end holidays). Even if income drops in the 
month of the sale, consumers might complete the purchase because the decision 
has already been made. So, perhaps the real effect of income occurs a month or 
so before the sale. This dynamic situation can be evaluated by including lagged 
values of the DPI and PCI data. It should be clear that the regression approach is 
flexible enough to accommodate relatively complex models.
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The process of obtaining all of the lag and dummy variables depends on the 
specific tool used. Most, such as gretl, SAS, and SPSS have functions to define 
lags and new variables with one command. The interactive version of gretl even 
has a form that makes it easy to specify the number of periods to use for each lag. 

Figure 8.40 shows the results of the regression. The R2 value indicates the re-
gression results are reasonable—however, time series data with auto-regressive 
terms often have high R2 values, and 78 percent is not exceptional. Check the 
significance on the seasonal (monthly) terms. The results loosely match those 
from the ARIMA model. April, and November are important months. However, 
July and October show strong coefficients here, but not in the ARIMA model. 
The catch with the dummy variable approach is that the January results are in-
corporated into the values. July and October usually have lower sales than other 
months, but they are higher on average than January. The coefficient on the Year 
variable is significant and positive, so there is an upward trend to the data in the 

Figure 8.40
Regression results. Notice the significant seasonal (month) terms. Notice the positive 
trend (Year). The AR lags on the dependent variable loosely match the results from 
the other tools. The external series (DPI and PCI) do not have a significant impact on 
sales. R2 = 0.7799.

coefficient std. error t-ratio p-value
const -173894000 64787700 -2.684 0.0079 ***
DPI_1 -105.5 181.089 -0.582 0.5610
DPI_3 -137.9 186.6 -0.739 0.4608
PCI_1 7500.1 45595.8 0.1645 0.8695
PCI_3 7349.5 44302.2 0.1659 0.8684
M02 51363.2 78077.0 0.6579 0.5114
M03 105546 81738.7 1.291 0.1982
M04 136553 78115.6 1.748 0.0821 *
M05 78413.0 73504.1 1.067 0.2874
M06 98425.6 73524.4 1.339 0.1823
M07 123598 76786.4 1.610 0.1092
M08 98079.3 78434.4 1.250 0.2127
M09 68710.6 77535.8 0.8862 0.3767
M10 146903 78651.6 1.868 0.0634 *
M11 438455 82203.4 5.334 0.0000 ***
M12 130437 83798.5 1.557 0.1213
Year 87203.4 32756.3 2.662 0.0084 ***
Sales_1 0.6043 0.0709 8.527 0.0000 ***
Sales_2 -0.3251 0.0829 -3.925 0.0001 ***
Sales_3 0.1356 0.0826 1.642 0.1023
Sales_4 -0.02148 0.0734 -0.3051 0.7606
Sales_12 0.2702 0.0615 4.395 0.0000 ***
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amount of about $87,000 a year. The AR lags on Sales indicate that prior sales are 
important—particularly for the past two months. One month back has a strong 
positive influence on sales for the current month, but this boost is mitigated slight-
ly by the negative effect from two-months prior. The significant coefficient on the 
12-month lag also indicates the presence of a seasonal effect.

Finally, notice that the DPI (income) and PCI (inflation) terms do not signifi-
cantly affect the sales results. Even the lagged values are not significantly different 
from zero. A couple of the lagged coefficients appear strong, so perhaps if more 
data is acquired, more variables are added, or variability declines, these variables 
might influence total sales. The key point is that it is relatively easy to incorporate 
external data and still measure time series effects with linear regression.

Comparison
This chapter covers several tools that try to accomplish the same task: Identify 
patterns in time series and use them to forecast future values. Many data mining 
tools for time series rely on ARIMA as the foundation to estimate trend and sea-
sonal effects. Still, variations in the methods lead to differences in the coefficients 
and in the forecasts. Figure 8.41 shows the forecasts for the first four months of 
2015 using the three basic tools covered in the chapter. The values are all rela-
tively close, except the Microsoft ARTxp forecast numbers appear higher than the 
others. The ARIMA forecast has a bit more variation than the Microsoft forecast. 
Note the slight increase over the “actual” 2014 values for the regression and ARI-
MA forecasts. Overall, they are showing minimal trend effects. And although the 
ARTxp forecast seems too high for most of the year, it is the only one that seems 
to pick up the full forecast for the months of October and November. Regression 

Figure 8.41
Forecast comparison. The forecasts are relatively similar, with the Microsoft ARTxp 
values slightly higher than the others. On the other hand, the forecasts are not much 
different from the “actual” 2014 values.
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and ARIMA are both predicting that those months for 2015 would be lower than 
the observed values in 2014. The bottom line is that no model is “perfect.” 

Figure 8.42 is more confusing. It compares the seasonality results from the 
three models. The values are not completely comparable because the techniques 
are somewhat different. Specifically, the linear regression approach estimates AR 
terms instead of MA values. Still, it would be nice if the seasonal effects were 
similar across the models. The big difference is that the 12-month lag coefficient 
is positive except in Microsoft’s ARTxp model. Even including the SAR(12) and 
SAR(24) terms does not resolve this difference. Although not shown in the ta-
ble, the ARTxp AR(1) term of 0.233 is larger than the AR(1) term of 0.026 from 
the ARIMA model. So the ARTxp model is responding more strongly to recent 
events. The negative coefficients for the 2-period lag are interesting—they are 
also somewhat incorporated into the Microsoft 1-period lag. They imply a consis-
tent damping effect against the other attributes. In essence, when RT has a good 
sales month, the next month is almost always going to be lower. But that effect 
represents the seasonality—the data indicates that consumers tend to have a cou-
ple of targeted purchasing months. 

Summary
Time series data is common in business. Managers commonly make forecasts 
based on patterns over time. Basic questions include the total level of sales, peaks 
and troughs in weekly and seasonal patterns so that adequate staffing can be pro-
vided and forecasting consumer needs for the next holiday period. Time series 
data often exhibit patterns—including long-term trends or growth over time, sea-
sonal patterns such as holiday sales or weekly peaks, and cyclical changes that 
follow the general economy. The essence of time series forecasting is to evaluate a 
series and identify its patterns. These patterns can then be used to forecast the se-
ries into the future. Auto-regressive moving average tools are a common method 
for evaluating patterns—particularly seasonal patterns. These AR and MA terms 
are defined as coefficients that weight the effect of lags in the original data and the 
variations. Traditional Box-Jenkins/ARIMA tools provide auto-correlation and 
partial auto-correlation functions to help determine the lag structure of time series 
data. Trends are removed from ARIMA models by differencing the data—usually 
once for linear growth, twice for non-linear trends.

Figure 8.42
Seasonality comparison. Because of the dissimilarities the results are difficult to 
summarize. However, the primary 12-month lag values are except for Microsoft’s 
ARTxp.

Lag	 ARIMA/MA	 Microsoft/MA	 Regression/AR
1	 -0.3340	 -0.1403	 0.6043
2	 -0.2690	 	 -0.3251
3	 -0.2348	 	 0.1356
4	 -0.0917	 	 -0.0215
10	 -0.1499	 	
12	 0.0124	 -0.0672	 0.2702
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The Microsoft Time Series tool mixes ARIMA forecasts with a proprietary 
ARTxp tool that uses a decision-tree approach to find significant split points in 
the data. ARTxp focuses on auto-regressive lags to determine a piecewise linear 
model. Microsoft claims ARTxp is best at forecasting out a few time periods. For 
further forecasts, the tool mixes and eventually switches to a prediction based on 
an ARIMA model. The Microsoft forecasting tool has a useful trick to apply pat-
terns in a larger series to a new series that is assumed will follow the same pat-
tern—such as when introducing a new model or product.

Incorporating effects from business cycles (national income) or from other 
time series events requires tools that can handle dynamic models. Complex tools 
have been developed to analyze specialized data—particularly in finance—but 
this chapter covers only basic tools. Some ARIMA tools, such as gretl, support 
the addition of other series and can estimate coefficients to measure their correla-
tion with the original series. Microsoft ARTxp evaluates the effects of other series 
when building a decision tree, but does not change the ARIMA model. Linear 
regression can be used to estimate trend, seasonal, and cross-correlation effects. 
Trend is estimated by including a time variable in the model. Seasonal effects 
are identified by adding a binary dummy variable for each season, less one if the 
constant term is included. Time series models generally include lagged dependent 
variables as well to capture dynamic effects and autocorrelation. Cross correlation 
or cyclical effects are evaluated by including other variables, where the resulting 
coefficients provide an estimate of the correlation.

When time series data is highly variable, the results from the different tools 
can vary. When multiple models are created that have different results it can be 
difficult to choose among the models to determine the most likely forecast. Vari-
ous diagnostic measures can be used to compare models, but ultimately the final 
prediction will simply have a high variation. The bottom line is that forecasting 
the future is often difficult.
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Review Questions
1.	 What are the main components of a time series?

2.	 What is the difference between auto-regressive and moving average 
terms in a time series? 

3.	 How does the ARIMA model handle long-term trend in a time series? 

4.	 How are the ACF and PACF used to identify the preliminary lag 
structure of a times series?

5.	 What measures are often used to compare the performance of different 
time series models?

6.	 How is missing data handled in time series analysis?

7.	 How are forecasts made with the traditional ARIMA model?

8.	 How is seasonality identified with the ARIMA model?

9.	 How is Microsoft ARIMA different from the traditional ARIMA (ignor-
ing ARTxp for now)?

10.	 What is the most important parameter to specify in a Microsoft Time 
Series model?

11.	 What does Microsoft’s ARTxp provide that is not available in tradi-
tional ARIMA?

12.	 What is the purpose of cross correlation models and what problems 
might they create?

Exercises

Book
1.	 Set up and run the traditional ARIMA example from the chapter. 

Summarize the results and interpretation.

2.	 Set up and run the Microsoft Time Series analysis example from the 
chapter. Summarize the results and interpretation.

3.	 Set up and run the cross-correlation example from the chapter using 
Microsoft Time Series analysis. Summarize the results and interpreta-
tion.

4.	 Compute the average percent sales by month for Rolling Thunder 
Bicycles. As outlined in the chapter, compute the percentage of sales 
by month within each year and then average those values by month. 
Compare the results to the simpler method used in the chapter.
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 Rolling Thunder Database

5.	 Rerun the time series analysis using quantity of bicycles sold instead 
of sale price as the primary series. Compare the results to those using 
prices.

6.	 Rerun the time series analysis using sale prices, but use quarterly in-
stead of monthly subtotals. Compare the results to those using month-
ly totals.

7.	 Examine the time series of purchases of component parts from ven-
dors. Is there a seasonal pattern?

8.	 Assume the company introduces a new model type (downhill or free 
ride) in 2014. Given the sales values listed in the following table, and 
assuming that the sales will follow the pattern of all mountain bikes, 
use Microsoft Time Series tools to estimate the sales pattern for 2015.

July August September October November December
55,612 38,291 36,289 25,423 67,500 71,300

 

 Diner

9.	 Examine the total sales by week and identify any seasonal patterns 
that exist.

10.	Examine the total sales by day of week and identify any patterns that 
exist.

Corner
Med

Corner
Med

Corner Med

11.	Examine total visits by month and identify any seasonal patterns and 
trends that exist.

12.	Examine total visits by day of week and identify any patterns that ex-
ist.

13.	Examine total revenue (charges) from visits by month and identify any 
seasonal patterns and trends that exist.
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Basketball

14.	Choose one team and one season. Examine average points per game 
scored by that team by week and identify any time series patterns.

15.	Choose one team and season and examine total fouls by that team by 
week and identify any time series patterns.

16.	Choose one team and season and compute the average free throw per-
centage by week (total free throws made / total free throws attempted 
per week). Identify any patterns found.

17.	Choose one player. Examine total points scored by that player per 
game by week in one season and identify any time series patterns. 

Bakery

18.	Examine total sales revenue by month and identify any trends and 
patterns.

19.	Examine total sales revenue by day and identify any trends and pat-
terns.

20.	Examine total sales revenue by hour and identify any daily patterns.

Cars

21.	Use the monthly car sales data to create a new database table. Identi-
fy any trends and seasonal patterns in the total sales. Source: Bureau 
of  Economic Analysis: http://www.bea.gov/national/nipaweb/nipa_un-
derlying/TableView.asp?SelectedTable=55&FirstYear=2009&LastYear
=2009&Freq=Month&ViewSeries=N

22.	Use the data from the previous question and identify patterns and 
trends for the domestic and import manufacturers and comment on 
the two results.
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 Teamwork

23.	Assign one model type of bicycle to each team member. Use time series 
analysis to examine monthly sales of bicycles by model type. Are there 
differences in seasonal models (lags) for the different model types? 
Note, skip track and hybrid models because they have limited sales.

24.	Assign one basketball team to each person in the group. Compute the 
average weekly field goal percentage for the team (total field goals 
made/total field goals attempted that week). Do a time series analysis 
by team and compare results obtained by all members in the group. 

25.	Using the Corner Med database create subgroups for each of the phy-
sicians. Examine total number of weekly visits handled by each phy-
sician separately and identify any patterns or trends. Compare the 
results for each physician and against the total.

26.	Using the Bakery database, assign one product category to each per-
son. Analyze total daily sales for the chosen category and identify any 
patterns and trends. Combine the results from each category and com-
ment on the results. 

Additional Reading
Bowerman, Bruce L. and Richard T. O’Connell, 1979, Time Series and Fore-
casting, Duxbury: North Scituate Massachusetts. [A good introduction to the 
statistics of Time Series, particularly ARIMA. Undergraduate level.]

Box, G.E.P., and G.M. Jenkins, 1976, Time Series Analysis: Forecasting and 
Control, Holden-Day, San Francisco. [Classic description of ARIMA. Math-
ematical.]

Judge, George G., W.E. Griffiths, R. Carter Hill, Helmut Lütkepohl, and 
Tsoung-Chao Lee, 1985, The Theory and Practice of Econometrics, second 
edition, Wiley: New York. [A classic complete work on econometric theory for 
those who want to know how to handle problems that arise with regressions 
and time series introduction. Graduate level.]
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